參考文獻 |
[1] Kaspersky. (2022). IT Threat Evolution in Q3 2022. Mobile Statistics. Available: https://securelist.com/it-threat-evolution-in-q3-2022-mobile-statistics/107978/ (accessed 2023).
[2] Kaspersky. (2022). The mobile malware threat landscape in 2022. Available: https://securelist.com/mobile-threat-report-2022/108844/ (accessed 2023).
[3] Statcounter. (2022). Mobile Operating System Market Share Worldwide Jan 2022 - Jan 2023. Available: https://gs.statcounter.com/os-market-share/mobile/worldwide (accessed 2023).
[4] Alrawi, Omar, et al., "The Betrayal At Cloud City: An Empirical Analysis Of Cloud-Based Mobile Backends," USENIX Security Symposium, Vol. 19, 2019.
[5] M. Zheng, M. Sun and J. C. Lui, "Droid analytics: A signature based analytic system to collect extract analyze and associate android malware," Proc. 12th IEEE Int. Conf. Trust Secur. Privacy Comput. Commun., Jul. 2013.
[6] A. Saracino, D. Sgandurra, G. Dini and F. Martinelli, "MADAM: Effective and efficient behavior-based Android malware detection and prevention," IEEE Trans. Depend. Sec. Comput., vol. 15, no. 1, pp. 83-97, Jan. 2018.
[7] E. Mariconti, L. Onwuzurike, P. Andriotis, E. De Cristofaro, G. Ross and G. Stringhini, "MaMaDroid: Detecting Android malware by building Markov chains of behavioral models," Proc. Netw. Distrib. Syst. Secur. Symp., pp. 1-34, 2017.
[8] N. McLaughlin et al., "Deep Android malware detection," Proc. 7th ACM Conf. Data Appl. Security Privacy, pp. 301-308, 2017.
[9] S. Dong et al., "Understanding android obfuscation techniques: A large-scale investigation in the wild," International conference on security and privacy in communication systems, pp. 172–192, 2018.
[10] K. Allix, T. F. Bissyandé, J. Klein and Y. Le Traon, "Are your training datasets yet relevant?", Proc. Int. Symp. Eng. Secure Softw. Syst., pp. 51-67, 2015.
[11] VentureBeat. (2022). Report: Average time to detect and contain a breach is 287 days. Available:https://venturebeat.com/security/report-average-time-to-detect-and-contain-a-breach-is-287-days/ (accessed 2023).
[12] A. Adadi and M. Berrada, "Peeking inside the black-box: A survey on explainable artificial intelligence (XAI)," IEEE Access, vol. 6, pp. 52138-52160, 2018.
[13] Arrieta A.B., et al., "Explainable artificial intelligence (XAI): Concepts, taxonomies, opportunities and challenges toward responsible AI," Information Fusion, vol. 58 , pp. 82-115, 2020.
[14] A. Bacci, A. Bartoli, F. Martinelli, E. Medvet, F. Mercaldo and C. A. Visaggio, "Impact of code obfuscation on android malware detection based on static and dynamic analysis," ICISSP, pp. 379-385, 2018.
[15] B. Kang, S. Y. Yerima, S. Sezer and K. Mclaughlin, "N-gram opcode analysis for android malware detection," Intl. J. Cyber. Situational Awareness, vol. 1, no. 1, pp. 231-254, 2016.
[16] T. Kim, B. Kang, M. Rho, S. Sezer and E. G. Im, "A multimodal deep learning method for android malware detection using various features," IEEE Trans. Inf. Forensics Secur., vol. 14, no. 3, pp. 773-788, Mar. 2019.
[17] M. K. Alzaylaee, S. Y. Yerima and S. Sezer, "DL-droid: Deep learning based Android malware detection using real devices," Comput. Secur., vol. 89, Feb. 2020.
[18] P. Yadav, N. Menon, V. Ravi, S. Vishvanathan and T. D. Pham, "A two-stage deep learning framework for image-based Android malware detection and variant classification," Comput. Intell., May 2022.
[19] Y. Liu, C. Tantithamthavorn, L. Li, and Y. Liu, "Explainable AI for Android Malware Detection: Towards Understanding Why the Models Perform So Well?," 2022 IEEE 33rd International Symposium on Software Reliability Engineering (ISSRE), pp. 169–180, 2022.
[20] Daniel Arp, Michael Spreitzenbarth, Malte Huebner, Hugo Gascon, and Konrad Rieck, "Drebin: Efficient and Explainable Detection of Android Malware in Your Pocket," presented at the 21th Annual Network and Distributed System Security Symposium (NDSS), 2014.
[21] Samaneh Mahdavifar, Andi Fitriah Abdul Kadir, Rasool Fatemi, Dima Alhadidi, and A. A. Ghorbani, "Dynamic Android Malware Category Classification using Semi-Supervised Deep Learning," presented at the 18th IEEE International Conference on Dependable, Autonomic, and Secure Computing (DASC), 2020.
[22] Kevin Allix, Tegawendé F. Bissyandé, Jacques Klein, and Yves Le Traon, "AndroZoo: Collecting Millions of Android Apps for the Research Community," in Proceedings of the 13th International Conference on Mining Software Repositories, 2016: ACM, pp. 468-471.
[23] Z. Aung and W. Zaw, "Permission-based Android malware detection", Int. J. Sci. Technol. Res., vol. 2, no. 3, pp. 228-234, 2013.
[24] N. Peiravian and X. Zhu, "Machine Learning for Android Malware Detection Using Permission and API Calls", 2013 IEEE 25th International Conference on Tools with Artificial Intelligence, pp. 300-305, 2013.
[25] M. K. Alzaylaee, S. Y. Yerima and S. Sezer, "DynaLog: An automated dynamic analysis framework for characterizing android applications", 2016 International Conference on Cyber Security and Protection Of Digital Services (Cyber Security), pp. 1-8, 2016.
[26] V. Sihag, M. Vardhan and P. Singh, "BLADE: Robust malware detection against obfuscation in android", Forensic Sci. Int. Digit. Invest., vol. 38, Sep. 2021.
[27] 張櫻瀞, "整合注意力機制與圖像化操作碼之 Android 惡意程式分析研究", 碩士論文, 資訊管理學系, 國立中央大學, 2021.。
[28] T. Mikolov, K. Chen, G. Corrado and J. Dean, "Efficient estimation of word representations in vector space," arXiv preprint arXiv:1301.3781, 2013.
[29] Q. Le and T. Mikolov, "Distributed representations of sentences and documents," Proc. 31st Int. Conf. Machine Learning, pp. 1188-1196, 2014.
[30] A. Vaswani et al., "Attention is all you need," Proc. Adv. Neural Inf. Process. Syst., pp. 5998-6008, 2017.
[31] M. Mimura, R. Ito, "Applying NLP Techniques to Malware Detection in a Practical Environment," Int. J. Inf. Secur., 21, 279–291, 2022.
[32] Vinay Pandya, "Contextualized Vector Embeddings for Malware Detection," Master’s Theses and Graduate Research, San Jose State University, 2022.
[33] M. T. Ribeiro, S. Singh and C. Guestrin, "‘Why should I trust you?’: Explaining the predictions of any classifier," Proc. 22nd ACM SIGKDD Int. Conf. Knowl. Discovery Data Mining, pp. 1135-1144, 2016.
[34] S. M. Lundberg and S.-I Lee, "A unified approach to interpreting model predictions." Advances in neural information processing systems, 30, 2017.
[35] R. Alenezi and S. A. Ludwig, "Explainability of cybersecurity threats data using SHAP", Proc. IEEE Symp. Comput. Intell. (SSCI), pp. 1-10, Dec. 2021.
[36] M. Fan, W. Wei, X. Xie, Y. Liu, X. Guan and T. Liu, "Can we trust your explanations? sanity checks for interpreters in android malware analysis," IEEE Transactions on Information Forensics and Security, vol. 16, pp. 838-853, 2020.
[37] Chen, Ching-Ju, et al., "Improving CNN-based pest recognition with a post-hoc explanation of XAI," preprint, In Review, 26 Aug. 2021.
[38] A. Kapishnikov, T. Bolukbasi, F. Viégas, and M. Terry, "XRAI: Better attributions through regions," in Proceedings of the IEEE/CVF International Conference on Computer Vision, pp. 4948–4957, 2019.
[39] E. Lee, Y. Lee, and T. Lee. "Automatic False Alarm Detection Based on XAI and Reliability Analysis," Applied Sciences, vol. 12,13, 6761, 2022.
[40] "Apktool." https://ibotpeaches.github.io/Apktool/ (accessed 2022). |