以作者查詢圖書館館藏 、以作者查詢臺灣博碩士 、以作者查詢全國書目 、勘誤回報 、線上人數:53 、訪客IP:3.133.137.40
姓名 王永安(Yung-An Wang) 查詢紙本館藏 畢業系所 認知與神經科學研究所 論文名稱 以毛筆筆刷、手掌觸摸、和指尖輕點的觸覺刺激探討情動觸摸所引 發的theta 頻段腦波強度變化
(The Changes in EEG Theta Oscillation Induced by Affective Touch: Comparing Brush Stroke, Hand Stroke, and Massage-like Tapping)相關論文
★ Increased Cognitive Load with Spatial Cueing Task Augments the P300 Amplitude Differences in EEG-based CIT Experiments 檔案 [Endnote RIS 格式] [Bibtex 格式] [相關文章] [文章引用] [完整記錄] [館藏目錄] [檢視] [下載]
- 本電子論文使用權限為同意立即開放。
- 已達開放權限電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。
- 請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。
摘要(中) 本研究利用不同的觸摸變項(毛筆筆刷、手掌觸摸、和指尖輕點的情動觸摸),探討情動神經傳導(affective/CT afferent)是否僅回應緩慢而輕柔(slow, gentle, and lowforce)的毛刷觸碰(stroke with brush),進而產生愉悅感(hedonic feeling);以及透過腦電波在不同觸摸條件操弄前後,所產生不同頻段的神經電生理變化。在過往研究中,多
數使用fMRI 造影方法來探討情動神經傳導的活化腦區,發現情動神經傳導(affective/CT afferent)的活化路徑包含了眼窩前額皮質(orbitofrontal cortex)或腦島皮質(insular cortex)區域、但卻排除了體感覺皮質區(primary somatosensory cortex,SI)及次級體感覺皮質區(secondary somatosensory cortex, SII)的活化,進而確立情動觸摸(affectivetouch/CT touch)係透過CT 神經傳導路徑來建構愉悅的感覺。然而,近年透過脊髓切斷術(cordotomy)進行情動觸覺刺激的愉悅評分,發現術前術後以及與對照組比較,並沒有愉悅度的改變。因此情動傳導(affective/CT afferent)或許並非如二分化神經傳導路徑(dual pathway)推論,擁有與辨識性傳導(A-beta afferent)不同的傳導路徑,而是中繼在(rely)與體感體相關的辨識性傳導路徑,並針對刺激本身進行愉悅度的判斷。有鑑於此,我們欲探討情動觸摸與辨識性觸摸所引發的theta 頻段腦波強度變化,比較兩者神經傳導路徑與愉悅度的不同。
本次實驗中包含了一個學習閉眼按鍵評分與三個觸摸實驗。在學習階段,受試者允許睜開眼睛,練習記憶按鍵位置,評分文字描述的觸覺速度與觸摸方式。在測試階段,我們分別測試了三種不同的觸摸條件─毛筆筆刷、手掌觸摸、指尖輕點,測試受試者在閉眼情況下,其主觀愉悅評分與其電生理的EEG 反應。三個不同的觸摸實驗分別以兩種不同的刺激速度(5 cm/s CT-optimal velocity 與18 cm/s CT-suboptimal velocity)進行。在各種不同的刺激條件之後,我們分別對愉悅程度進行評分,並以雙因子變異數分析及事後檢定加以分析。結果發現刺激的速度並沒有顯著影響愉悅程度,而觸摸方式間,則存在顯著的愉悅程度差異,其中以手掌慢摸是最愉悅的觸摸方式。神經電生理的部份我們利用時頻分析(time-frequency analysis)的方式,找出刺激前後具有顯著差異的通道位置及頻段,再透
過濾波—希爾伯特轉換(filter-Hilbert transform),我們對theta 波段進行了有與無考量時序列的統計比較。僅有考量時間序列的統計結果顯著,並且我們發現了與過往實驗相似的結果,進一步找出手掌撫摸不僅在FP1 電極位置具有顯著刺激前後theta 波段的增強,同時在CP4 電極位置也發現了刺激前後具有顯著theta 波段的增強。相對而言,毛筆輕刷僅有
在FP1 電極位置有顯著的theta 強度變化,在反應體感覺相關皮質區的電極位置則沒有找到任何顯著的跡象;手指點摸在較多的電極位置上,呈現theta 頻段的顯著變化,包含接近前額皮質(frontal cortex)的FP1 電極位置在內,可能也包括了CT 神經傳導活化的觸發。
綜合本次實驗內容與近年的情動觸摸研究成果顯示,典型情動觸摸的二分化神經傳導路徑理論,或許已不足以清楚的區別情動傳導與辨識性傳導。同時,我們的研究結果發現,機械性的手指輕點也可能同時活化代表CT 神經傳導路徑的FP1 電極位置以及代表體感覺皮質區的CP4 電極位置,但愉悅的反應卻是幾種不同刺激手法中最低的;與毛筆筆刷同屬情動觸摸的手掌觸摸,確實能夠引發略高於毛筆筆刷的愉悅反應,卻也同時活化代表體感覺皮質區的CP4 電極位置。由此結果,我們推論情動觸摸的反應,可能是自上而下(top-down)的認知機制優先於機械性的輸入特性,並對該觸摸進行愉悅評斷。摘要(英) This study compares psychophysical and EEG responses to 3 types of tactile stimulation (brush stroke, hand stroke, and massage-like tapping) to investigate whether affective afferent only response to slow, gentle brush stroke. The classical definition of affective touch involves CT afferent and A-beta afferent pathways, with the CT pathway characterized by activation in the orbitofrontal and insular cortex and deactivation in the primary (SI) and secondary
somatosensory cortex (SII). However, recent evidence showed that the spinothalamic ablation in humans does not make difference in rating the pleasantness of the CT touch paradigm before and after cordotomy, and even, compared to the control groups (Marshall et al., 2019). Therefore, the
current study has investigated if the properties of the tactile information were judged while relying on ascending A-beta low threshold mechanoreceptor afferent inputs in affective touch using EEG theta oscillation.
This study involved a learning phase followed by three test phases. Participants were asked to memorize button locations and practice rating hedonic responses during the learning
phase with open eyes. During the test phase, participants closed their eyes and rated with brush stroke, hand stroke, and massage-like tapping with two velocities (CT-optimal 5 cm/s and CTsuboptimal 18 cm/s, 3 styles x 2 velocities). We investigated theta oscillations in EEG analysis and replicated previous findings in affective touch. Specifically, we performed a time-frequency analysis to identify channels and frequency bands showing significant differences in power before and after each tactile stimulation style and velocity. Once we identified these frequency bands, we applied a filter-Hilbert transform to calculate the instantaneous power of the selected
bands for statistical comparison. We compared the EEG theta power before and after tactile stimulation, considering the temporal sequence of theta power bands, and found significant differences only when accounting for temporal sequence. The hand stroke with CT-optimal velocity was rated as the most pleasant touch condition. EEG analysis focused on the theta oscillation changes which were associated with the most pleasant hand stroke in both FP1 and CP4 channels. Brush stroke only showed significant theta oscillation increases in the FP1 channel, while massage-like tapping showed significant changes across most channels, including
FP1, indicating activation close to the orbitofrontal cortex.
This study, along with previous research on affective touch, suggests that the "dual pathway" theory may not provide a complete understanding of how affective and discriminative afferent respond to different types of tactile stimulation. Our results showed that changes in the
theta oscillations, resulting from the least pleasant massage-like tapping, could be found across multiple channels, including FP1 and CP4, indicating that mechanic touch may induce responses beyond the somatosensory cortex. The hand stroke condition, which facilitated comparable hedonic ratings as the brush stroke, also induced significant theta oscillations at FP1 and CP4 channels, potentially reflecting activation close to the somatosensory cortex and the orbitofrontal cortex. Together, these findings indicate that affective and discriminative touch cannot be dissociated by CT-afferent activation.
Consequently, affective touch may be primarily determined by a top-down cognitive mechanism, making it a higher-order process than just processing the mechanical characteristics of touch.關鍵字(中) ★ 情動觸摸
★ 社會觸摸
★ 按摩
★ 社會互動
★ 體感覺皮質區
★ theta 頻段關鍵字(英) ★ affective touch
★ social touch
★ massage
★ social interactions
★ somatosensory
★ theta oscillation論文目次 Table of Contents
中文摘要 ...... i
Abstract ...... iv
致謝 ...... vi
Acknowledgments ...... vii
Table of Contents ...... ix
List of Figures ...... xii
List of Tables ...... xiv
Introduction ...... 1
The cognitive mechanism of affective touch in CT skin ...... 1
EEG investigation of touch neural activity in affective processing ...... 5
Affective touch in naturalistic settings ...... 8
Research Method ...... 10
Participants ...... 10
Apparatus ...... 10
Experiment Design ...... 11
Procedure ...... 13
Data analysis ...... 18
Results ...... 21
Psychophysical pleasant rating to different conditions ...... 21
Touch stimulus-related EEG spectral activities ...... 23
Brush stroke in CT-suboptimal velocity (18 cm/s) ...... 23
Brush stroke in CT-optimal velocity (5 cm/s) ...... 25
Hand stroke in CT-suboptimal velocity (18 cm/s): ...... 27
Hand stroke in CT-optimal velocity (5 cm/s) ...... 29
Massage-like tapping in CT-suboptimal velocity (18 cm/s) ...... 31
Massage-like tapping in CT-optimal velocity (5 cm/s) ...... 33
Statistical comparison of the theta power before and after the touch stimulus onset using a bootstrapping approach within random samples without replacement ...... 35
Direct statistical comparison of two time-frequency plots of the theta power before and after the touch stimulus onset ...... 36
FP1 channel in slow brush stroke, fast hand stroke and slow massage-like tapping ...... 37
CP4 channel in slow massage-like tapping and slow hand stroke ...... 39
Ultra-late potential comparison in CT-optimal condition in Fp1 and CP4 channels ...... 41
Discussion ...... 43
Time-sequence-based data analytical methods are critical in understanding the neurophysiological processing of affective tactile stimuli ...... 43
Is massage a discriminative touch or an affective touch? ...... 44
The neural mechanisms underlying the brush stroke and hand stroke address the existence of the socio-affective afferents ...... 47
The dissimilarity in affective response between brush stroke and hand stroke ...... 49
Conclusion ...... 53
Reference ...... 55
Appendix I ...... 60
Appendix II ...... 62
Appendix III ...... 65
Appendix IV ...... 68
Appendix V ...... 70參考文獻 A.D. Craig. (2002). How do you feel? Interoception: the sense of the physiological condition of the body. Nature Reviews Neuroscience, 3(August), 655–666.
Abraira, V. E., &Ginty, D. D. (2013). The sensory neurons of touch. Neuron, 79(4), 618–639. https://doi.org/10.1016/j.neuron.2013.07.051
Ackerley, R., Eriksson, E., &Wessberg, J. (2013). Ultra-late EEG potential evoked by preferential activation of unmyelinated tactile afferents in human hairy skin. Neuroscience Letters, 535(1), 62–66. https://doi.org/10.1016/j.neulet.2013.01.004
Ackerley, R., Saar, K., McGlone, F., &Backlund Wasling, H. (2014). Quantifying the sensory and emotional perception of touch: Differences between glabrous and hairy skin. Frontiers in Behavioral Neuroscience, 8(FEB), 1–12. https://doi.org/10.3389/fnbeh.2014.00034
Andrew, D. (2010). Quantitative characterization of low-threshold mechanoreceptor inputs to lamina I spinoparabrachial neurons in the rat. Journal of Physiology, 588(1), 117–124. https://doi.org/10.1113/jphysiol.2009.181511
Björnsdotter, M., Morrison, I., &Olausson, H. (2010). Feeling good: On the role of C fiber mediated touch in interoception. Experimental Brain Research, 207(3–4), 149–155. https://doi.org/10.1007/s00221-010-2408-y
Bragard, D., ACN, C., &Plaghki, L. (1996). Stimulation of Tiny Cutaneous Surface Areas in Man. Neuroscience Letters, 209, 81–84.
Chien, J. H., Liu, C. C., Kim, J. H., Markman, T. M., &Lenz, F. A. (2014). Painful cutaneous laser stimuli induce event-related oscillatory EEG activities that are different from those induced by nonpainful electrical stimuli. Journal of Neurophysiology, 112(4), 824–833. https://doi.org/10.1152/jn.00209.2014
Etzi, R., Carta, C., &Gallace, A. (2018). Stroking and tapping the skin: behavioral and electrodermal effects. Experimental Brain Research, 236(2), 453–461. https://doi.org/10.1007/s00221-017-5143-9
Etzi, R., Spence, C., &Gallace, A. (2014). Textures that we like to touch: An experimental study of aesthetic preferences for tactile stimuli. Consciousness and Cognition, 29, 178–188. https://doi.org/10.1016/j.concog.2014.08.011
Field, T. (2019). Social touch, CT touch and massage therapy: A narrative review. Developmental Review, 51(June 2018), 123–145. https://doi.org/10.1016/j.dr.2019.01.002
Gentsch, A., Panagiotopoulou, E., &Fotopoulou, A. (2015). Active Interpersonal Touch Gives Rise to the Social Softness Illusion. Current Biology, 25(18), 2392–2397. https://doi.org/10.1016/j.cub.2015.07.049
Gordon, I., Voos, A. C., Bennett, R. H., Bolling, D. Z., Pelphrey, K. A., &Kaiser, M. D. (2013). Brain mechanisms for processing affective touch. Human Brain Mapping, 34(4), 914–922. https://doi.org/10.1002/hbm.21480
Johnson, K. O., &Hsiao, S. S. (1995). Neural Mechanisms of. Annual Review of Neuroscience, 18(9), 193–222. https://www.scopus.com/inward/record.uri?eid=2-s2.0-52449124693&partnerID=40&md5=c9fcd06106fbbc2dfdf147829d335bb8
Kaewcum, N., &Siripornpanich, V. (2018). The effects of unilateral Swedish massage on the neural activities measured by quantitative electroencephalography (EEG). Journal of Health Research, 32(1), 36–46. https://doi.org/10.1108/JHR-11-2017-004
Kryklywy, J. H., Ehlers, M. R., Beukers, A. O., Moore, S. R., Todd, R. M., &Anderson, A. K. (2023). Decomposing Neural Representational Patterns of Discriminatory and Hedonic Information during Somatosensory Stimulation. ENeuro, 10(1). https://doi.org/10.1523/ENEURO.0274-22.2022
Löken, L. S., Wessberg, J., Morrison, I., McGlone, F., &Olausson, H. (2009). Coding of pleasant touch by unmyelinated afferents in humans. Nature Neuroscience, 12(5), 547–548. https://doi.org/10.1038/nn.2312
Lyby, P. S., Aslaksen, P. M., &Flaten, M. A. (2011). Variability in placebo analgesia and the role of fear of pain - An ERP study. Pain, 152(10), 2405–2412. https://doi.org/10.1016/j.pain.2011.07.010
Marshall, A. G., Sharma, M. L., Marley, K., Olausson, H., &McGlone, F. P. (2019). Spinal signalling of c-fiber mediated pleasant touch in humans. ELife, 8, 1–15. https://doi.org/10.7554/eLife.51642
McGlone, F., Wessberg, J., &Olausson, H. (2014). Discriminative and Affective Touch: Sensing and Feeling. Neuron, 82(4), 737–755. https://doi.org/10.1016/j.neuron.2014.05.001
Michail, G., Dresel, C., Witkovský, V., Stankewitz, A., &Schulz, E. (2016). Neuronal Oscillations in Various Frequency Bands Differ between Pain and Touch. Frontiers in Human Neuroscience, 10(April), 1–11. https://doi.org/10.3389/fnhum.2016.00182
Moraska, A., Pollini, R. A., Boulanger, K., Brooks, M. Z., &Teitlebaum, L. (2010). Physiological adjustments to stress measures following massage therapy: A review of the literature. Evidence-Based Complementary and Alternative Medicine, 7(4), 409–418. https://doi.org/10.1093/ecam/nen029
Olausson, H., Lamarre, Y., Backlund, H., Morin, C., Wallin, B. G., Starck, G., Ekholm, S., Strigo, I., Worsley, K.,
Vallbo, B., &Bushnell, M. C. (2002). Unmyelinated tactile afferents signal touch and project to insular cortex. Nature Neuroscience, 5(9), 900–904. https://doi.org/10.1038/nn896
Sailer, U., Triscoli, C., Häggblad, G., Hamilton, P., Olausson, H., &Croy, I. (2016). Temporal dynamics of brain activation during 40 minutes of pleasant touch. NeuroImage, 139, 360–367. https://doi.org/10.1016/j.neuroimage.2016.06.031
Schirmer, A., &Gunter, T. C. (2017). The right touch: Stroking of CT-innervated skin promotes vocal emotion processing. Cognitive, Affective and Behavioral Neuroscience, 17(6), 1129–1140. https://doi.org/10.3758/s13415-017-0537-5
Schirmer, A., &McGlone, F. (2019). A touching Sight: EEG/ERP correlates for the vicarious processing of affectionate touch. Cortex, 111(October), 1–15. https://doi.org/10.1016/j.cortex.2018.10.005
Triscoli, C., Ackerley, R., &Sailer, U. (2014). Touch satiety: Differential effects of stroking velocity on liking and wanting touch over repetitions. PLoS ONE, 9(11), 1–8. https://doi.org/10.1371/journal.pone.0113425
Triscoli, C., Olausson, H., Sailer, U., Ignell, H., &Croy, I. (2013). CT-optimized skin stroking delivered by hand or robot is comparable. Frontiers in Behavioral Neuroscience, 7(DEC), 1–5. https://doi.org/10.3389/fnbeh.2013.00208
Vallbo, Å., Olausson, H., Wessberg, J., &Norrsell, U. (1993). A system of unmyelinated afferents for innocuous mechanoreception in the human skin. Brain Research, 628(1–2), 301–304. https://doi.org/10.1016/0006-8993(93)90968-S
vonMohr, M., Crowley, M. J., Walthall, J., Mayes, L. C., Pelphrey, K. A., &Rutherford, H. J. V. (2018). EEG captures affective touch: CT-optimal touch and neural oscillations. Cognitive, Affective and Behavioral Neuroscience, 18(1), 155–166. https://doi.org/10.3758/s13415-017-0560-6
VonMohr, M., Kirsch, L. P., &Fotopoulou, A. (2017). The soothing function of touch: Affective touch reduces feelings of social exclusion. Scientific Reports, 7(1), 1–9. https://doi.org/10.1038/s41598-017-13355-7
Watanabe, M., Dymecki, S. M., Chirila, A. M., Springel, M. W., Toliver, A. A., Zimmerman, A. L., Orefice, L. L., Bai, L., Song, B. J., Bashista, K. A., O’Neill, T. G., Zhuo, J.,
Tsan, C., Hoynoski, J., &Ginty, D. D. (2017). The Cellular and Synaptic Architecture of the Mechanosensory Dorsal Horn. Cell, 168(1–2), 295-310.e19. https://doi.org/10.1016/j.cell.2016.12.010
Zotterman, Y. (1939). CUTANEOUS SENSORY NERVES From the Physiological Laboratory , Karolinska Institutet , Stockholm of axone potentials from a phalangeal nerve preparation of the frog. Journal of Physio, 95, 1–28.指導教授 段正仁 鄭仕坤(Jeng-Ren Duann Shih-Kuen Cheng) 審核日期 2023-5-12 推文 facebook plurk twitter funp google live udn HD myshare reddit netvibes friend youpush delicious baidu 網路書籤 Google bookmarks del.icio.us hemidemi myshare