博碩士論文 110521095 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:101 、訪客IP:3.16.68.244
姓名 王伯綸(Po-Lun Wang)  查詢紙本館藏   畢業系所 電機工程學系
論文名稱 應用於內藏式永磁同步馬達位置驅動系統之智慧型非奇異點終端滑動模態控制
(Intelligent Nonsingular Terminal Sliding Mode Control Applied to IPMSM Position Servo Drive)
相關論文
★ 機場地面燈光更新工程 -以桃園國際機場南邊跑滑道為例★ 多功能太陽能微型逆變器之研製
★ 應用於儲能系統之智慧型太陽光電功率平滑化控制★ 利用智慧型控制之三相主動式電力濾波器的研製
★ 應用於內藏式永磁同步馬達之智慧型速度控制及最佳伺服控制頻寬研製★ 新型每安培最大轉矩控制同步磁阻馬達驅動系統之開發
★ 同步磁阻馬達驅動系統之智慧型每安培最大轉矩追蹤控制★ 利用適應性互補式滑動模態控制於同步磁阻馬達之寬速度控制
★ 具智慧型太陽光電功率平滑化控制之微電網電能管理系統★ 高性能同步磁阻馬達驅動系統之 寬速度範圍控制器發展
★ 智慧型互補式滑動模態控制系統實現於X-Y-θ三軸線性超音波馬達運動平台★ 智慧型同動控制之龍門式定位平台及應用
★ 利用智慧型滑動模式控制之五軸主動式磁浮軸承控制系統★ 智慧型控制雙饋式感應風力發電系統之研製
★ 無感測器直流變頻壓縮機驅動系統之研製★ 應用於模組化輕型電動車之類神經網路控制六相永磁同步馬達驅動系統
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   至系統瀏覽論文 (2028-8-1以後開放)
摘要(中) 本論文的研究目是研製精密定位控制的內藏式永磁同步馬達驅動系統,並提出智慧型非奇異點終端滑動模態控制,以改變非線性時變系統固有的非線性和時變控制特性。該研究首先設計了一個非奇異點終端滑動模態控制系統,用於追蹤非線性和時變系統的狀態。實際應用中,因為受控系統的參數變化與外力干擾等不確定項的影響,不確定項的上界難以精確取得,因此本研究提出非對稱歸屬函數之遞迴式派翠機率模糊類神經網路創建一個智慧型控制系統,來近似理想的非奇異點終端滑動模態控制律,並加入自適應補償器,以主動調整非對稱歸屬函數之遞迴式派翠機率模糊類神經網路的計算偏差。此外,本文採用每安培最大轉矩控制方法,除了提高馬達效率之外,為了提升控制迴路的性能和頻寬,亦使用非對稱歸屬函數之遞迴式派翠機率模糊類神經網路速度控制器以增加速度迴路頻寬。最後通過實驗結果驗證了所提出的非對稱歸屬函數之遞迴式派翠機率模糊類神經網路智慧型控制器的有效性和強健性。實驗所使用之硬體為應用德州儀器公司生產之浮點數數位訊號處理器TMS320F28075之內藏式永磁同步馬達伺服驅動系統。
摘要(英) This study aims to create an intelligent control system to alter the inherent nonlinear characteristics of a nonlinear time-varying system by using an intelligent nonsingular terminal sliding mode control recurrent Petri probabilistic fuzzy neural network (INTSMCRPPFNN) that features an intelligent nonsingular terminal sliding mode control. This study first designs a nonsingular terminal sliding mode control (NTSMC) system to track the states of a nonlinear time-varying system. Creating a working NTSMC for practical applications is quite complex because the detailed system dynamics, which includes the unpredictability of the controlled plant, is not available beforehand. Thus, this study suggests that a recurrent Petri probabilistic fuzzy neural network with asymmetric membership function (RPPFNN-AMF) can act as a close substitute for the ideal NTSMC to resolve its existing complications. Furthermore, this study modifies an adaptive compensator to proactively adjust for the potential calculated deviance of the RPPFNN-AMF. Asymptotical stability is assured by using the Lyapunov stability method, which generates the RPPFNN-AMF’s online learning algorithms. Finally, in the case study, some experimental results of a maximum torque per ampere (MTPA) operated interior permanent magnet synchronous motor (IPMSM) position servo drive are provided to verify the effective and robust qualities of the suggested INTSMCRPPFNN.
關鍵字(中) ★ 內藏式永磁同步馬達
★ 每安培最大轉矩控制
★ 非奇異點終端滑動模態控制器
★ 非對稱歸屬函數之遞迴式派翠機率模糊類神經網路之智慧型控制
關鍵字(英) ★ Interior permanent magnet synchronous motor (IPMSM)
★ nonsingular terminal sliding mode control (NTSMC)
★ recurrent Petri probabilistic fuzzy neural network with asymmetric membership function (RPPFNN-AMF)
★ maximum torque per ampere (MTPA)
論文目次 摘要 I
Abstract II
誌謝 III
目錄 IV
圖目錄 VII
表目錄 XII
第一章 緒論 1
1.1 研究動機 1
1.2 文獻回顧與簡介 2
1.3 本文貢獻 5
1.4 論文大綱 6
第二章 內藏式永磁同步馬達變頻驅動器硬體介紹 8
2.1 前言 8
2.2 變頻器 8
2.3 磁粉式煞車 9
2.4 數位訊號處理器 10
2.5 驅動控制電路板 14
第三章 內藏式永磁同步馬達數學模型及電磁轉矩方程式 19
3.1 前言 19
3.2 三相座標轉換 20
3.3 內藏式永磁同步馬達在abc座標系下之數學模型 24
3.4 內藏式永磁同步馬達在αβ座標系下之數學模型 26
3.5 內藏式永磁同步馬達在d-q座標系下之數學模型 30
3.6 凸極式反電動勢定義 32
第四章 非奇異點終端滑動模態控制 36
4.1 前言 36
4.2 非奇異點終端滑動模態控制器 37
4.3 非奇異點終端滑動模態控制穩定性證明 40
第五章 智慧型非奇異點終端滑動模態控制 42
5.1 前言 42
5.2 非對稱歸屬函數之遞迴式派翠機率模糊類神經網路架構 43
5.3 非對稱歸屬函數之遞迴式派翠機率模糊類神經網路控制 47
5.4 非對稱歸屬函數之遞迴式派翠機率模糊類神經網路穩定性證明 50
5.5 內藏式永磁同步馬達之智慧型非奇異點終端滑動模態定位控制 53
5.5.1 內藏式永磁同步馬達定位控制 53
5.5.2 內藏式永磁同步馬達之每安培最大轉矩控制 55
第六章 智慧型速度迴路控制之頻寬測量 56
6.1 前言 56
6.2 智慧型速度迴路控制器 56
6.3 頻率響應分析儀介紹 57
6.4 頻率響應分析儀之閉路波德圖量測 58
6.4.1 q軸電流迴路閉路波德圖 58
6.4.2 d軸電流迴路閉路波德圖 58
6.4.3 速度迴路閉路波德圖 60
第七章 模擬與實驗結果 61
7.1 前言 61
7.2 模擬結果 64
7.3 模擬結果分析與討論 83
7.4 實驗結果 85
7.5 實驗結果分析與討論 108
第八章 結論與未來研究方向 110
8.1 結論 110
8.2 未來展望 111
參考文獻 112
作者簡歷 119
參考文獻 [1] 彭文陽,「先進馬達與驅動技術專輯」,機械工業雜誌,434期,2019年5月號
[2] P. Pillay, and R. Krishnan, “Application characteristics of permanent magnet synchronous and brushless dc motors for servo drives,” IEEE Trans. Ind. Appl., vol. 27, no. 5, pp. 986-996, Sep./Oct. 1991.
[3] H. Kim, J. Son, and J. Lee, “A high-speed sliding-mode observer for the sensorless speed control of a PMSM,” IEEE Trans. Ind. Electron., vol. 58, no. 9, pp. 4069-4077, Sep. 2011.
[4] S. Kim, Y. D. Yoon, S. K. Sul, and K. Ide, “Maximum torque per ampere (MTPA) control of an IPM machine based on signal injection considering inductance saturation,” IEEE Trans. Power Electron., vol. 28, no. 1, pp. 488-497, Jan. 2013.
[5] F. J. Lin, Y. C. Hung, J. M. Chen, and C. M. Yeh, “Sensorless IPMSM drive system using saliency back-EMF-based intelligent torque observer with MTPA control,” IEEE Trans. Ind. Informat., vol. 10, no. 2, pp. 1226-1241, May 2014.
[6] J. Lemmens, P. Vanassche, and J. Driesen, “PMSM drive current and voltage limiting as a constraint optimal control problem,” IEEE J. Emerg. Sel. Topics Power Electron., vol. 3, no. 2, pp. 326-338, Jun. 2014.
[7] T. Sun, J. Wang, and X. Chen, “Maximum torque per ampere (MTPA) control for interior permanent magnet synchronous machine drives based on virtual signal injection,” IEEE Trans. Power Electron., vol. 30, no. 9, pp. 5036-5045, Sep. 2015.
[8] E. Kim, J. Kim, H. H. Choi, and J. Jung, “Variable Structure Speed Controller Guaranteeing Robust Transient Performance of an IPMSM Drive,” IEEE Trans. Ind. Informat., vol. 15, no. 6, pp. 3300-3310, Jun. 2019.
[9] B. A. Basit, H. H. Choi, and J. W. Jung, “An Online Torque Ripple Minimization Technique for IPMSM Drives: Fuzzy System-Based d-Axis Current Design Approach,” IEEE Trans. Ind. Electron., vol. 68, no. 12, pp. 11794-11805, Dec. 2021.
[10] M. Fasil, C. Antaloae, N. Mijatovic, B. B. Jensen, and J. Holboll, “Improved dq-Axes Model of PMSM Considering Airgap Flux Harmonics and Saturation,” IEEE Trans. Applied Superconductivity, vol. 26, no. 4, pp. 1-5, Jun. 2016.
[11] F. J. Lin, Y. H. Liao, J. R. Lin, and W. T. Lin, “Interior permanent magnet synchronous motor drive system with machine learning-based maximum torque per ampere and flux-weakening control,” Energies, vol. 14, no. 2, Jan. 2021.
[12] S. Oucheriah and L. Guo, “PWM-Based Adaptive Sliding-Mode Control for Boost DC–DC Converters,” IEEE Trans. Ind. Electron., vol. 60, no. 8, pp. 3291-3294, Aug. 2013.
[13] S. K. Pandey, S. L. Patil and S. B. Phadke, “Regulation of Nonminimum Phase DC–DC Converters Using Integral Sliding Mode Control Combined With a Disturbance Observer,” IEEE Trans. Circuits Syst. II, Exp. Briefs, vol. 65, no. 11, pp. 1649-1653, Nov. 2018.
[14] N. Xavier and B. Bandyopadhyay, “Practical Sliding Mode Using State Depended Intermittent Control,” IEEE Trans. Circuits Syst. II, Exp. Briefs, vol. 68, no. 1, pp. 341-345, Jan. 2021
[15] F. J. Lin, S. Y. Lee, and P. H. Chou, “Intelligent nonsingular terminal sliding-mode control using MIMO elman neural network for piezo-flexural nanopositioning stage,” IEEE Trans. Ultra. Ferro. Freq. Ctrl., vol. 59, no. 12, pp. 2716-2730, 2012.
[16] D. Zhao, W. Chen, J. Wu, and J. Li, “Globally stable adaptive tracking control for uncertain strict-feedback systems based on neural network approximation,” Asian J. Control, vol. 18, no. 1, pp. 1–12 (2016).
[17] F. J. Lin, M. S. Huang, S. G. Chen, C. W. Hsu, and C. H. Liang “Adaptive backstepping control for synchronous reluctance motor based on intelligent current angle control,” IEEE Trans. Power Electron., vol. 35, no. 7, pp. 7465–7479, Jul. 2020.
[18] F. J. Lin, S. G. Chen, and I. F. Sun, “Adaptive Backstepping Control of Six-phase PMSM Using Functional Link Radial Basis Function Network Uncertainty Observer,” Asian J. Control, vol. 19, no. 6, pp. 2255–2269, Nov. 2017.
[19] L. D. Patil and S. U. Shinde, “PI and PD Fuzzy Neural Network Controller Based on Extended Kalman Filter for Brushless Drives,” in 2018 Fourth International Conference on Advances in Electrical, Electronics, Information, Communication and Bio-Informatics (AEEICB), pp. 1-7, 2018.
[20] Y. Zhang and G. Sheng, “Design of Fuzzy Neural Network PID Controller for Hypersonic Vehicle,” in 2019 Chinese Automation Congress (CAC), pp. 3627-3631, 2019.
[21] Z. Zoubir, B. Linda, A. Samir, L. Abdelkader and K. Kamel, “Artificial Neural Networks (ANNs) - Based Robust Tracking Control for DFIG integrated in WECS,” in 2018 International Conference on Applied Smart Systems (ICASS), pp. 1-6, 2018.
[22] S. Y. Chen and T. S. Liu, “Intelligent tracking control of a PMLSM using self-evolving probabilistic fuzzy neural network,” IET Electr. Power Appl., vol. 11, no. 6, pp. 1043–1054, Jul. 2017.
[23] H. Chaoui, and P. Sicard, “Adaptive fuzzy logic control of permanent magnet synchronous machines with nonlinear friction,” IEEE Trans. Ind. Electron., vol. 59, no. 2, pp. 1123–1133, Feb. 2012.
[24] Y. C. Hung, F. J. Lin, J. C. Hwang, J. K. Chang and K. C. Ruan, “Wavelet Fuzzy Neural Network With Asymmetric Membership Function Controller for Electric Power Steering System via Improved Differential Evolution,” IEEE Trans. Power Electron., vol. 30, no. 4, pp. 2350-2362, Apr. 2015.
[25] G. Capizzi, G. L. Sciuto, C. Napoli, D. Połap and M. Woźniak, “Small Lung Nodules Detection Based on Fuzzy-Logic and Probabilistic Neural Network With Bioinspired Reinforcement Learning,” IEEE Trans. Fuzzy Syst., vol. 28, no. 6, pp. 1178-1189, Jun. 2020.
[26] X. Jin, D. Srinivasan, and R. L. Cheu, “Classification of freeway traffic patterns for incident detection using constructive probabilistic neural networks,” IEEE Trans. Neural Networks, vol. 12, no. 5, pp. 1173-1187,
Sep. 2001.
[27] Y. Li, R. Gault and T. M. McGinnity, “Probabilistic, Recurrent, Fuzzy Neural Network for Processing Noisy Time-Series Data,” IEEE Trans. Neural Network Learn. Syst., vol. 33, no. 9, pp. 4851-4860, Sep. 2022.
[28] F. J. Lin, K. C. Lu, T. H. Ke, B. H. Yang and Y. R. Chang, “Reactive Power Control of Three-Phase Grid-Connected PV System During Grid Faults Using Takagi–Sugeno–Kang Probabilistic Fuzzy Neural Network Control,” IEEE Trans. Ind. Electron., vol. 62, no. 9, pp. 5516-5528, Sep. 2015.
[29] R. J. Wai and R. Muthusamy, “Design of fuzzy-neural-network inherited backstepping control for robot manipulator including actuator dynamics,” IEEE Trans. Fuzzy Syst., vol. 22, no. 4, pp. 709–722, Aug. 2014.
[30] H. Kaid, A. Al. Ahmari and Z. Li, “Colored Resource-Oriented Petri Net Based Ladder Diagrams for PLC Implementation in Reconfigurable Manufacturing Systems,” IEEE Access, vol. 8, pp. 217573-217591, 2020.
[31] K. H. Tan, “Squirrel-cage induction generator system using wavelet Petri fuzzy neural network control for wind power applications,” IEEE Trans. Power Electron., vol. 31, no. 7, pp. 5242-5254, Jul. 2016.
[32] P. Wang, L. Ma, R. M. P. Goverde and Q. Wang, “Rescheduling Trains Using Petri Nets and Heuristic Search,” IEEE Trans. Intell Transp. Syst., vol. 17, no. 3, pp. 726-735, Mar. 2016.
[33] Y. Du, L. Qi and M. Zhou, “Analysis and Application of Logical Petri Nets to E-Commerce Systems,” IEEE Trans. Syst., Man, Cybern. Syst., vol. 44, no. 4, pp. 468-481, Apr. 2014.
[34] J. Fei and H. Wang, “Experimental Investigation of Recurrent Neural Network Fractional-Order Sliding Mode Control of Active Power Filter,” IEEE Trans. Circuits Syst. II, Exp. Briefs, vol. 67, no. 11, pp. 2522-2526, Nov. 2020.
[35] C. L. Hwang and C. Jan, “Recurrent-Neural-Network-Based Multivariable Adaptive Control for a Class of Nonlinear Dynamic Systems With Time-Varying Delay,” IEEE Trans. Neural Network Learn. Syst., vol. 27, no. 2, pp. 388-401, Feb. 2016.
[36] 盛暘科技股份有限公司,數位訊號處理,2007。檢自:
https://sites.google.com/a/surewin.com.tw/website/home/gong-si-jian-jie
[37] Texas Instruments, TMS320F28075 datasheet. 檢自:
https://www.ti.com/product/TMS320F28075#tech-docs?HQS=ti-null-null-verifimanuf_df-manu-pf-octopart-wwe
[38] MCP4922 datasheet. 檢自:
https://www.alldatasheet.com/datasheet-pdf/pdf/195294/MICROCHIP/MCP4922.html
[39] 黃泰寅,「新型每安培最大轉矩控制同步磁阻馬達驅動系統之開發」,中央大學電機工程系,碩士論文,民國106年6月。
[40] 周孝澤,「應用於內藏式永磁同步馬達之智慧型慣量估測及共振頻率偵測」,中央大學電機工程系,碩士論文,民國108年6月。
[41] 林俊儒,「應用於內藏式永磁同步馬達之智慧型高效能控制及小波共振頻率偵測」,中央大學電機工程系,碩士論文,民國109年7月。
[42] 林威廷,「內藏式永磁同步馬達之電流注入線上參數估測與智慧型電流迴路控制」,中央大學電機工程系,碩士論文,民國110年7月。
[43] 劉致緯,「內藏式永磁同步馬達伺服驅動系統之定功率區電壓控制及智慧型參數估測」,中央大學電機工程系,碩士論文,民國111年7月。
[44] K. Ahsanullah, R. Dutta, and M. F. Rahman, “Analysis of low-speed IPMMs with distributed and fractional slot concentrated windings for wind energy applications,” IEEE Trans. Magn., vol. 53, no. 11, pp. 1-10, Nov. 2017
[45] 陳航生,「內藏式永磁同步馬達之特性分析及其電動機車之應用」,中央大學電機工程系,碩士論文,民國93年5月。
[46] 劉昌煥,「交流電機控制」,東華書局,民國92年。
[47] 高子胤,「以反電動勢為基礎之比例積分微分類神經網路估測器之無感測器變頻壓縮機驅動系統開發」,中央大學電機工程系,碩士論文,民國100年7月。
[48] F. J. Lin, S. G. Chen, Y. T. Liu, and W. A. Yu, “Online autotuning of a servo drive using wavelet fuzzy neural network to search for the optimal bandwidth,” IEEE SMC Magazine, Oct., pp. 28-37, 2018.
[49] J. J. E. Slotine and W. Li, Applied Nonlinear Control. Englewood Cliffs, NJ: Prentice-Hall, 1991.
[50] G. Jianguo, L. Yuchao and Z. Jun, “Integral terminal sliding mode control for nonlinear systems,” J. of Systems Engineering and Electronics, vol. 29, no. 3, pp. 571-579, Jun. 2018.
[51] S. Hou, C. Wang, Y. Chu and J. Fei, “Neural-Observer-Based Terminal Sliding Mode Control: Design and Application,” in IEEE Trans. Fuzzy Syst.,, vol. 30, no. 11, pp. 4800-4814, Nov. 2022
[52] Z. Yu, Y. Zhang, B. Jiang, C.Y. Su, J. Fu, Y. Jin and T. Chai, “Fractional-Order Adaptive Fault-Tolerant Synchronization Tracking Control of Networked Fixed-Wing UAVs Against Actuator-Sensor Faults via Intelligent Learning Mechanism,” IEEE Trans. Neural Network Learn. Syst., vol. 32, no. 12, pp. 5539-5553, Dec. 2021.
[53] F. J. Lin, Y. C. Hung, and M. T. Tsai, “Fault-tolerant control for six-phase PMSM drive system via intelligent complementary sliding-Mode control using TSKFNN-AMF,” IEEE Trans. Ind. Electron., vol. 60, no. 12, pp. 5747-5762, Dec. 2013.
[54] F. J. Lin, I F. Sun, K. J. Yang, and J. K. Chang, “Recurrent fuzzy neural cerebellar model articulation network fault-tolerant control of six-phase permanent magnet synchronous motor position servo drive,” IEEE Trans. Fuzzy Syst., vol. 24, no. 1, pp. 153–167, Feb. 2016.
[55] NF FRA-51602, datasheet. 檢自:
https://www.nfcorp.co.jp/english/pro/mi/fre/fra51602/index.html
指導教授 林法正(Faa-Jeng Lin) 審核日期 2023-8-3
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明