參考文獻 |
Abdalaziz, M., Redding, Z. V., & Fiebelkorn, I. C. (2023). Rhythmic temporal coordination of neural activity prevents representational conflict during working memory. Current Biology, 33(9), 1855-1863. e1853.
Arjona, A., Escudero, M., & Gómez, C. M. (2016). Cue validity probability influences neural processing of targets. Biological Psychology, 119, 171-183.
Arnal, L. H., & Giraud, A.-L. (2012). Cortical oscillations and sensory predictions. Trends in cognitive sciences, 16(7), 390-398.
Balestrieri, E., Ronconi, L., & Melcher, D. (2022). Shared resources between visual attention and visual working memory are allocated through rhythmic sampling. European Journal of Neuroscience, 55(11-12), 3040-3053.
Bashinski, H. S., & Bacharach, V. R. (1980). Enhancement of perceptual sensitivity as the result of selectively attending to spatial locations. Perception & psychophysics, 28, 241-248.
Bauer, M., Stenner, M.-P., Friston, K. J., & Dolan, R. J. (2014). Attentional modulation of alpha/beta and gamma oscillations reflect functionally distinct processes. Journal of Neuroscience, 34(48), 16117-16125.
Belouchrani, A., Abed-Meraim, K., Cardoso, J.-F., & Moulines, E. (1997). A blind source separation technique using second-order statistics. IEEE Transactions on signal processing, 45(2), 434-444.
Belouchrani, A., Abed-Meraim, K., Cardoso, J., & Moulines, E. (1993). Second-order blind separation of temporally correlated sources. Proc. Int. Conf. Digital Signal Processing,
Benwell, C. S., Tagliabue, C. F., Veniero, D., Cecere, R., Savazzi, S., & Thut, G. (2017). Prestimulus EEG power predicts conscious awareness but not objective visual performance. ENeuro, 4(6).
Brainard, D. H., & Vision, S. (1997). The psychophysics toolbox. Spatial vision, 10(4), 433-436.
Breska, A., & Deouell, L. Y. (2017). Neural mechanisms of rhythm-based temporal prediction: Delta phase-locking reflects temporal predictability but not rhythmic entrainment. PLoS biology, 15(2), e2001665.
Busch, N. A., Dubois, J., & VanRullen, R. (2009). The phase of ongoing EEG oscillations predicts visual perception. J Neurosci, 29(24), 7869-7876. https://doi.org/10.1523/JNEUROSCI.0113-09.2009
Busch, N. A., & VanRullen, R. (2010). Spontaneous EEG oscillations reveal periodic sampling of visual attention. Proc Natl Acad Sci U S A, 107(37), 16048-16053. https://doi.org/10.1073/pnas.1004801107
Canolty, R. T., & Knight, R. T. (2010). The functional role of cross-frequency coupling. Trends in cognitive sciences, 14(11), 506-515.
Cavanagh, J. F., & Frank, M. J. (2014). Frontal theta as a mechanism for cognitive control. Trends in cognitive sciences, 18(8), 414-421.
Chacko, R. V., Kim, B., Jung, S. W., Daitch, A. L., Roland, J. L., Metcalf, N. V., Corbetta, M., Shulman, G. L., & Leuthardt, E. C. (2018). Distinct phase-amplitude couplings distinguish cognitive processes in human attention. Neuroimage, 175, 111-121.
Chang, C.-F., Liang, W.-K., Lai, C.-L., Hung, D. L., & Juan, C.-H. (2016). Theta oscillation reveals the temporal involvement of different attentional networks in contingent reorienting. Frontiers in Human Neuroscience, 10, 264.
Chen, A., Wang, A., Wang, T., Tang, X., & Zhang, M. (2017). Behavioral oscillations in visual attention modulated by task difficulty. Frontiers in psychology, 8, 1630.
Corbetta, M., & Shulman, G. L. (2002). Control of goal-directed and stimulus-driven attention in the brain. Nature reviews neuroscience, 3(3), 201-215.
Cravo, A. M., Rohenkohl, G., Wyart, V., & Nobre, A. C. (2011). Endogenous modulation of low frequency oscillations by temporal expectations. Journal of neurophysiology, 106(6), 2964-2972.
Cravo, A. M., Rohenkohl, G., Wyart, V., & Nobre, A. C. (2013). Temporal expectation enhances contrast sensitivity by phase entrainment of low-frequency oscillations in visual cortex. Journal of Neuroscience, 33(9), 4002-4010.
Cruzat, J., Torralba, M., Ruzzoli, M., Fernández, A., Deco, G., & Soto-Faraco, S. (2021). The phase of Theta oscillations modulates successful memory formation at encoding. Neuropsychologia, 154, 107775.
Daume, J., Wang, P., Maye, A., Zhang, D., & Engel, A. K. (2021). Non-rhythmic temporal prediction involves phase resets of low-frequency delta oscillations. Neuroimage, 224, 117376.
Doherty, J. R., Rao, A., Mesulam, M. M., & Nobre, A. C. (2005). Synergistic effect of combined temporal and spatial expectations on visual attention. Journal of Neuroscience, 25(36), 8259-8266.
Drewes, J., & VanRullen, R. (2011). This is the rhythm of your eyes: the phase of ongoing electroencephalogram oscillations modulates saccadic reaction time. Journal of Neuroscience, 31(12), 4698-4708.
Dugué, L., Marque, P., & VanRullen, R. (2011). The phase of ongoing oscillations mediates the causal relation between brain excitation and visual perception. Journal of Neuroscience, 31(33), 11889-11893.
Dugué, L., Marque, P., & VanRullen, R. (2015). Theta oscillations modulate attentional search performance periodically. J Cogn Neurosci, 27(5), 945-958. https://doi.org/10.1162/jocn_a_00755
Dugué, L., & VanRullen, R. (2017). Transcranial magnetic stimulation reveals intrinsic perceptual and attentional rhythms. Frontiers in Neuroscience, 11, 154.
Dugue, L., Roberts, M., & Carrasco, M. (2016). Attention Reorients Periodically. Curr Biol, 26(12), 1595-1601. https://doi.org/10.1016/j.cub.2016.04.046
Egly, R., Driver, J., & Rafal, R. D. (1994). Shifting visual attention between objects and locations: evidence from normal and parietal lesion subjects. Journal of Experimental Psychology: General, 123(2), 161.
Esghaei, M., Treue, S., & Vidyasagar, T. R. (2022). Dynamic coupling of oscillatory neural activity and its roles in visual attention. Trends in Neurosciences.
Fakche, C., VanRullen, R., Marque, P., & Dugué, L. (2022). α phase-amplitude tradeoffs predict visual perception. ENeuro, 9(1).
Fiebelkorn, I. C., & Kastner, S. (2019). A Rhythmic Theory of Attention. Trends Cogn Sci, 23(2), 87-101. https://doi.org/10.1016/j.tics.2018.11.009
Fiebelkorn, I. C., Pinsk, M. A., & Kastner, S. (2018). A Dynamic Interplay within the Frontoparietal Network Underlies Rhythmic Spatial Attention. Neuron, 99(4), 842-853 e848. https://doi.org/10.1016/j.neuron.2018.07.038
Fiebelkorn, I. C., Saalmann, Y. B., & Kastner, S. (2013). Rhythmic sampling within and between objects despite sustained attention at a cued location. Curr Biol, 23(24), 2553-2558. https://doi.org/10.1016/j.cub.2013.10.063
Haegens, S., Händel, B. F., & Jensen, O. (2011). Top-down controlled alpha band activity in somatosensory areas determines behavioral performance in a discrimination task. Journal of Neuroscience, 31(14), 5197-5204.
Hayward, D. A., & Ristic, J. (2013). Measuring attention using the Posner cuing paradigm: the role of across and within trial target probabilities. Frontiers in Human Neuroscience, 7, 205.
Helfrich, R. F., Fiebelkorn, I. C., Szczepanski, S. M., Lin, J. J., Parvizi, J., Knight, R. T., & Kastner, S. (2018). Neural Mechanisms of Sustained Attention Are Rhythmic. Neuron, 99(4), 854-865 e855. https://doi.org/10.1016/j.neuron.2018.07.032
Holcombe, A. O., & Chen, W. Y. (2013). Splitting attention reduces temporal resolution from 7 Hz for tracking one object to <3 Hz when tracking three. J Vis, 13(1), 12. https://doi.org/10.1167/13.1.12
Hsu, C.-H., Lee, C.-Y., & Liang, W.-K. (2016). An improved method for measuring mismatch negativity using ensemble empirical mode decomposition. Journal of neuroscience methods, 264, 78-85.
Hsu, C. Y., Liu, T. L., Lee, D. H., Yeh, D. R., Chen, Y. H., Liang, W. K., & Juan, C. H. (2023). Amplitude modulating frequency overrides carrier frequency in tACS‐induced phosphene percept. Human Brain Mapping, 44(3), 914-926.
Huang, D., Liang, H., Xue, L., Wang, M., Hu, Q., & Chen, Y. (2017). The time course of attention modulation elicited by spatial uncertainty. Vision research, 138, 50-58.
Huang, N. E., Hu, K., Yang, A. C., Chang, H. C., Jia, D., Liang, W. K., Yeh, J. R., Kao, C. L., Juan, C. H., Peng, C. K., Meijer, J. H., Wang, Y. H., Long, S. R., & Wu, Z. (2016). On Holo-Hilbert spectral analysis: a full informational spectral representation for nonlinear and non-stationary data. Philos Trans A Math Phys Eng Sci, 374(2065), 20150206. https://doi.org/10.1098/rsta.2015.0206
Huang, N. E., Shen, Z., Long, S. R., Wu, M. C., Shih, H. H., Zheng, Q., Yen, N.-C., Tung, C. C., & Liu, H. H. (1998). The empirical mode decomposition and the Hilbert spectrum for nonlinear and non-stationary time series analysis. Proceedings of the Royal Society of London. Series A: mathematical, physical and engineering sciences, 454(1971), 903-995.
Huang, N. E., Wu, Z., Long, S. R., Arnold, K. C., Chen, X., & Blank, K. (2009). On instantaneous frequency. Advances in adaptive data analysis, 1(02), 177-229.
Huang, Y., Chen, L., & Luo, H. (2015). Behavioral oscillation in priming: competing perceptual predictions conveyed in alternating theta-band rhythms. Journal of Neuroscience, 35(6), 2830-2837.
Hyvärinen, A., & Oja, E. (2000). Independent component analysis: algorithms and applications. Neural networks, 13(4-5), 411-430.
Jensen, O., & Mazaheri, A. (2010). Shaping functional architecture by oscillatory alpha activity: gating by inhibition. Front Hum Neurosci, 4, 186. https://doi.org/10.3389/fnhum.2010.00186
Jia, J., Liu, L., Fang, F., & Luo, H. (2017). Sequential sampling of visual objects during sustained attention. PLoS biology, 15(6), e2001903.
Juan, C. H., Nguyen, K. T., Liang, W. K., Quinn, A. J., Chen, Y. H., Muggleton, N. G., Yeh, J. R., Woolrich, M. W., Nobre, A. C., & Huang, N. E. (2021). Revealing the Dynamic Nature of Amplitude Modulated Neural Entrainment With Holo-Hilbert Spectral Analysis. Front Neurosci, 15, 673369. https://doi.org/10.3389/fnins.2021.673369
Kasten, F. H., Wendeln, T., Stecher, H. I., & Herrmann, C. S. (2020). Hemisphere-specific, differential effects of lateralized, occipital-parietal alpha- versus gamma-tACS on endogenous but not exogenous visual-spatial attention. Sci Rep, 10(1), 12270. https://doi.org/10.1038/s41598-020-68992-2
Kawashima, T., Hayashi, M. J., & Amano, K. (2022). Attentional rhythmic blink: Theta/Alpha balance in neural oscillations determines the rhythmicity in visual sampling. bioRxiv, 2022.2004. 2015.488436.
Keitel, C., Ruzzoli, M., Dugué, L., Busch, N. A., & Benwell, C. S. (2022). Rhythms in cognition: The evidence revisited. In (Vol. 55, pp. 2991-3009): Wiley Online Library.
Kelly, S. P., Lalor, E. C., Reilly, R. B., & Foxe, J. J. (2006). Increases in alpha oscillatory power reflect an active retinotopic mechanism for distracter suppression during sustained visuospatial attention. Journal of neurophysiology, 95(6), 3844-3851.
Kienitz, R., Schmid, M. C., & Dugué, L. (2022). Rhythmic sampling revisited: experimental paradigms and neural mechanisms. European Journal of Neuroscience, 55(11-12), 3010-3024.
Lachaux, J. P., Rodriguez, E., Martinerie, J., & Varela, F. J. (1999). Measuring phase synchrony in brain signals. Human Brain Mapping, 8(4), 194-208.
Landau, A. N., & Fries, P. (2012). Attention samples stimuli rhythmically. Curr Biol, 22(11), 1000-1004. https://doi.org/10.1016/j.cub.2012.03.054
Landau, A. N., Schreyer, H. M., van Pelt, S., & Fries, P. (2015). Distributed Attention Is Implemented through Theta-Rhythmic Gamma Modulation. Curr Biol, 25(17), 2332-2337. https://doi.org/10.1016/j.cub.2015.07.048
Leszczyński, M., Fell, J., & Axmacher, N. (2015). Rhythmic working memory activation in the human hippocampus. Cell reports, 13(6), 1272-1282.
Liang, W. K., Tseng, P., Yeh, J. R., Huang, N. E., & Juan, C. H. (2021). Frontoparietal Beta Amplitude Modulation and its Interareal Cross-frequency Coupling in Visual Working Memory. Neuroscience, 460, 69-87. https://doi.org/10.1016/j.neuroscience.2021.02.013
Lin, W. M., Oetringer, D. A., Bakker‐Marshall, I., Emmerzaal, J., Wilsch, A., ElShafei, H. A., Rassi, E., & Haegens, S. (2022). No behavioural evidence for rhythmic facilitation of perceptual discrimination. European Journal of Neuroscience, 55(11-12), 3352-3364.
Los, S. A., Knol, D. L., & Boers, R. M. (2001). The foreperiod effect revisited: Conditioning as a basis for nonspecific preparation. Acta Psychologica, 106(1-2), 121-145.
Makeig, S., Jung, T.-P., Ghahremani, D., & Sejnowski, T. J. (1996). Independent component analysis of simulated ERP data. Institute for Neural Computation, University of California: technical report INC-9606.
Malhotra, P., Coulthard, E. J., & Husain, M. (2009). Role of right posterior parietal cortex in maintaining attention to spatial locations over time. Brain, 132(3), 645-660.
Maris, E., & Oostenveld, R. (2007). Nonparametric statistical testing of EEG-and MEG-data. Journal of neuroscience methods, 164(1), 177-190.
Mathewson, K. E., Gratton, G., Fabiani, M., Beck, D. M., & Ro, T. (2009). To see or not to see: prestimulus alpha phase predicts visual awareness. J Neurosci, 29(9), 2725-2732. https://doi.org/10.1523/JNEUROSCI.3963-08.2009
Mathewson, K. E., Lleras, A., Beck, D. M., Fabiani, M., Ro, T., & Gratton, G. (2011). Pulsed out of awareness: EEG alpha oscillations represent a pulsed-inhibition of ongoing cortical processing. Front Psychol, 2, 99. https://doi.org/10.3389/fpsyg.2011.00099
McDonald, J. J., Störmer, V. S., Martinez, A., Feng, W., & Hillyard, S. A. (2013). Salient sounds activate human visual cortex automatically. Journal of Neuroscience, 33(21), 9194-9201.
Merholz, G., Grabot, L., VanRullen, R., & Dugué, L. (2022). Periodic attention operates faster during more complex visual search. Scientific Reports, 12(1), 6688.
Michail, G., Toran Jenner, L., & Keil, J. (2022). Prestimulus alpha power but not phase influences visual discrimination of long-duration visual stimuli. Eur J Neurosci, 55(11-12), 3141-3153. https://doi.org/10.1111/ejn.15169
Michel, R., Dugué, L., & Busch, N. A. (2022). Distinct contributions of alpha and theta rhythms to perceptual and attentional sampling. European Journal of Neuroscience, 55(11-12), 3025-3039.
Mohan, U. R., Zhang, H., & Jacobs, J. (2022). The direction and timing of theta and alpha traveling waves modulate human memory processing. bioRxiv, 2022.2002. 2007.479466.
Nguyen, K. T., Liang, W. K., Lee, V., Chang, W. S., Muggleton, N. G., Yeh, J. R., Huang, N. E., & Juan, C. H. (2019). Unraveling nonlinear electrophysiologic processes in the human visual system with full dimension spectral analysis. Sci Rep, 9(1), 16919. https://doi.org/10.1038/s41598-019-53286-z
Nguyen, T. V., Hsu, C. Y., Jaiswal, S., Muggleton, N. G., Liang, W. K., & Juan, C. H. (2021). To Go or Not to Go: Degrees of Dynamic Inhibitory Control Revealed by the Function of Grip Force and Early Electrophysiological Indices. Front Hum Neurosci, 15, 614978. https://doi.org/10.3389/fnhum.2021.614978
Nobre, A. C., & van Ede, F. (2018). Anticipated moments: temporal structure in attention. Nat Rev Neurosci, 19(1), 34-48. https://doi.org/10.1038/nrn.2017.141
Näätänen, R. (1972). Time uncertainty and occurence uncertainty of the stimulus in a simple reaction time task. Acta Psychologica, 36(6), 492-503.
Osipova, D., Hermes, D., & Jensen, O. (2008). Gamma power is phase-locked to posterior alpha activity. PLoS One, 3(12), e3990. https://doi.org/10.1371/journal.pone.0003990
Paneri, S., & Gregoriou, G. G. (2017). Top-down control of visual attention by the prefrontal cortex. Functional specialization and long-range interactions. Frontiers in Neuroscience, 11, 545.
Pelli, D. G., & Vision, S. (1997). The VideoToolbox software for visual psychophysics: Transforming numbers into movies. Spatial vision, 10, 437-442.
Peylo, C., Hilla, Y., & Sauseng, P. (2021). Cause or consequence? Alpha oscillations in visuospatial attention. Trends Neurosci, 44(9), 705-713. https://doi.org/10.1016/j.tins.2021.05.004
Plöchl, M., Fiebelkorn, I., Kastner, S., & Obleser, J. (2022). Attentional sampling of visual and auditory objects is captured by theta‐modulated neural activity. European Journal of Neuroscience, 55(11-12), 3067-3082.
Posner, M. I. (1980). Orienting of attention. Quarterly journal of experimental psychology, 32(1), 3-25.
Posner, M. I., & Cohen, Y. (1984). Components of visual orienting. Attention and performance X: Control of language processes, 32, 531-556.
Posner, M. I., Rafal, R. D., Choate, L. S., & Vaughan, J. (2007). Inhibition of return: Neural basis and function. Cognitive Neuropsychology, 2(3), 211-228. https://doi.org/10.1080/02643298508252866
Raymond, J. E., Shapiro, K. L., & Arnell, K. M. (1992). Temporary suppression of visual processing in an RSVP task: An attentional blink? Journal of experimental psychology: Human perception and performance, 18(3), 849.
Re, D., Inbar, M., Richter, C. G., & Landau, A. N. (2019). Feature-Based Attention Samples Stimuli Rhythmically. Curr Biol, 29(4), 693-699 e694. https://doi.org/10.1016/j.cub.2019.01.010
Rohenkohl, G., Gould, I. C., Pessoa, J., & Nobre, A. C. (2014). Combining spatial and temporal expectations to improve visual perception. Journal of vision, 14(4), 8-8.
Sack, A. T. (2009). Parietal cortex and spatial cognition. Behavioural brain research, 202(2), 153-161.
Samaha, J., & Postle, B. R. (2015). The speed of alpha-band oscillations predicts the temporal resolution of visual perception. Current Biology, 25(22), 2985-2990.
Senoussi, M., Moreland, J. C., Busch, N. A., & Dugue, L. (2019). Attention explores space periodically at the theta frequency. J Vis, 19(5), 22. https://doi.org/10.1167/19.5.22
Song, K., Meng, M., Chen, L., Zhou, K., & Luo, H. (2014). Behavioral oscillations in attention: rhythmic alpha pulses mediated through theta band. J Neurosci, 34(14), 4837-4844. https://doi.org/10.1523/JNEUROSCI.4856-13.2014
Spaak, E., de Lange, F. P., & Jensen, O. (2014). Local entrainment of alpha oscillations by visual stimuli causes cyclic modulation of perception. Journal of Neuroscience, 34(10), 3536-3544.
Su, Z., Wang, L., Kang, G., & Zhou, X. (2021). Reward makes the rhythmic sampling of spatial attention emerge earlier. Atten Percept Psychophys, 83(4), 1522-1537. https://doi.org/10.3758/s13414-020-02226-5
Szczepanski, S. M., Crone, N. E., Kuperman, R. A., Auguste, K. I., Parvizi, J., & Knight, R. T. (2014). Dynamic changes in phase-amplitude coupling facilitate spatial attention control in fronto-parietal cortex. PLoS Biol, 12(8), e1001936. https://doi.org/10.1371/journal.pbio.1001936
Thut, G., Nietzel, A., Brandt, S. A., & Pascual-Leone, A. (2006). α-Band electroencephalographic activity over occipital cortex indexes visuospatial attention bias and predicts visual target detection. Journal of Neuroscience, 26(37), 9494-9502.
Tomassini, A., Ambrogioni, L., Medendorp, W. P., & Maris, E. (2017). Theta oscillations locked to intended actions rhythmically modulate perception. Elife, 6. https://doi.org/10.7554/eLife.25618
Torres, M. E., Colominas, M. A., Schlotthauer, G., & Flandrin, P. (2011). A complete ensemble empirical mode decomposition with adaptive noise. 2011 IEEE international conference on acoustics, speech and signal processing (ICASSP),
Tsai, C.-C., & Liang, W.-K. (2021). Event-related components are structurally represented by intrinsic event-related potentials. Scientific Reports, 11(1), 5670.
Ungerleider, S. K., & G, L. (2000). Mechanisms of visual attention in the human cortex. Annual review of neuroscience, 23(1), 315-341.
van Der Werf, O. J., Ten Oever, S., Schuhmann, T., & Sack, A. T. (2022). No evidence of rhythmic visuospatial attention at cued locations in a spatial cuing paradigm, regardless of their behavioural relevance. European Journal of Neuroscience, 55(11-12), 3100-3116.
Van Dijk, H., Schoffelen, J.-M., Oostenveld, R., & Jensen, O. (2008). Prestimulus oscillatory activity in the alpha band predicts visual discrimination ability. Journal of Neuroscience, 28(8), 1816-1823.
Van Ede, F., De Lange, F., Jensen, O., & Maris, E. (2011). Orienting attention to an upcoming tactile event involves a spatially and temporally specific modulation of sensorimotor alpha-and beta-band oscillations. Journal of Neuroscience, 31(6), 2016-2024.
VanRullen, R. (2016). Perceptual cycles. Trends in cognitive sciences, 20(10), 723-735.
VanRullen, R., & Koch, C. (2003). Is perception discrete or continuous? Trends Cogn Sci, 7(5), 207-213. https://doi.org/10.1016/s1364-6613(03)00095-0
Vossel, S., Mathys, C., Daunizeau, J., Bauer, M., Driver, J., Friston, K. J., & Stephan, K. E. (2014). Spatial attention, precision, and Bayesian inference: a study of saccadic response speed. Cerebral cortex, 24(6), 1436-1450.
Vossel, S., Thiel, C. M., & Fink, G. R. (2006). Cue validity modulates the neural correlates of covert endogenous orienting of attention in parietal and frontal cortex. Neuroimage, 32(3), 1257-1264.
Voytek, B., Samaha, J., Rolle, C. E., Greenberg, Z., Gill, N., Porat, S., Kader, T., Rahman, S., Malzyner, R., & Gazzaley, A. (2017). Preparatory encoding of the fine scale of human spatial attention. Journal of Cognitive Neuroscience, 29(7), 1302-1310.
Wang, T., Zhang, M., Yu, Q., & Zhang, H. (2012). Comparing the applications of EMD and EEMD on time–frequency analysis of seismic signal. Journal of Applied Geophysics, 83, 29-34.
White, C. T. (1963). Temporal numerosity and the psychological unit of duration. Psychological Monographs: General and Applied, 77(12), 1.
Wu, Z., & Huang, N. E. (2009). Ensemble empirical mode decomposition: a noise-assisted data analysis method. Advances in adaptive data analysis, 1(01), 1-41. |