博碩士論文 109825003 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:50 、訪客IP:52.14.125.137
姓名 吳秉珊(Bing-Shan Wu)  查詢紙本館藏   畢業系所 認知與神經科學研究所
論文名稱 空間性及時間性資訊變化對序列學習影響之探討
(Exploring the Impact of Temporal and Spatial Variation on Motor Sequence Learning)
相關論文
★ 作業轉換能力之訓練與轉移效果探討★ 全域型與局部型物體地標對人類空間巡行能力之貢獻
★ 兒童早期至晚期疼痛同理心的神經發展: 事件相關電位研究★ 同理心老化的認知神經機轉:功能性磁振造影研究
★ 動作參數對於選擇性抑制的影響★ 社會場景對於護理人員同理心之調控
★ 泛自閉症障礙症候群處理情緒人聲的不典型表現:腦電波研究★ 即時回饋類型對於雙手協調動作學習之影響
★ Diversity and Commonality of Cognitive Profile among Static, Strategic and Interceptive Sports-Expertise★ Application of a Brain Computer Interfacing System in Comparing Visual verses Haptic Induction of Motor Imaginary Task
★ An FMRI Investigation of Malleable Numerical Representation★ 動態照明在辦公環境應用之可行性評估與眼動儀偵測視覺疲勞之研究
★ Difference and Relationship between Voluntary and Involuntary Inhibition in Elderly and Young Groups★ 以簡單施力作業及重複效應檢驗動作意象與執行之對應關係
★ 年輕與老年族群之控制化與自動化抑制交互影響的行為與事件相關電位特徵★ 運用VGG網絡對靜息態功能性磁振造影成分圖進行區分
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   至系統瀏覽論文 (2025-6-7以後開放)
摘要(中) 人類能學會序列訊息中空間與時間的變化,在新的序列動作技能表現上逐漸進 步。在日常生活中透過反覆練習連續性的動作,人們可以流暢地彈琴樂器、溜 冰等。在實驗室中,序列反應時間作業是最常用來探討動作序列學習(motor sequence learning)的測驗類型。在過去文獻中,多數實驗探討隱藏在序列中的空 間性結構,但較少系統性的探討時間與空間變化對序列學習的影響。本論文的 研究目的是探討序列反應作業當中空間性序列與時間性序列訊息各自對序列學 習的貢獻以及兩者間的關係。實驗一控制不同空間序列的長度與複雜度,並計 算其在隨機序列與規則序列中的反應時間差作為學習指標,結果顯示序列的複 雜度主導序列學習的效果。實驗二比較不同複雜度序列的時間性序列學習,結 果指出時間性序列的學習也會被複雜度影響,且僅在高複雜度的序列當中觀察 到時間性序列學習的跡象。實驗三結合時間與空間的序列學習,控制兩個面向 的序列在同一複雜度下,測驗這兩個面向同時被學習的狀態,同時在異側的初 級運動皮質區上施打經顱直流電刺激(tDCS),再與假性施打電刺激的組別比 較。學習指標顯示,施打電刺激呈現出減弱整體序列以及空間性序列學習的效 果,但時間性序列的學習指標沒有反應出有無施打電刺激的差異。實驗四更改 檢驗時間性與空間性序列學習的後測,在後測階段只保留單一面向的序列資 訊,將其與完整的序列互相比較。結果顯示時間性與空間性序列能夠被同時學 習,也發現了顯著的相關性在空間性與時間性的學習指標間,指出時間性序列 學習被鍵結在空間性資訊之中。總結來說,本研究結果發現序列學習中的時間性與空間性資訊是互相整合、而非平行獨立的兩個學習面向。
摘要(英) Motor sequence learning helps humans acquire new skills which require information about variation in spatial, temporal, or both domains. By repeating and practicing a series of actions, such as in dancing, martial arts, typing, and playing musical instruments, people can learn sequences of movements implicitly or explicitly and perform them more smoothly. The most commonly adopted paradigm in studying the acquisition process of sequence order is the Serial Reaction Time Task (SRTT). In the literature, SRTT has been mostly examined with the variation of spatial structures embedded in a sequence, but few sequence learning studies have systematically explored the impacts of varying temporal and spatial structures. The purpose of this study is to explore the respective contributions of spatial and temporal sequences and their interaction in SRTT. In the spatial domain, I controlled the length and complexity of sequences to different levels in Experiment 1. The learning effect, indexed by the difference between the Random and Regular reaction times (RTs), showed that the complexity of the sequences dominated the learning effect. In the temporal domain, I compared the learning of high and low complexity temporal sequences in Experiment 2, and the results indicated that the complexity of the sequence also affects learning of temporal sequences. In Experiment 3, I combined temporal and spatial sequence learning tested the simultaneous_ learning of both domains. Moreover, I compared the effect of applying transcranial direct current stimulation over the contralateral primary motor cortex with the sham group on learning. The outcomes showed that tDCS weakened the combined and spatial sequence learning. In Experiment 4, I modified the posttest for temporal and spatial sequence learning by maintaining the sequence information of one domain and removing the sequence information of the other domain. The results showed that both temporal, and spatial sequences can be learned simultaneously and there was a significant correlation between spatial and temporal learning indices, indicating that temporal sequence learning is linked to spatial information. Overall, this study suggests that temporal and spatial information are integrated in sequence learning, rather than being two parallel domains of learning.
關鍵字(中) ★ 動作學習
★ 序列學習
★ 序列複雜度
★ 經顱直流電刺激
關鍵字(英) ★ Motor learning
★ Sequence learning
★ Sequence complexity
★ Transcranial direct current stimulation
論文目次 中文摘要 i
Abstract iii
Acknowledgments v
Table of Content vi
List of Figures ix
Introduction 1
Serial Reaction Time Task (SRTT) 2
Learning in temporal domain 4
Research questions and predictions 6
Experiment 1: Sequence Complexity is a Valid factor of Sequence Learning in the Spatial Serial Reaction Time Task 10
Method 10
Participants 11
Design 11
Task, Stimuli, and Apparatus 14
Procedure 15
Data Analysis 16
Results 18
Discussion 22
Sequence learning in different sequence structure 23
Efficiency of sequence learning in different complexity 24
Experiment 2: How Does Sequence Complexity Affect Temporal Sequence Learning in Serial Reaction Time Task 26
Method 26
Participants 27
Design 27
Task, Stimuli, and Apparatus 30
Procedure 31
Data Analysis 32
Results 33
Discussion 36
Experiment 3: Apply Transcranial Direct Current Stimulation (tDCS) on Spatiotemporal Serial Reaction Time Task 39
Method 40
Participants 40
Design 41
Task, Stimuli and Apparatus 45
Procedure 45
Data Analysis 46
Results 48
Discussion 56
tDCS on the M1 area interfered sequence learning 56
Relationship among conditions of learning index 58
Posttest for the temporal domain 60
Experiment 4: Differentiate the spatial and temporal sequence learning with a domain-specific random sequence 62
Method 62
Participants 62
Design 63
Task, Stimuli, and Apparatus 65
Procedure 65
Data Analysis 66
Results 67
Discussion 74
Comparing two different methods of calculating learning index 76
General Discussion 79
Temporal sequence learning is not in line with expectations 81
Why spatial sequences are prioritized in the current experimental setup 82
Different effects of tDCS depending on the stimulated brain regions 83
Limitations 84
Implicit learning or explicit learning? 84
An appropriate length of time interval 86
Confounding factors in the tDCS experiment 87
Future Directions 89
Learning control of spatiotemporal sequences in a completely implicit state 89
Observing spatiotemporal sequence learning through auditory material 90
References 92
參考文獻 Antal, A., Nitsche, M. A., Kincses, T. Z., Kruse, W., Hoffmann, K. P., & Paulus, W. (2004). Facilitation of visuo‐motor learning by transcranial direct current stimulation of the motor and extrastriate visual areas in humans. European Journal of Neuroscience, 19(10), 2888-2892.
Antal, A., & Paulus, W. (2012). Investigating neuroplastic changes in the human brain induced by transcranial direct (tDCS) and alternating current (tACS) stimulation methods. Clin EEG Neurosci, 43(3), 175. doi:10.1177/1550059412448030
Bengtsson, S. L., Ullen, F., Ehrsson, H. H., Hashimoto, T., Kito, T., Naito, E., . . . Sadato, N. (2009). Listening to rhythms activates motor and premotor cortices. Cortex, 45(1), 62-71.
Buchner, A., & Steffens, M. C. (2001). Auditory negative priming in speeded reactions and temporal order judgements. The Quarterly Journal of Experimental Psychology A, 54(4), 1125-1142. doi:10.1080/02724980143000109
Coull, J. T., Cheng, R. K., & Meck, W. H. (2011). Neuroanatomical and neurochemical substrates of timing. Neuropsychopharmacology, 36(1), 3-25. doi:10.1038/npp.2010.113
Destrebecqz, A., & Cleeremans, A. (2001). Can sequence learning be implicit? New evidence with the process dissociation procedure. Psychonomic bulletin & review, 8(2), 343-350.
Kaiser, T. (2017). dyncomp: an R package for Estimating the Complexity of Short Time Series.
Kami, A., Meyer, G., Jezzard, P., Adams, M. M., Turner, R., & Ungerleider, L. G. (1995). Functional MRI evidence for adult motor cortex plasticity during motor skill learning. Nature, 377(6545), 155-158.
Karabanov, A., & Ullen, F. (2008). Implicit and explicit learning of temporal sequences studied with the process dissociation procedure. J Neurophysiol, 100(2), 733-739. doi:10.1152/jn.01303.2007
Keele, S. W., Ivry, R., Mayr, U., Hazeltine, E., & Heuer, H. (2003). The cognitive and neural architecture of sequence representation. Psychol Rev, 110(2), 316-339. doi:10.1037/0033-295x.110.2.316
Keitel, A., Ofsteng, H., Krause, V., & Pollok, B. (2018). Anodal Transcranial Direct Current Stimulation (tDCS) Over the Right Primary Motor Cortex (M1) Impairs Implicit Motor Sequence Learning of the Ipsilateral Hand. Front Hum Neurosci, 12, 289. doi:10.3389/fnhum.2018.00289
Kemeny, F., & Lukacs, A. (2019). Sequence in a sequence: Learning of auditory but not visual patterns within a multimodal sequence. Acta Psychol (Amst), 199, 102905. doi:10.1016/j.actpsy.2019.102905
Kobayashi, M., Théoret, H., & Pascual‐Leone, A. (2009). Suppression of ipsilateral motor cortex facilitates motor skill learning. European Journal of Neuroscience, 29(4), 833-836.
Lu, X., & Ashe, J. (2005). Anticipatory activity in primary motor cortex codes memorized movement sequences. Neuron, 45(6), 967-973.
Madhavan, S., & Shah, B. (2012). Enhancing motor skill learning with transcranial direct current stimulation–a concise review with applications to stroke. Frontiers in psychiatry, 3, 66.
Mayr, U. (1996). Spatial attention and implicit sequence learning: evidence for independent learning of spatial and nonspatial sequences. Journal of experimental psychology: learning, memory, and cognition, 22(2), 350.
Mioni, G., Stablum, F., & Grondin, S. (2014). Interval discrimination across different duration ranges with a look at spatial compatibility and context effects. Front Psychol, 5, 717. doi:10.3389/fpsyg.2014.00717
Muellbacher, W., Ziemann, U., Wissel, J., Dang, N., Kofler, M., Facchini, S., . . . Hallett, M. (2002). Early consolidation in human primary motor cortex. Nature, 415(6872), 640-644.
Nazzaro, J. R., & Nazzaro, J. N. (1970). Auditory versus visual learning of temporal patterns. Journal of Experimental Psychology, 84(3), 477.
Nissen, M. J., & Bullemer, P. (1987). Attentional requirements of learning: Evidence from performance measures. Cognitive psychology, 19(1), 1-32.
Nitsche, M. A., Fricke, K., Henschke, U., Schlitterlau, A., Liebetanz, D., Lang, N., . . . Paulus, W. (2003). Pharmacological modulation of cortical excitability shifts induced by transcranial direct current stimulation in humans. The Journal of physiology, 553(1), 293-301.
O’Reilly III, C. A., & Tushman, M. L. (2008). Ambidexterity as a dynamic capability: Resolving the innovator′s dilemma. Research in organizational behavior, 28, 185-206.
Oldfield, R. C. (1971). The assessment and analysis of handedness: the Edinburgh inventory. Neuropsychologia, 9(1), 97-113.
Olson, I. R., Page, K., Moore, K. S., Chatterjee, A., & Verfaellie, M. (2006). Working memory for conjunctions relies on the medial temporal lobe. Journal of Neuroscience, 26(17), 4596-4601.
Pascual-Leone, A., Valls-Solé, J., Wassermann, E. M., & Hallett, M. (1994). Responses to rapid-rate transcranial magnetic stimulation of the human motor cortex. Brain, 117(4), 847-858.
Peirce, J., Gray, J. R., Simpson, S., MacAskill, M., Höchenberger, R., Sogo, H., . . . Lindeløv, J. K. (2019). PsychoPy2: Experiments in behavior made easy. Behavior research methods, 51(1), 195-203.
Reed, J., & Johnson, P. (1994). Assessing implicit learning with indirect tests: Determining what is learned about sequence structure. Journal of experimental psychology: learning, memory, and cognition, 20(3), 585.
Robertson, E. M. (2007). The serial reaction time task: implicit motor skill learning? J Neurosci, 27(38), 10073-10075. doi:10.1523/JNEUROSCI.2747-07.2007
Rosenthal, R., & Rosnow, R. L. (2009). Artifacts in behavioral research: Robert Rosenthal and Ralph L. Rosnow′s classic books: Oxford University Press.
Rossi, S., Hallett, M., Rossini, P. M., Pascual-Leone, A., & Group, S. o. T. C. (2009). Safety, ethical considerations, and application guidelines for the use of transcranial magnetic stimulation in clinical practice and research. Clinical neurophysiology, 120(12), 2008-2039.
Rossignol, S., & Jones, G. M. (1976). Audio-spinal influence in man studied by the H-reflex and its possible role on rhythmic movements synchronized to sound. Electroencephalography and clinical neurophysiology, 41(1), 83-92.
Salidis, J. (2001). Nonconscious temporal cognition: Learning rhythms implicitly. Memory & Cognition, 29(8), 1111-1119.
Schaffert, N., Janzen, T. B., Mattes, K., & Thaut, M. H. (2019). A review on the relationship between sound and movement in sports and rehabilitation. Frontiers in psychology, 10, 244.
Schendan, H. E., Searl, M. M., Melrose, R. J., & Stern, C. E. (2003). An FMRI study of the role of the medial temporal lobe in implicit and explicit sequence learning. Neuron, 37(6), 1013-1025.
Schiepek, G., & Strunk, G. (2010). The identification of critical fluctuations and phase transitions in short term and coarse-grained time series-a method for the real-time monitoring of human change processes. Biol Cybern, 102(3), 197-207. doi:10.1007/s00422-009-0362-1
Schultz, B. G., Stevens, C. J., Keller, P. E., & Tillmann, B. (2013). The implicit learning of metrical and nonmetrical temporal patterns. Q J Exp Psychol (Hove), 66(2), 360-380. doi:10.1080/17470218.2012.712146
Schumacher, E. H., & Schwarb, H. (2009). Parallel response selection disrupts sequence learning under dual-task conditions. J Exp Psychol Gen, 138(2), 270-290. doi:10.1037/a0015378
Schwarb, H., & Schumacher, E. H. (2010). Implicit sequence learning is represented by stimulus-response rules. Mem Cognit, 38(6), 677-688. doi:10.3758/MC.38.6.677
Schwarb, H., & Schumacher, E. H. (2012). Generalized lessons about sequence learning from the study of the serial reaction time task. Adv Cogn Psychol, 8(2), 165-178. doi:10.2478/v10053-008-0113-1
Shanks, D. R., & Johnstone, T. (1998). Implicit knowledge in sequential learning tasks.
Shanks, D. R., Rowland, L. A., & Ranger, M. S. (2005). Attentional load and implicit sequence learning. Psychological research, 69(5), 369-382.
Shin, J. C., & Ivry, R. B. (2002). Concurrent learning of temporal and spatial sequences. J Exp Psychol Learn Mem Cogn, 28(3), 445-457. doi:10.1037//0278-7393.28.3.445
Stadler, M. A. (1995). Role of attention in implicit learning. Journal of experimental psychology: learning, memory, and cognition, 21(3), 674.
Stagg, C. J., O′Shea, J., Kincses, Z. T., Woolrich, M., Matthews, P. M., & Johansen-Berg, H. (2009). Modulation of movement-associated cortical activation by transcranial direct current stimulation. Eur J Neurosci, 30(7), 1412-1423. doi:10.1111/j.1460-9568.2009.06937.x
Thaut, M. H., & Abiru, M. (2010). Rhythmic auditory stimulation in rehabilitation of movement disorders: a review of current research. Music Perception, 27(4), 263-269.
Ungerleider, L. G., Doyon, J., & Karni, A. (2002). Imaging brain plasticity during motor skill learning. Neurobiology of learning and memory, 78(3), 553-564.
Van Selst, M., & Jolicoeur, P. (1994). A solution to the effect of sample size on outlier elimination. The Quarterly Journal of Experimental Psychology Section A, 47(3), 631-650.
Warren, J. E., Wise, R. J., & Warren, J. D. (2005). Sounds do-able: auditory–motor transformations and the posterior temporal plane. Trends in neurosciences, 28(12), 636-643.
Wilkinson, L., Teo, J. T., Obeso, I., Rothwell, J. C., & Jahanshahi, M. (2010). The contribution of primary motor cortex is essential for probabilistic implicit sequence learning: evidence from theta burst magnetic stimulation. Journal of cognitive neuroscience, 22(3), 427-436.
Willingham, D. B., Nissen, M. J., & Bullemer, P. (1989). On the development of procedural knowledge. Journal of experimental psychology: learning, memory, and cognition, 15(6), 1047.
Wuyts, I. J., & Buekers, M. J. (1995). The effects of visual and auditory models on the learning of a rhythmical synchronization dance skill. Research Quarterly for Exercise and Sport, 66(2), 105-115.
指導教授 張智宏(Erik Chihhung Chang) 審核日期 2023-6-12
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明