參考文獻 |
Allen, A., Iqbal, Z., Green-Saxena, A., Hurtado, M., Hoffman, J., Mao, Q., & Das, R. (2022). Prediction of diabetic kidney disease with machine learning algorithms, upon the initial diagnosis of type 2 diabetes mellitus. BMJ Open Diabetes Research and Care, 10(1), e002560. https://doi.org/10.1136/bmjdrc-2021-002560
Amarnath, S., Selvamani, M., & Varadarajan, V. (2021). Prognosis Model for Gestational Diabetes Using Machine Learning Techniques. Sensors and Materials, 33, 3011. https://doi.org/10.18494/SAM.2021.3119
American Diabetes Association. (2004). Gestational diabetes mellitus. Diabetes Care, 27 Suppl 1, S88-90. https://doi.org/10.2337/diacare.27.2007.s88
American Diabetes Association. (2018). Economic Costs of Diabetes in the U.S. in 2017. Diabetes Care, 41(5), 917–928. https://doi.org/10.2337/dci18-0007
Arcadu, F., Benmansour, F., Maunz, A., Willis, J., Haskova, Z., & Prunotto, M. (2019). Deep learning algorithm predicts diabetic retinopathy progression in individual patients. NPJ Digital Medicine, 2, 92. https://doi.org/10.1038/s41746-019-0172-3
Atkinson, M. A., & Eisenbarth, G. S. (2001). Type 1 diabetes: New perspectives on disease pathogenesis and treatment. The Lancet, 358(9277), 221–229. https://doi.org/10.1016/S0140-6736(01)05415-0
Azar, A. T., Elshazly, H. I., Hassanien, A. E., & Elkorany, A. M. (2014). A random forest classifier for lymph diseases. Computer Methods and Programs in Biomedicine, 113(2), 465–473. https://doi.org/10.1016/j.cmpb.2013.11.004
Bae, J. C., Suh, S., Jin, S., Kim, S. W., Hur, K. Y., Kim, J. H., Min, Y., Lee, M., Lee, M. K., Jeon, W. S., Lee, W. Y., & Kim, K. (2014). Hemoglobin A1c values are affected by hemoglobin level and gender in non‐anemic Koreans. Journal of Diabetes Investigation, 5(1), 60–65. https://doi.org/10.1111/jdi.12123
Berthold, H., & Gouni-Berthold, I. (2015). Physician variability in managing type 2 diabetes mellitus: Reasons and potential consequences. Diabetes/Metabolism Research and Reviews, 31(8), 154–162. https://doi.org/10.1002/dmrr.2597
Buchanan, T. A., & Xiang, A. H. (2005). Gestational diabetes mellitus. Journal of Clinical Investigation, 115(3), 485–491. https://doi.org/10.1172/JCI200524531
CDC. (2021, March 25). Diabetic Ketoacidosis. Centers for Disease Control and Prevention. https://www.cdc.gov/diabetes/basics/diabetic-ketoacidosis.html
Chaker, L., Ligthart, S., Korevaar, T. I. M., Hofman, A., Franco, O. H., Peeters, R. P., & Dehghan, A. (2016). Thyroid function and risk of type 2 diabetes: A population-based prospective cohort study. BMC Medicine, 14, 150. https://doi.org/10.1186/s12916-016-0693-4
Chang, V., Ganatra, M. A., Hall, K., Golightly, L., & Xu, Q. A. (2022). An assessment of machine learning models and algorithms for early prediction and diagnosis of diabetes using health indicators. Healthcare Analytics, 2, 100118. https://doi.org/10.1016/j.health.2022.100118
Chen, C.-H., Ma, S.-H., Hu, S.-Y., Chang, C.-M., Chiang, J.-H., Hsieh, V. C.-R., Yen, D. H.-T., How, C.-K., & Hsieh, M.-S. (2018). Diabetes Shared Care Program (DSCP) and risk of infection mortality: A nationwide cohort study using administrative claims data in Taiwan. BMJ Open, 8(7), e021382. https://doi.org/10.1136/bmjopen-2017-021382
Chen, L., Magliano, D., & Zimmet, P. (2011). Chen, L, Magliano, DJ and Zimmet, PZ. The worldwide epidemiology of type 2 diabetes mellitus-present and future perspectives. Nat Rev Endocrinol 8: 228-236. Nature Reviews. Endocrinology, 8, 228–236. https://doi.org/10.1038/nrendo.2011.183
Chowdhury, T. A. (2019). Post-transplant diabetes mellitus. Clinical Medicine, 19(5), 392–395. https://doi.org/10.7861/clinmed.2019-0195
Clément, P., Goff, M., Thiébaut, R., Dartigues, J., & Helmer, C. (2011). Effectiveness of disease-management programs for improving diabetes care: A meta-analysis. CMAJ : Canadian Medical Association Journal = Journal de l’Association Medicale Canadienne, 183, E115-27. https://doi.org/10.1503/cmaj.091786
Cruz-Vega, I., Hernandez-Contreras, D., Peregrina-Barreto, H., Rangel-Magdaleno, J. de J., & Ramirez-Cortes, J. M. (2020). Deep Learning Classification for Diabetic Foot Thermograms. Sensors (Basel, Switzerland), 20(6), 1762. https://doi.org/10.3390/s20061762
Davies, M. J., D’Alessio, D. A., Fradkin, J., Kernan, W. N., Mathieu, C., Mingrone, G., Rossing, P., Tsapas, A., Wexler, D. J., & Buse, J. B. (2018). Management of Hyperglycemia in Type 2 Diabetes, 2018. A Consensus Report by the American Diabetes Association (ADA) and the European Association for the Study of Diabetes (EASD). Diabetes Care, 41(12), 2669–2701. https://doi.org/10.2337/dci18-0033
DeFronzo, R. A. (2009). From the Triumvirate to the Ominous Octet: A New Paradigm for the Treatment of Type 2 Diabetes Mellitus. Diabetes, 58(4), 773–795. https://doi.org/10.2337/db09-9028
Dong, Z., Wang, Q., Ke, Y., Zhang, W., Hong, Q., Liu, C., Liu, X., Yang, J., Xi, Y., Shi, J., Zhang, L., Zheng, Y., Lv, Q., Wang, Y., Wu, J., Sun, X., Cai, G., Qiao, S., Yin, C., … Chen, X. (2022). Prediction of 3-year risk of diabetic kidney disease using machine learning based on electronic medical records. Journal of Translational Medicine, 20(1), 143. https://doi.org/10.1186/s12967-022-03339-1
Doorn, W. P. T. M. van, Foreman, Y. D., Schaper, N. C., Savelberg, H. H. C. M., Koster, A., Kallen, C. J. H. van der, Wesselius, A., Schram, M. T., Henry, R. M. A., Dagnelie, P. C., Galan, B. E. de, Bekers, O., Stehouwer, C. D. A., Meex, S. J. R., & Brouwers, M. C. G. J. (2021). Machine learning-based glucose prediction with use of continuous glucose and physical activity monitoring data: The Maastricht Study. PLOS ONE, 16(6), e0253125. https://doi.org/10.1371/journal.pone.0253125
Eisenbarth, G. S. (1986). Type I diabetes mellitus. A chronic autoimmune disease. The New England Journal of Medicine, 314(21), 1360–1368. https://doi.org/10.1056/NEJM198605223142106
Elhadd, T., Mall, R., Bashir, M., Palotti, J., Fernandez-Luque, L., Farooq, F., Mohanadi, D. A., Dabbous, Z., Malik, R. A., & Abou-Samra, A. B. (2020). Artificial Intelligence (AI) based machine learning models predict glucose variability and hypoglycaemia risk in patients with type 2 diabetes on a multiple drug regimen who fast during ramadan (The PROFAST – IT Ramadan study). Diabetes Research and Clinical Practice, 169, 108388. https://doi.org/10.1016/j.diabres.2020.108388
ElSayed, N. A., Aleppo, G., Aroda, V. R., Bannuru, R. R., Brown, F. M., Bruemmer, D., Collins, B. S., Hilliard, M. E., Isaacs, D., Johnson, E. L., Kahan, S., Khunti, K., Leon, J., Lyons, S. K., Perry, M. L., Prahalad, P., Pratley, R. E., Seley, J. J., Stanton, R. C., … on behalf of the American Diabetes Association. (2022). 2. Classification and Diagnosis of Diabetes: Standards of Care in Diabetes—2023. Diabetes Care, 46(Supplement_1), S19–S40. https://doi.org/10.2337/dc23-S002
Flannick, J., Johansson, S., & Njølstad, P. R. (2016). Common and rare forms of diabetes mellitus: Towards a continuum of diabetes subtypes. Nature Reviews. Endocrinology, 12(7), 394–406. https://doi.org/10.1038/nrendo.2016.50
Franz, M., Boucher, J., Rutten-Ramos, S., & VanWormer, J. (2015). Lifestyle Weight-Loss Intervention Outcomes in Overweight and Obese Adults with Type 2 Diabetes: A Systematic Review and Meta-Analysis of Randomized Clinical Trials. Journal of the Academy of Nutrition and Dietetics, 115. https://doi.org/10.1016/j.jand.2015.02.031
Ganie, S. M., & Malik, M. B. (2022). An ensemble Machine Learning approach for predicting Type-II diabetes mellitus based on lifestyle indicators. Healthcare Analytics, 2, 100092. https://doi.org/10.1016/j.health.2022.100092
Ghaith, N., Malaeb, B., Itani, R., Alnafea, M., & Al Faraj, A. (2021). Correlation of Kidney Size on Computed Tomography with GFR, Creatinine and HbA1C for an Accurate Diagnosis of Patients with Diabetes and/or Chronic Kidney Disease. Diagnostics, 11(5), Article 5. https://doi.org/10.3390/diagnostics11050789
Gopi, A. P., Jyothi, R. N. S., Narayana, V. L., & Sandeep, K. S. (2023). Classification of tweets data based on polarity using improved RBF kernel of SVM. International Journal of Information Technology, 15(2), 965–980. https://doi.org/10.1007/s41870-019-00409-4
Habibi, S., Ahmadi, M., & Alizadeh, S. (2015). Type 2 Diabetes Mellitus Screening and Risk Factors Using Decision Tree: Results of Data Mining. Global Journal of Health Science, 7(5), 304–310. https://doi.org/10.5539/gjhs.v7n5p304
Hall, S. J., Samuel, L. M., & Murchie, P. (2011). Toward shared care for people with cancer: Developing the model with patients and GPs. Family Practice, 28(5), 554–564. https://doi.org/10.1093/fampra/cmr012
Hawale, D., Ambad, R., Hadke, S., & A, A. (2021). Correlation of HBA1C with UACR and Serum Creatinine Level in Type 2 Diabetes Mellitus. International Journal of Current Research and Review, 13, 188–192. https://doi.org/10.31782/IJCRR.2021.131120
Hickman, M., Drummond, N., & Grimshaw, J. (1994). A taxonomy of shared care for chronic disease. Journal of Public Health, 16(4), 447–454. https://doi.org/10.1093/oxfordjournals.pubmed.a043026
Hober, D., & Sauter, P. (2010). Pathogenesis of type 1 diabetes mellitus: Interplay between enterovirus and host. Nature Reviews Endocrinology, 6(5), Article 5. https://doi.org/10.1038/nrendo.2010.27
Hod, M., Kapur, A., Sacks, D. A., Hadar, E., Agarwal, M., Di Renzo, G. C., Roura, L. C., McIntyre, H. D., Morris, J. L., & Divakar, H. (2015). The International Federation of Gynecology and Obstetrics (FIGO) Initiative on gestational diabetes mellitus: A pragmatic guide for diagnosis, management, and care#. International Journal of Gynecology & Obstetrics, 131(S3), S173–S211. https://doi.org/10.1016/S0020-7292(15)30033-3
Hong, J. W., Noh, J. H., & Kim, D.-J. (2018). Association between White Blood Cell Counts within Normal Range and Hemoglobin A1c in a Korean Population. Endocrinology and Metabolism, 33(1), 79–87. https://doi.org/10.3803/EnM.2018.33.1.79
Huang, S.-H., Huang, P.-J., Li, J.-Y., Su, Y.-D., Lu, C.-C., & Shih, C.-L. (2021). Hemoglobin A1c Levels Associated with Age and Gender in Taiwanese Adults without Prior Diagnosis with Diabetes. International Journal of Environmental Research and Public Health, 18(7), 3390. https://doi.org/10.3390/ijerph18073390
Hussain, A., Ali, I., Ijaz, M., & Rahim, A. (2017). Correlation between hemoglobin A1c and serum lipid profile in Afghani patients with type 2 diabetes: Hemoglobin A1c prognosticates dyslipidemia. Therapeutic Advances in Endocrinology and Metabolism, 8(4), 51–57. https://doi.org/10.1177/2042018817692296
Ikram, S., Priya, V., Balakrishnan, A., Cheng, X., Ghalib, Dr. M., & Shankar, A. (2022). Prediction of IIoT traffic using a modified whale optimization approach integrated with random forest classifier. The Journal of Supercomputing, 78, 1–32. https://doi.org/10.1007/s11227-021-04284-4
Imperatore, G., Mayer-Davis, E. J., Orchard, T. J., & Zhong, V. W. (2018). Prevalence and Incidence of Type 1 Diabetes Among Children and Adults in the United States and Comparison With Non-U.S. Countries. In C. C. Cowie, S. S. Casagrande, A. Menke, M. A. Cissell, M. S. Eberhardt, J. B. Meigs, E. W. Gregg, W. C. Knowler, E. Barrett-Connor, D. J. Becker, F. L. Brancati, E. J. Boyko, W. H. Herman, B. V. Howard, K. M. V. Narayan, M. Rewers, & J. E. Fradkin (Eds.), Diabetes in America (3rd ed.). National Institute of Diabetes and Digestive and Kidney Diseases (US). http://www.ncbi.nlm.nih.gov/books/NBK568003/
International Diabetes Federation. (2021). IDF Diabetes Atlas 10th edition. https://diabetesatlas.org/
Kaaja, R. J., & Greer, I. A. (2005). Manifestations of Chronic Disease During Pregnancy. JAMA, 294(21), 2751–2757. https://doi.org/10.1001/jama.294.21.2751
Kannadasan, K., Edla, D. R., & Kuppili, V. (2019). Type 2 diabetes data classification using stacked autoencoders in deep neural networks. Clinical Epidemiology and Global Health, 7(4), 530–535. https://doi.org/10.1016/j.cegh.2018.12.004
Kim, C., Newton, K. M., & Knopp, R. H. (2002). Gestational Diabetes and the Incidence of Type 2 Diabetes: A systematic review. Diabetes Care, 25(10), 1862–1868. https://doi.org/10.2337/diacare.25.10.1862
Kim, S., & Lee, H. (2022). Customer Churn Prediction in Influencer Commerce: An Application of Decision Trees. Procedia Computer Science, 199, 1332–1339. https://doi.org/10.1016/j.procs.2022.01.169
Kuo, I.-C., Lin, H. Y.-H., Niu, S.-W., Lee, J.-J., Chiu, Y.-W., Hung, C.-C., Hwang, S.-J., & Chen, H.-C. (2018). Anemia modifies the prognostic value of glycated hemoglobin in patients with diabetic chronic kidney disease. PLoS ONE, 13(6), e0199378. https://doi.org/10.1371/journal.pone.0199378
Li, X., Sun, L., Ling, M., & Peng, Y. (2023). A survey of graph neural network based recommendation in social networks. Neurocomputing, 549, 126441. https://doi.org/10.1016/j.neucom.2023.126441
Lin, Y.-T., Huang, W.-L., Wu, H.-P., Chang, M.-P., & Chen, C.-C. (2021). Association of Mean and Variability of HbA1c with Heart Failure in Patients with Type 2 Diabetes. Journal of Clinical Medicine, 10(7), Article 7. https://doi.org/10.3390/jcm10071401
Lorig, K. R., Sobel, D. S., Stewart, A. L., Brown, B. W., Bandura, A., Ritter, P., Gonzalez, V. M., Laurent, D. D., & Holman, H. R. (1999). Evidence suggesting that a chronic disease self-management program can improve health status while reducing hospitalization: A randomized trial. Medical Care, 37(1), 5–14. https://doi.org/10.1097/00005650-199901000-00003
Lv, X., Qiao, W., Leng, Y., Wu, L., & Zhou, Y. (2017). Impact of diabetes mellitus on clinical outcomes of pancreatic cancer after surgical resection: A systematic review and meta-analysis. PLoS ONE, 12(2), e0171370. https://doi.org/10.1371/journal.pone.0171370
Matsushita, Y., Takeda, N., Nakamura, Y., Yoshida-Hata, N., Yamamoto, S., Noda, M., Yokoyama, T., Mizoue, T., & Nakagawa, T. (2020). A Comparison of the Association of Fasting Plasma Glucose and HbA1c Levels with Diabetic Retinopathy in Japanese Men. Journal of Diabetes Research, 2020, e3214676. https://doi.org/10.1155/2020/3214676
Mikkola, I., Hagnäs, M., Hartsenko, J., Kaila, M., & Winell, K. (2020). A Personalized Care Plan Is Positively Associated With Better Clinical Outcomes in the Care of Patients With Type 2 Diabetes: A Cross-Sectional Real-Life Study. Canadian Journal of Diabetes, 44(2), 133–138. https://doi.org/10.1016/j.jcjd.2019.05.003
Motaib, I., Aitlahbib, F., Fadil, A., Z.Rhmari Tlemcani, F., Elamari, S., Laidi, S., & Chadli, A. (2022). Predicting poor glycemic control during Ramadan among non-fasting patients with diabetes using artificial intelligence based machine learning models. Diabetes Research and Clinical Practice, 190, 109982. https://doi.org/10.1016/j.diabres.2022.109982
National Institute of Diabetes and Digestive and Kidney Diseases. (2017, May). Gestational Diabetes. National Institute of Diabetes and Digestive and Kidney Diseases. https://www.niddk.nih.gov/health-information/diabetes/overview/what-is-diabetes/gestational/all-content
Nozawa, K., Ikeda, M., & Kikuchi, S. (2022). Association Between HbA1c Levels and Diabetic Peripheral Neuropathy: A Case–Control Study of Patients with Type 2 Diabetes Using Claims Data. Drugs - Real World Outcomes, 9(3), 403–414. https://doi.org/10.1007/s40801-022-00309-3
Ogunyemi, O., & Kermah, D. (2015). Machine Learning Approaches for Detecting Diabetic Retinopathy from Clinical and Public Health Records. AMIA Annual Symposium Proceedings, 2015, 983–990.
Palimkar, P., Shaw, R. N., & Ghosh, A. (2022). Machine Learning Technique to Prognosis Diabetes Disease: Random Forest Classifier Approach. In M. Bianchini, V. Piuri, S. Das, & R. N. Shaw (Eds.), Advanced Computing and Intelligent Technologies (pp. 219–244). Springer. https://doi.org/10.1007/978-981-16-2164-2_19
Park, S., Lee, H. s., & Kim, J. (2017). Seed growing for interactive image segmentation using SVM classification with geodesic distance. Electronics Letters, 53(1), 22–24. https://doi.org/10.1049/el.2016.3919
Patalas-Maliszewska, J., Łosyk, H., & Rehm, M. (2022). Decision-Tree Based Methodology Aid in Assessing the Sustainable Development of a Manufacturing Company. Sustainability, 14(10), Article 10. https://doi.org/10.3390/su14106362
Phyo Phyo San, null, Sai Ho Ling, null, & Nguyen, H. T. (2016). Deep learning framework for detection of hypoglycemic episodes in children with type 1 diabetes. Annual International Conference of the IEEE Engineering in Medicine and Biology Society. IEEE Engineering in Medicine and Biology Society. Annual International Conference, 2016, 3503–3506. https://doi.org/10.1109/EMBC.2016.7591483
Poongodi, M., Malviya, M., Kumar, C., Hamdi, M., Vijayakumar, V., Nebhen, J., & Alyamani, H. (2022). New York City taxi trip duration prediction using MLP and XGBoost. International Journal of System Assurance Engineering and Management, 13(1), 16–27. https://doi.org/10.1007/s13198-021-01130-x
Prabhu, P., & Selvabharathi, S. (2019). Deep Belief Neural Network Model for Prediction of Diabetes Mellitus. 2019 3rd International Conference on Imaging, Signal Processing and Communication (ICISPC), 138–142. https://doi.org/10.1109/ICISPC.2019.8935838
Qi, Y. (2012). Random Forest for Bioinformatics. In C. Zhang & Y. Ma (Eds.), Ensemble Machine Learning: Methods and Applications (pp. 307–323). Springer US. https://doi.org/10.1007/978-1-4419-9326-7_11
Qummar, S., Khan, F. G., Shah, S., Khan, A., Din, A., & Gao, J. (2020). Deep Learning Techniques for Diabetic Retinopathy Detection. Current Medical Imaging, 16(10), 1201–1213. https://doi.org/10.2174/1573405616666200213114026
Rahman, M., Islam, D., Mukti, R. J., & Saha, I. (2020). A deep learning approach based on convolutional LSTM for detecting diabetes. Computational Biology and Chemistry, 88, 107329. https://doi.org/10.1016/j.compbiolchem.2020.107329
Rehman, M. U., Shafique, A., Khalid, S., Driss, M., & Rubaiee, S. (2021). Future Forecasting of COVID-19: A Supervised Learning Approach. Sensors (Basel, Switzerland), 21(10), 3322. https://doi.org/10.3390/s21103322
Richhariya, B., Tanveer, M., & Rashid, A. H. (2020). Diagnosis of Alzheimer’s disease using universum support vector machine based recursive feature elimination (USVM-RFE). Biomedical Signal Processing and Control, 59, 101903. https://doi.org/10.1016/j.bspc.2020.101903
Ryu, K., Lee, J., Batbaatar, E., Lee, J., Choi, K., & Cha, H. (2020). A Deep Learning Model for Estimation of Patients with Undiagnosed Diabetes. Applied Sciences, 10, 421. https://doi.org/10.3390/app10010421
Sanz, M., Ceriello, A., Buysschaert, M., Chapple, I., Demmer, R. T., Graziani, F., Herrera, D., Jepsen, S., Lione, L., Madianos, P., Mathur, M., Montanya, E., Shapira, L., Tonetti, M., & Vegh, D. (2018). Scientific evidence on the links between periodontal diseases and diabetes: Consensus report and guidelines of the joint workshop on periodontal diseases and diabetes by the International Diabetes Federation and the European Federation of Periodontology. Journal of Clinical Periodontology, 45(2), 138–149. https://doi.org/10.1111/jcpe.12808
Sebern, M. D., & Woda, A. (2012). Shared Care Dyadic Intervention: Outcome Patterns for Heart Failure Care Partners. Western Journal of Nursing Research, 34(3), 289–316. https://doi.org/10.1177/0193945911399088
Sen-Crowe, B., Sutherland, M., McKenney, M., & Elkbuli, A. (2021). A Closer Look Into Global Hospital Beds Capacity and Resource Shortages During the COVID-19 Pandemic. Journal of Surgical Research, 260, 56–63. https://doi.org/10.1016/j.jss.2020.11.062
Shahin, O. R., Alshammari, H. H., Alzahrani, A. A., Alkhiri, H., & Taloba, A. I. (2023). A robust deep neural network framework for the detection of diabetes. Alexandria Engineering Journal, 74, 715–724. https://doi.org/10.1016/j.aej.2023.05.072
Sherwani, S. I., Khan, H. A., Ekhzaimy, A., Masood, A., & Sakharkar, M. K. (2016). Significance of HbA1c Test in Diagnosis and Prognosis of Diabetic Patients. Biomarker Insights, 11, 95–104. https://doi.org/10.4137/BMI.S38440
Shimpi, P., Shah, S., Shroff, M., & Godbole, A. (2017). A machine learning approach for the classification of cardiac arrhythmia. 2017 International Conference on Computing Methodologies and Communication (ICCMC), 603–607. https://doi.org/10.1109/ICCMC.2017.8282537
Singh, V., Poonia, R., Kumar, S., Dass, P., Agarwal, P., Bhatnagar, V., & Raja, L. (2020). Prediction of COVID-19 corona virus pandemic based on time series data using support vector machine. Journal of Discrete Mathematical Sciences and Cryptography, 23. https://doi.org/10.1080/09720529.2020.1784535
Sivaraman, S. C., Vinnamala, S., & Jenkins, D. (2013). Gestational Diabetes and Future Risk of Diabetes. Journal of Clinical Medicine Research, 5(2), 92–96. https://doi.org/10.4021/jocmr1201w
Solis-Herrera, C., Triplitt, C., Reasner, C., DeFronzo, R. A., & Cersosimo, E. (2000). Classification of Diabetes Mellitus. In K. R. Feingold, B. Anawalt, M. R. Blackman, A. Boyce, G. Chrousos, E. Corpas, W. W. de Herder, K. Dhatariya, K. Dungan, J. Hofland, S. Kalra, G. Kaltsas, N. Kapoor, C. Koch, P. Kopp, M. Korbonits, C. S. Kovacs, W. Kuohung, B. Laferrère, … D. P. Wilson (Eds.), Endotext. MDText.com, Inc. http://www.ncbi.nlm.nih.gov/books/NBK279119/
Størling, J., & Pociot, F. (2017). Type 1 Diabetes Candidate Genes Linked to Pancreatic Islet Cell Inflammation and Beta-Cell Apoptosis. Genes, 8(2), 72. https://doi.org/10.3390/genes8020072
Sugondo, A. T., Ardiany, D., Nuswantoro, D., & Notopuro, P. B. (2019). Relationship between HbA1c Levels with eGFR and Blood Pressure in Type 2 Diabetes Mellitus Patients in the Department of Internal Medicine Dr. Soetomo General Hospital Surabaya. Biomolecular and Health Science Journal, 2(2), Article 2. https://doi.org/10.20473/bhsj.v2i2.14956
The International Expert Committee. (2009). International Expert Committee Report on the Role of the A1C Assay in the Diagnosis of Diabetes. Diabetes Care, 32(7), 1327–1334. https://doi.org/10.2337/dc09-9033
Tsao, H.-Y., Chan, P.-Y., & Su, E. C.-Y. (2018). Predicting diabetic retinopathy and identifying interpretable biomedical features using machine learning algorithms. BMC Bioinformatics, 19(Suppl 9), 283. https://doi.org/10.1186/s12859-018-2277-0
Unwin. (2002). Impaired glucose tolerance and impaired fasting glycaemia: The current status on definition and intervention. Diabetic Medicine, 19(9), 708–723. https://doi.org/10.1046/j.1464-5491.2002.00835.x
Vaxillaire, M., Bonnefond, A., & Froguel, P. (2012). The lessons of early-onset monogenic diabetes for the understanding of diabetes pathogenesis. Best Practice & Research. Clinical Endocrinology & Metabolism, 26(2), 171–187. https://doi.org/10.1016/j.beem.2011.12.001
Vigersky, R. A., & McMahon, C. (2019). The Relationship of Hemoglobin A1C to Time-in-Range in Patients with Diabetes. Diabetes Technology & Therapeutics, 21(2), 81–85. https://doi.org/10.1089/dia.2018.0310
Vounzoulaki, E., Khunti, K., Abner, S. C., Tan, B. K., Davies, M. J., & Gillies, C. L. (2020). Progression to type 2 diabetes in women with a known history of gestational diabetes: Systematic review and meta-analysis. BMJ, m1361. https://doi.org/10.1136/bmj.m1361
Wang, L., Wang, X., Chen, A., Jin, X., & Che, H. (2020). Prediction of Type 2 Diabetes Risk and Its Effect Evaluation Based on the XGBoost Model. Healthcare, 8(3), Article 3. https://doi.org/10.3390/healthcare8030247
Wang, S., Zha, Y., Li, W., Wu, Q., Li, X., Niu, M., Wang, M., Qiu, X., Li, H., Yu, H., Gong, W., Bai, Y., Li, L., Zhu, Y., Wang, L., & Tian, J. (2020). A fully automatic deep learning system for COVID-19 diagnostic and prognostic analysis. European Respiratory Journal, 56(2). https://doi.org/10.1183/13993003.00775-2020
Wei, J.-N., Sung, F.-C., Li, C.-Y., Chang, C.-H., Lin, R.-S., Lin, C.-C., Chiang, C.-C., & Chuang, L.-M. (2003). Low birth weight and high birth weight infants are both at an increased risk to have type 2 diabetes among schoolchildren in taiwan. Diabetes Care, 26(2), 343–348. https://doi.org/10.2337/diacare.26.2.343
White, N. H., Sun, W., Cleary, P. A., Tamborlane, W. V., Danis, R. P., Hainsworth, D. P., & Davis, M. D. (2010). Effect of Prior Intensive Therapy in Type 1 Diabetes on 10-Year Progression of Retinopathy in the DCCT/EDIC: Comparison of Adults and Adolescents. Diabetes, 59(5), 1244–1253. https://doi.org/10.2337/db09-1216
Wittler, I., Liu, X., & Dong, A. (2019). Deep Learning Enabled Predicting Modeling of Mortality of Diabetes Mellitus Patients. Proceedings of the Practice and Experience in Advanced Research Computing on Rise of the Machines (Learning), 1–6. https://doi.org/10.1145/3332186.3333262
World Health Organization. (2013). Diagnostic criteria and classification of hyperglycaemia first detected in pregnancy (WHO/NMH/MND/13.2). World Health Organization. https://apps.who.int/iris/handle/10665/85975
Wu, Y., Zhang, Q., Hu, Y., Sun-Woo, K., Zhang, X., Zhu, H., jie, L., & Li, S. (2022). Novel binary logistic regression model based on feature transformation of XGBoost for type 2 Diabetes Mellitus prediction in healthcare systems. Future Generation Computer Systems, 129, 1–12. https://doi.org/10.1016/j.future.2021.11.003
Xu, B., Guo, X., Ye, Y., & Cheng, J. (2012). An Improved Random Forest Classifier for Text Categorization. Journal of Computers, 7(12), 2913–2920. https://doi.org/10.4304/jcp.7.12.2913-2920
Yamada, T., Iwasaki, K., Maedera, S., Ito, K., Takeshima, T., Noma, H., & Shojima, N. (2020). Myocardial infarction in type 2 diabetes using sodium–glucose co-transporter-2 inhibitors, dipeptidyl peptidase-4 inhibitors or glucagon-like peptide-1 receptor agonists: Proportional hazards analysis by deep neural network based machine learning. Current Medical Research and Opinion, 36(3), 403–409. https://doi.org/10.1080/03007995.2019.1706043
Younes, N., Atallah, M., Alam, R., Chehade, N., & Gannagé-Yared, M.-H. (2019). HbA1c and Blood Pressure Measurements: Relation with Gender, Body Mass Index, Study Field, and Lifestyle in Lebanese Students. Endocrine Practice, 25. https://doi.org/10.4158/EP-2019-0163
Zamani Joharestani, M., Cao, C., Ni, X., Bashir, B., & Talebiesfandarani, S. (2019). PM2.5 Prediction Based on Random Forest, XGBoost, and Deep Learning Using Multisource Remote Sensing Data. Atmosphere, 10(7), Article 7. https://doi.org/10.3390/atmos10070373
Zeng, X., Chen, Y.-W., & Tao, C. (2009). Feature Selection Using Recursive Feature Elimination for Handwritten Digit Recognition. 2009 Fifth International Conference on Intelligent Information Hiding and Multimedia Signal Processing, 1205–1208. https://doi.org/10.1109/IIH-MSP.2009.145
Zhou, B., Lu, Y., Hajifathalian, K., Bentham, J., Cesare, M. D., Danaei, G., Bixby, H., Cowan, M. J., Ali, M. K., Taddei, C., Lo, W. C., Reis-Santos, B., Stevens, G. A., Riley, L. M., Miranda, J. J., Bjerregaard, P., Rivera, J. A., Fouad, H. M., Ma, G., … Cisneros, J. Z. (2016). Worldwide trends in diabetes since 1980: A pooled analysis of 751 population-based studies with 4·4 million participants. The Lancet, 387(10027), 1513–1530. https://doi.org/10.1016/S0140-6736(16)00618-8
Zhu, T., Li, K., Herrero, P., & Georgiou, P. (2021). Deep Learning for Diabetes: A Systematic Review. IEEE Journal of Biomedical and Health Informatics, 25(7), 2744–2757. https://doi.org/10.1109/JBHI.2020.3040225
Zuberi, Z., Sauli, E., Cun, L., Deng, J., Li, W.-J., He, X.-L., & Li, W. (2020). Insulin-delivery methods for children and adolescents with type 1 diabetes. Therapeutic Advances in Endocrinology and Metabolism, 11, 2042018820906016. https://doi.org/10.1177/2042018820906016
中華民國糖尿病衛教協會. (2019). 臺灣糖尿病年鑑2019第2型糖尿病.
伍昀貞. (2017). 利用傾向分數配對法重新評估苗栗縣卓蘭鎮衛生所糖尿病共同照護網病患成效分析 [碩士論文, 亞洲大學]. 亞洲大學健康產業管理學系長期照護組碩士在職專班. https://hdl.handle.net/11296/7485p9
劉棻. (2006). 台灣糖尿病共同照護網推行現況與挑戰. 領導護理, 7(2), 28–34. https://doi.org/10.29494/LN.200612.0003
吳亭亭. (2012). 糖尿病病人參與糖尿病共同照護網成效之評估 [碩士論文, 臺北醫學大學]. 臺北醫學大學醫務管理學研究所. https://hdl.handle.net/11296/s6nnjg
朱薇蓁. (2020). 糖尿病共照網病患糖尿病控制與健康促進行為相關性之研究-以桃園市八德區衛生所為例 [碩士論文, 國立體育大學]. 國立體育大學管理學院. https://hdl.handle.net/11296/wgq3td
李洺樺. (2019). 醫師供給偏離程度與糖尿病照護品質相關性之探討 [碩士論文, 長庚大學]. 長庚大學醫務管理學系. https://hdl.handle.net/11296/74pq5a
林佩珍. (2021). 糖尿病共同照護網個案健康識能與糖尿病控制成效之分析-以金門縣某鄉鎮為例 [碩士論文, 國立金門大學]. 國立金門大學管理學院事業經營碩士在職專班觀光管理組. https://hdl.handle.net/11296/289vm9
社團法人中華民國糖尿病學會. (2022a). 2022 第 1 型糖尿病臨床照護指引. 社團法人中華民國糖尿病學會.
社團法人中華民國糖尿病學會. (2022b). 2022 第 2 型糖尿病臨床照護指引. 社團法人中華民國糖尿病學會.
衛生福利部中央健康保險署. (2022). 糖尿病及初期慢性腎臟病照護整合方案. 統計處. https://www.tsn.org.tw/archive/20220330/ee45d783-07df-4c3c-8f49-358ac94b1e3a/ee45d783-07df-4c3c-8f49-358ac94b1e3a.pdf
衛生福利部中央健康保險署. (2023). 2021年國人全民健康保險就醫疾病資訊. 衛生福利部中央健康保險署; 衛生福利部中央健康保險署. https://www.nhi.gov.tw/Content_List.aspx?n=DEA170E82BF98015&topn=23C660CAACAA159D&Create=1
衛生福利部全民健康保險會. (2022). 全民健康保險醫療給付費用總額協商參考指標要覽-111年版統計處. https://www.tsn.org.tw/archive/20220330/ee45d783-07df-4c3c-8f49-358ac94b1e3a/ee45d783-07df-4c3c-8f49-358ac94b1e3a.pdf
衛生福利部國民健康署. (2017). 糖尿病共同照護工作指引手冊 (第一版). 衛生福利部國民健康署. https://www.govbooks.com.tw/books/115606
衛生福利部國民健康署. (2019). 衛生福利部國民健康署:糖尿病防治手冊(糖尿病預防、診斷與控制流程指引)- 醫事人員參考 (涵蓋範圍) 衛生福利部國民健康署; 衛生福利部國民健康署. https://www.hpa.gov.tw/Pages/Detail.aspx?nodeid=359&pid=1235
衛生福利部統計處. (2021). 歷年統計. 統計處; 統計處. https://dep.mohw.gov.tw/DOS/lp-5069-113.html
陳睿俊. (2009). 糖尿病病患加入糖尿病照護網滿意度及相關因素之探討-以龍潭地區為例 [碩士論文, 中華大學]. 中華大學科技管理學系(所). https://hdl.handle.net/11296/bmz9h5
陳羿伶. (2009). 糖尿病照護網病人流失其相關因素之探討 [碩士論文, 臺北醫學大學]. 臺北醫學大學醫務管理學研究所. https://hdl.handle.net/11296/4jguv2 |