博碩士論文 110521107 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:77 、訪客IP:18.191.103.144
姓名 林柏辰(Bo-Chen Lin)  查詢紙本館藏   畢業系所 電機工程學系
論文名稱 基於層次分析法與熵值法之改良式粒子群優化策略於多目標最佳化能源管理系統
(Improved Particle Swarm Optimization Strategy for Multi-Objective Optimization of Energy Management Systems Based on Analytic Hierarchy Process and Entropy Method)
相關論文
★ 高效能電子轉向控制器設計★ 微電網能源管理系統優化調度基於螢火蟲移動迴歸策略
★ 以半區間法為基礎之最大功率追蹤技術於能源轉換系統之設計★ 智慧型電力品質事件辨識技術於分散式能源 之監測辨識系統開發
★ 以自適應性線性濾波器與頻率檢測法為基礎之並聯主動式電力濾波器設計★ 以互補式單側多脈波寬度調變之低電流漣波高增益比昇壓轉換器研製
★ 以類神經網路為基礎之時頻域混合交流電弧爐模型於電力品質分析之應用★ 以虛擬同步發電機為基礎之微電網轉換器控制算法設計
★ 以IEEE 1459標準為基礎之選擇性補償策略應用於並聯式主動電力濾波器設計★ 結合雙二階廣義積分法與鎖頻迴路為基礎 之串聯式主動電力濾波器設計
★ 微電網與市電併聯之同步控制器設計★ 以自適應性為基礎之遞迴式最小二乘方法應用於配電型靜態同步補償器設計
★ 磁共振式無線功率傳輸系統之線圈及鐵氧體設計與分析★ 具共振頻率切換之多輸出無線功率傳輸裝置研製
★ 高功率雷射源之切換式電源供應器★ 應用於微電網故障保護之專家系統
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   至系統瀏覽論文 ( 永不開放)
摘要(中) 隨著微電網蓬勃發展,讓微電網高效運轉已是一門重要議題。在這方面,多目標最佳化調度技術被廣泛應用,可以因應不同使用者的使用情境,同時考慮多個目標,實現微電網的減碳、經濟和安全穩定等多個方面的優化。本論文針對微電網多目標最佳化調度的方法和技術進行研究,首先,對微電網的架構和模式進行了介紹,分析了微電網的特點和面臨的問題。其次,介紹了電網設備及數學模型和多目標最佳化調度的基本概念和方法,包括模型建立、目標函數設計、ㄒㄧ限制式定義等等。接著,針對微電網的多目標最佳化調度問題,使用熵值法結合AHP進行權重分配,並使用粒子群優化的調度方法,進行了Matlab模擬實驗與實際場域測試。實驗結果表明,該方法可以有效地提高微電網的運行效率和經濟性,同時減少碳排量,並針對不同的使用情境,做出不同的因應對策。最後,針對微電網多目標最佳化調度的未來研究方向進行了討論,針對可行的研究方向,包括進一步改進算法性能、增加目標、增強系統韌性和智能化管理等方面。
摘要(英) With the rapid development of microgrids, achieving efficient operation has emerged as a critical research topic. In this context, multi-objective optimization scheduling techniques have gained significant attention, as they enable the consideration of various user scenarios while simultaneously addressing multiple objectives, such as carbon reduction, economic efficiency, and security and stability enhancement in microgrids. This thesis investigates the methodologies and technologies for multi-objective optimization scheduling in microgrids. Firstly, the structure and models of microgrids are introduced, followed by an analysis of their distinctive features and existing challenges. Subsequently, the fundamental concepts and methods of electrical grid equipment, mathematical modeling, and multi-objective optimization scheduling are expounded, encompassing model formulation, objective function design, and constraint formulation. Moreover, addressing the multi-objective optimization scheduling problem in microgrids, a hybrid approach incorporating the entropy method and the Analytic Hierarchy Process (AHP) is proposed to allocate appropriate weights, while a particle swarm optimization (PSO) algorithm is employed for scheduling. Comprehensive Matlab simulations and practical field experiments are conducted to evaluate the performance of the proposed approach. The experimental results demonstrate that the proposed methodology can effectively enhance the operational efficiency and economic feasibility of microgrids, while concurrently reducing carbon emissions. Furthermore, it enables tailored strategies for diverse usage scenarios. Lastly, prospective research directions pertaining to multi-objective optimization scheduling in microgrids are discussed, including further algorithmic enhancements, incorporation of additional objectives, reinforcement of system resilience, and the integration of intelligent management strategies.
關鍵字(中) ★ 微電網調度策略
★ 多目標調度
★ 層次分析法
★ 熵值法
關鍵字(英) ★ Microgrid scheduling strategies
★ Multi-objective scheduling
★ Analytic Hierarchy Process
★ Entropy Method
論文目次 論文摘要 I
Abstract II
致謝 IV
目錄 V
圖目錄 VIII
表目錄 XIII
第一章 緒論 1
1-1研究動機及目的 1
1-2文獻探討 2
1-3論文大綱 6
第二章 微電網及多目標函式設計 7
2-1微電網系統型態 7
2-1-1併網狀態 8
2-1-2孤島狀態 9
2-1-3單電網與多電網差異 10
2-2 微電網中各項發電設備之數學模型 11
2-2-1市電 11
2-2-2 太陽能 13
2-2-3 儲能系統 14
2-2-4 燃料電池 15
2-2-5 用電負載分級 17
2-3基於AHP和Entropy的多目標函式設計 20
2-3-1電網運轉成本 20
2-3-2儲能系統壽命因子 21
2-3-3電網碳排放因子 23
2-3-4以AHP設計多目標函式 25
2-3-5以熵值法設計多目標函式 31
2-3-6以熵值法結合AHP定義權重 34
2-3-7限制函式 36
第三章 多目標最佳化能源管理系統 37
3-1MQTT通訊協定 37
3-2Modbus通訊協定 40
3-2-1Modbus RTU通訊協定 40
3-2-2Modbus TCP通訊協定 41
3-3太陽能預測系統 41
3-3-1CNN 43
3-3-2RNN 44
3-3-3LSTM 45
3-4能源管理系統 47
3-4-1Rule-Base能源管理系統 47
3-4-2最佳化方法 49
3-4-3粒子群演算法 50
第四章 系統模擬與實作結果 57
4-1併網模式模擬 58
4-1-1Case1:晴天,家用負載 58
4-1-2Case2:陰天,家用負載 63
4-1-3Case3:晴天+陰天,家用負載 68
4-2孤島模式模擬 73
4-2-1Case4:晴天,電力中斷 74
4-2-2Case5:陰天,電力中斷 83
4-3模擬結果分析與討論 92
4-4實際場域實作 96
第五章 結論與未來研究方向 100
5-1 結論 100
5-2 未來研究方向 101
文獻參考 102
參考文獻 [1] L. He, Z. Wei, H. Yan, K. -Y. Xv, M. -y. Zhao and S. Cheng, "A Day-ahead Scheduling Optimization Model of Multi-Microgrid Considering Interactive Power Control," 2019 4th International Conference on Intelligent Green Building and Smart Grid (IGBSG), Hubei, China, 2019, pp. 666-669, doi: 10.1109/IGBSG.2019.8886341.
[2] N. R. Wee, J. J. Jamian, S. N. Syed Nasir and N. M. Zaid, "Enhanced Rule-based Energy Management System for an Islanded Microgrid," 2022 IEEE International Conference on Power and Energy (PECon), Langkawi, Kedah, Malaysia, 2022, pp. 144-148, doi: 10.1109/PECon54459.2022.9988802.
[3] D. M. Minhas, J. Meiers and G. Frey, "A Rule-based Expert System for Home Power Management Incorporating Real-Life Data Sets," 2022 3rd International Conference on Smart Grid and Renewable Energy (SGRE), Doha, Qatar, 2022, pp. 1-6, doi: 10.1109/SGRE53517.2022.9774212.
[4] A. Su and G. Yerui, "Multi Objective Optimal Dispatching of Microgrid Considering Multiple Random Variables Based on Improved NSGA-III," 2021 IEEE 4th International Electrical and Energy Conference (CIEEC), Wuhan, China, 2021, pp. 1-6, doi: 10.1109/CIEEC50170.2021.9510651.
[5] A. Maulik and D. Das, "Multi-objective optimal dispatch of AC-DC Hybrid Microgrid," 2018 IEEE PES Asia-Pacific Power and Energy Engineering Conference (APPEEC), Kota Kinabalu, Malaysia, 2018, pp. 82-87, doi: 10.1109/APPEEC.2018.8566354.
[6] B. Li, J. Wang and N. Xia, "Dynamic Optimal Scheduling of Microgrid Based on ε constraint multi-objective Biogeography-based Optimization Algorithm," 2020 5th International Conference on Automation, Control and Robotics Engineering (CACRE), Dalian, China, 2020, pp. 389-393, doi: 10.1109/CACRE50138.2020.9230079.
[7] L. Cong, Z. Chuanpu, W. Kuan, S. Lizhu, W. Qingyu and Z. Wenhai, "Multi-objective Capacity Optimal Allocation Of Photovoltaic Microgrid Energy Storage System Based On Time-sharing Energy Complementarity," 2021 International Conference on Power System Technology (POWERCON), Haikou, China, 2021, pp. 1123-1129, doi: 10.1109/POWERCON53785.2021.9697536.
[8] L. Shiguang, S. Yuchen, G. Zhengzhong, L. Guangjie and X. Yujuan, "Multi-objective Optimization Scheduling of Micro-grid with Energy Storage under Time-of-Use Price Mechanism," 2021 6th International Conference on Power and Renewable Energy (ICPRE), Shanghai, China, 2021, pp. 636-641, doi: 10.1109/ICPRE52634.2021.9635286.
[9] L. Shuai-shuai, W. Hui, W. Ming-yue, L. Zi-jie and W. Di, "Multi-objective day-ahead optimal scheduling of wind-solar microgrid considering V2G technology," 2022 34th Chinese Control and Decision Conference (CCDC), Hefei, China, 2022, pp. 1091-1096, doi: 10.1109/CCDC55256.2022.10033679.
[10] Y. Zeng et al., "Multi objective optimization of microgrid based on Improved Multi-objective Particle Swarm Optimization," 2022 International Seminar on Computer Science and Engineering Technology (SCSET), Indianapolis, IN, USA, 2022, pp. 80-83, doi: 10.1109/SCSET55041.2022.00027.
[11] G. Wu, S. Ishida and H. Yin, "DC Voltage Stabilization in DC/AC Hybrid Microgrid by Cooperative Control of Multiple Energy Storages," 2019 IEEE Third International Conference on DC Microgrids (ICDCM), Matsue, Japan, 2019, pp. 1-5, doi: 10.1109/ICDCM45535.2019.9232764.
[12] N. Gurung, A. Vukojevic and H. Zheng, "Demonstration of Islanding and Grid Reconnection capability of a microgrid within distribution system," 2022 IEEE PES Innovative Smart Grid Technologies - Asia (ISGT Asia), Singapore, Singapore, 2022, pp. 655-659, doi: 10.1109/ISGTAsia54193.2022.10003608.
[13] V. Dixit, M. Jadhwani, A. Pandey and F. Kazi, "A Hybrid Islanding Detection Scheme For Grid-tied PV Microgrid," 2021 IEEE 18th India Council International Conference (INDICON), Guwahati, India, 2021, pp. 1-6, doi: 10.1109/INDICON52576.2021.9691700.
[14] Z. Wang, X. Cheng, L. Wang, X. Zong, X. Lin and S. He, "Distributed Transaction Optimization for Multiple Microgrids in Grid-Connected and Islanded Modes," 2020 IEEE 3rd Student Conference on Electrical Machines and Systems (SCEMS), Jinan, China, 2020, pp. 398-402, doi: 10.1109/SCEMS48876.2020.9352373.
[15] 台灣電力公司. (112 C.E., January 1)表燈時間電價-簡易型時間電價三段式.
[16] S. Ren, J. Wang and M. Ma, "Multi-Objective Optimal Control of Micro-Grid Based on Economic Model Predictive Control," 2019 Chinese Control Conference (CCC), Guangzhou, China, 2019, pp. 2994-2999, doi: 10.23919/ChiCC.2019.8865871.
[17] A. Salazar, A. Berzoy, W. Song and J. M. Velni, "Energy Management of Islanded Nanogrids Through Nonlinear Optimization Using Stochastic Dynamic Programming," in IEEE Transactions on Industry Applications, vol. 56, no. 3, pp. 2129-2137, May-June 2020, doi: 10.1109/TIA.2020.2980731.
[18] M. Yang, L. Sun and J. Wang, "Multi-Objective Optimization Scheduling Considering the Operation Performance of Islanded Microgrid," in IEEE Access, vol. 8, pp. 83405-83413, 2020, doi: 10.1109/ACCESS.2020.2989161.
[19] S. Xing, "Microgrid emergency control based on the stratified controllable load shedding optimization," International Conference on Sustainable Power Generation and Supply (SUPERGEN 2012), Hangzhou, 2012, pp. 1-5, doi: 10.1049/cp.2012.1778.
[20] Z. Zhu, Z. Zhang, W. Man, X. Tong, J. Qiu and F. Li, "A new beetle antennae search algorithm for multi-objective energy management in microgrid," 2018 13th IEEE Conference on Industrial Electronics and Applications (ICIEA), Wuhan, China, 2018, pp. 1599-1603, doi: 10.1109/ICIEA.2018.8397965.
[21] Zehuai Liu1, Yingqi Yi1, Jiahao Yang2, Wenhu Tang1, Yongjun Zhang1 , Xiaoyu Xie1, Tianyao Ji1, Optimal planning and operation of dispatchable active power resources for islanded multi-microgrids under decentralized collaborative dispatch framework, IET Gener. Transm. Distrib., 2020, Vol. 14 Iss. 3, pp. 408-422
[22] E. T. Lau, Q. Yang, G. A. Taylor, A. B. Forbes, P. Wright and V. N. Livina, "Optimization of carbon emissions in smart grids," 2014 49th International Universities Power Engineering Conference (UPEC), Cluj-Napoca, Romania, 2014, pp. 1-4, doi: 10.1109/UPEC.2014.6934796.
[23] 「110年度電力碳排系數」經濟部能源局,民國111年11月4日。
[24] D. A. Istiqomah and V. A. Windarni, "Comparative Analysis of the Implementation of the AHP and AHP-PROMETHEE for the Selection of Training Participants," 2019 4th International Conference on Information Technology, Information Systems and Electrical Engineering (ICITISEE), Yogyakarta, Indonesia, 2019, pp. 67-72, doi: 10.1109/ICITISEE48480.2019.9003980.
[25] C. Zhuo, D. Zhaobin, Z. Haoqin and W. Kai, "An Evaluation Method of Reactive Power and Voltage Control Ability for Multiple Distributed Generators in an Islanded Micro-grid," 2018 International Conference on Power System Technology (POWERCON), Guangzhou, China, 2018, pp. 1819-1825, doi: 10.1109/POWERCON.2018.8601944.
[26] Saaty, Thomas L.. "Relative Measurement and Its Generalization in Decision Making. Why Pairwise Comparisons are Central in Mathematics for the Measurement of Intangible Factors. The Analytic Hierarchy/Network Process.." RACSAM 102.2 (2008): 251-318. <http://eudml.org/doc/42060>.
[27] H. Zhang and S. -s. He, "Analysis and Comparison of Permutation Entropy, Approximate Entropy and Sample Entropy," 2018 International Symposium on Computer, Consumer and Control (IS3C), Taichung, Taiwan, 2018, pp. 209-212, doi: 10.1109/IS3C.2018.00060.
[28] S. Harasis, Y. Sozer and M. Elbuluk, "Reliable Islanded Microgrid Operation Using Dynamic Optimal Power Management," in IEEE Transactions on Industry Applications, vol. 57, no. 2, pp. 1755-1766, March-April 2021, doi: 10.1109/TIA.2020.3047587.
[29] A. Kondoro, I. B. Dhaou and H. Tenhunen, "Enhancing the Security of IoT-enabled DC Microgrid using Secure-MQTT," 2020 6th IEEE International Energy Conference (ENERGYCon), Gammarth, Tunisia, 2020, pp. 29-33, doi: 10.1109/ENERGYCon48941.2020.9236448.
[30] J. C. Hastings and D. M. Laverty, "Modernizing wide-area grid communications for distributed energy resource applications using MQTT publish-subscribe protocol," 2017 IEEE Power & Energy Society General Meeting, Chicago, IL, USA, 2017, pp. 1-5, doi: 10.1109/PESGM.2017.8274486.
[31] S. Tamboli, M. Rawale, R. Thoraiet and S. Agashe, "Implementation of Modbus RTU and Modbus TCP communication using Siemens S7-1200 PLC for batch process," 2015 International Conference on Smart Technologies and Management for Computing, Communication, Controls, Energy and Materials (ICSTM), Avadi, India, 2015, pp. 258-263, doi: 10.1109/ICSTM.2015.7225424.
[32] G. Gabor and G. Livint, "Solution for Monitoring and Remote Control Based on Modbus RTU and S7-1200 PLC," 2021 International Conference on Electromechanical and Energy Systems (SIELMEN), Iasi, Romania, 2021, pp. 462-465, doi: 10.1109/SIELMEN53755.2021.9600411.
[33] N. Rodríguez-Pérez, J. M. Domingo, G. L. López and V. Stojanovic, "Scalability Evaluation of a Modbus TCP Control and Monitoring System for Distributed Energy Resources," 2022 IEEE PES Innovative Smart Grid Technologies Conference Europe (ISGT-Europe), Novi Sad, Serbia, 2022, pp. 1-6, doi: 10.1109/ISGT-Europe54678.2022.9960319.
[34] 太陽光電預測技術簡介, Copyright 2018 ITRI June 2018.
[35] R. Xin, J. Zhang and Y. Shao, "Complex network classification with convolutional neural network," in Tsinghua Science and Technology, vol. 25, no. 4, pp. 447-457, Aug. 2020, doi: 10.26599/TST.2019.9010055.
[36] Y. Tian, H. Yao, M. Cai, Y. Liu and Z. Ma, "Improving RNN Transducer Modeling for Small-Footprint Keyword Spotting," ICASSP 2021 - 2021 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP), Toronto, ON, Canada, 2021, pp. 5624-5628, doi: 10.1109/ICASSP39728.2021.9414339.
[37] S. Hochreiter and J. Schmidhuber, "Long short-term memory", Neural Comput., vol. 9, no. 8, pp. 1735-1780, 1997.
[38] D. Menniti et al., "A Real-Life Application of an Efficient Energy Management Method for a Local Energy System in Presence of Energy Storage Systems," 2018 IEEE International Conference on Environment and Electrical Engineering and 2018 IEEE Industrial and Commercial Power Systems Europe (EEEIC / I&CPS Europe), Palermo, Italy, 2018, pp. 1-6, doi: 10.1109/EEEIC.2018.8494629.
[39] J. Kang, Y. Guo and J. Liu, "Rule-based Energy Management Strategies for a Fuel Cell-Battery Hybrid Locomotive," 2020 IEEE 4th Conference on Energy Internet and Energy System Integration (EI2), Wuhan, China, 2020, pp. 45-50, doi: 10.1109/EI250167.2020.9346652.
[40] J. Kennedy and R. Eberhart, "Particle swarm optimization," Proceedings of ICNN′95 - International Conference on Neural Networks,1995,pp.1942-1948 vol.4, doi: 10.1109/ICNN.1995.488968
[41] Y. Shi and R. Eberhart, "A modified particle swarm optimizer," 1998 IEEE International Conference on Evolutionary Computation Proceedings. IEEE World Congress on Computational Intelligence (Cat.No.98TH8360),1998,pp. 69-73, doi: 10.1109/ICEC.1998.699146.
[42] 台灣電力公司. (112 C.E., December 14)重要電業經營績效-近10年主要經營績效指標實績.
[43] 呂睿紘,考量環境污染因子情境下基於粒子群優法為基礎之微電網最佳化能源管理系統,國立中央大學電機工程學系碩士論文,中華民國 110年7月。
指導教授 陳正一(Cheng-I Chen) 審核日期 2023-7-14
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明