參考文獻 |
[1] D. Guo, J. Wang, Y. Cui , Z. Wang, and S. Chen, “SiamCAR: siamese fully convolutional classification and regression for visual tracking,” arXiv:1911.07241v2.
[2] K. He, X. Zhang, S. Ren, and J. Sun, “Deep residual learning for image recognition,” arXiv:1512.03385.
[3] M. Sun, J. Xiao, E. G. Lim, B. Zhang, and Y. Zhao, “Fast template matching and update for video object tracking and segmentation,” arXiv:2004.07538.
[4] A. Karami, M. Naseri, and M. Ehsanpour, “A novel approach to object detection using color and edge template matching,” Journal of Real-Time Image Processing, vol.14, no.4, pp.831-839, 2017.
[5] A. V. Aswathy, “Template matching based vehicle license plate recognition,” in Proc. Int. Conf. on Recent Advances in Energy-efficient Computing and Communication (ICRAECC), Nagercoil, India, Mar.7-8, 2019, pp.1-5.
[6] Y. Su and R. A. Robb, “Seed image reconstruction using a template matching technique,” in Proc. Conf. on Medical Imaging: Image Processing, San Diego, CA, Feb.12-17, 2005, pp.1038-1045.
[7] A. V. Ceguerra and I. Koprinska, “Integrating local and global features in automatic fingerprint verification,” in Proc. IEEE Conf. on Int. Conf. on Pattern Recognition (ICPR), Quebec City, Canada, Aug.11-15, 2002, pp.347-350.
[8] M. B. Hisham, S. N. Yaakob, R. A. A. Raof, A. A. Nazren, and N. M. Wafi, “Template matching using sum of squared difference and normalized cross correlation,” in Proc IEEE Conf. on Research and Development (SCOReD), Kuala Lumpur, Malaysia, Dec.13-14, 2015, pp.100-104.
[9] D. G. Lowe, “Object recognition from local scale-invariant features,” in Proc. IEEE Int. Conf. on Computer Vision (ICCV), Kerkyra, Greece, Sep.20-27, 1999, pp.1150-1157.
[10] W. Treible, P. Saponaro, and C. Kambhamettu, “Wildcat: in-the-wild color-and-thermal patch comparison with deep residual pseudo-siamese networks,” in Proc. IEEE Int. Conf. on Image Processing (ICIP), Taipei, Taiwan, Sep.22-25, 2019, pp.1307-1311.
[11] J. Bromley, I. Guyon, Y. LeCun, E. Säckinger, and R. Shah, “Signature verification using a “Siamese” time delay neural network,” in Proc. of Neural Information Processing Systems (NIPS), Denver, Colorado, Nov.29 - Dec.2, 1993, pp.737-744.
[12] V. Nair and G. E. Hinton, “Rectified linear units improve restricted Boltzmann machines,” in Proc. of 27th Int. Conf on Machine Learning (ICML), Haifa, Israel, Jun.21-24, 2010, pp.807-814.
[13] R. Hadsell, S. Chopra, and Y. LeCun, “Dimensionality reduction by learning an invariant mapping,” in Proc. IEEE Conf. on Computer Vision and Pattern Recognition (CVPR), New York, NY, Jun.17-22, 2006, pp.1735-1742.
[14] E. Hoffer and N. Ailon, “Deep metric learning using triplet network,” arXiv:1412.6622v4.
[15] F. Schroff, D. Kalenichenko, and J. Philbin, “Facenet: a unified embedding for face recognition and clustering,” arXiv:1503.03832v3.
[16] R. Han, W. Feng, J. Zhao, Z. Niu, Y. Zhang, L. Wan, and S. Wang, “Complementary-view multiple human tracking,” in Proc. AAAI Conf. on Artificial Intelligence, New York, NY, Feb.7-12, 2020, pp.10917-10924.
[17] A. Ess, K. Schindler, B. Leibe, and L. Van Gool, “Object detection and tracking for autonomous navigation in dynamic environments,” The International Journal of Robotics Research, vol.29, no.14, pp.1707-1725, 2010.
[18] J. Ciberlin, R. Grbic, N. Teslić, and M. Pilipović, “Object detection and object tracking in front of the vehicle using front view camera,” in Proc. IEEE Conf. on Zooming Innovation in Consumer Technologies (ZINC), Novi Sad, Serbia, May 29-30, 2019, pp.27-32.
[19] C. Luo, X. Yang, and A. Yuille, “Exploring simple 3d multi-object tracking for autonomous driving,” arXiv:2108.10312.
[20] Q. Abdullah, N. S. M. Shah, M. Mohamad, M. H. K. Ali, N. Farah, A. Salh, M. Aboali, M. A. H. Mohamad, and A. Saif, “Real-time autonomous robot for object tracking using vision system,” arXiv:2105.00852.
[21] D. S. Bolme, J. R. Beveridge, B. A. Draper, and Y. M. Lui, “Visual object tracking using adaptive correlation filters,” in Proc. IEEE Conf. on Computer Vision and Pattern Recognition (CVPR), San Francisco, CA, Jun.13-18, 2010, pp.2544-2550.
[22] R. Tao, E. Gavves, and A. W. Smeulders, “Siamese instance search for tracking,” arXiv:1605.05863.
[23] L. Bertinetto, J. Valmadre, J. F. Henriques, A. Vedaldi, and P. H. S. Torr, “Fully-convolutional siamese networks for object tracking,” arXiv:1606.09549v3.
[24] B. Li, J. Yan, W. Wu, Z. Zhu, and X. Hu, “High performance visual tracking with siamese region proposal network,” in Proc. IEEE Conf. on Computer Vision and Pattern Recognition (CVPR), Salt Lake City, UT, Jun.18-23, 2018, pp.8971-8980.
[25] S. Ren, K. He, R. Girshick, and J. Sun, “Faster R-CNN: towards real-time object detection with region proposal networks,” arXiv:1506.01497v3.
[26] Z. Zhu, Q. Wang, B. Li, W. Wu, J. Yan, and W. Hu, “Distractor-aware siamese networks for visual object tracking,” arXiv:1808.06048.
[27] A. Krizhevsky, I. Sutskever, and G. E. Hinton, “ImageNet classification with deep convolutional neural networks,” in Proc. of Neural Information Processing Systems (NIPS), Lake Tahoe, NV, Dec.3-8, 2012, pp.1-9.
[28] Z. Zhang and H. Peng, “Deeper and wider siamese networks for real-time visual tracking,” arXiv:1901.01660v3.
[29] B. Li, W. Wu, Q. Wang, F. Zhang, J. Xing, and J. Yan, “SiamRPN++: evolution of siamese visual tracking with very deep networks,” arXiv:1808.06048.
[30] K. He, G. Gkioxari, P. Dollar, and R. Girshick, “Mask R-CNN,” arXiv:1703.06870v3.
[31] Q. Wang, L. Zhang, L. Bertinetto, W. Hu, and P. H. S. Torr, “Fast online object tracking and segmentation: a unifying approach,” arXiv:1812.05050v2.
[32] Z. Tian, C. Shen, H. Chen, and T. He, “FCOS: fully convolutional one-stage object detection,” arXiv:1904.01355v5.
[33] J. Yu, Y. Jiang, Z. Wang, Z. Cao, and T. Huang, “UnitBox: An advanced object detection network,” arXiv: 1608.01471
[34] J. Hu, L. Shen, S. Albanie, G. Sun, and E. Wu, “Squeeze-and-excitation networks,” arXiv:1709.01507v4.
[35] S. Woo, J. Park, J.-Y. Lee, and I. Kweon, “CBAM: convolutional block attention module,” arXiv:1807.06521v2.
[36] J. Fu, J. Liu, H. Tian, Y. Li, Y. Bao, Z. Fang, and H. Lu, “Dual attention network for scene segmentation,” arXiv:1809.02983v4. |