博碩士論文 111626004 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:34 、訪客IP:3.135.190.232
姓名 陳妍榛(Yen-Chen Chen)  查詢紙本館藏   畢業系所 水文與海洋科學研究所
論文名稱 利用漂流浮標陣列研究北極弗拉姆海峽的波冰交互作用與中尺度渦旋特性
(Using Drifting Buoy Arrays to Investigate Wave-Ice Interactions and Mesoscale Eddy Characteristics in the Fram Strait)
相關論文
★ 西北太平洋長期波候變遷之研究★ 近岸海洋波浪對海面粗糙度之影響
★ 濁水溪河口懸浮沉積物輸送之調查研究★ 低掠角微波雷達海面背向散射強度受波浪影響程度之探討
★ 澎湖海域潮流之數值模擬及其發電潛能評估★ 台灣沿海表面風之週期特性
★ 微波雷達與CCD影像分析於潮間帶地形測量之應用★ The directional spreading of surface wave in the shallow water zone
★ Resuspension of bottom sediment on Inner shelf - A case study of North-western coast of Taiwan★ 平緩海灘表層含水量變化特性研究
★ Development of S-band and Coherent-on-Receive Marine Radar for Ocean Surface Wave and Current Measurement★ 內陸棚及河口混合與擴散特性觀測研究
★ 臺灣海峽海洋塑料垃圾的輸運★ 有限項目的連續水質監測 應用於探討觀新藻礁區水體環境即時變化
★ 海岸帶地區海表拖曳係數與海表粗糙度(均方傾度)之相依關係★ 應用微波雷達監測海流之演算法流程改善
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   至系統瀏覽論文 (2025-12-31以後開放)
摘要(中) 近年來,全球暖化導致北極海冰迅速融化,增加了流入北大西洋的淡水,進而加強海洋分層。大氣和海洋之間的熱平衡交互作用影響了大西洋深層水(North Atlantic Deep Water, NADW)的形成。位於北極的弗拉姆海峽是一個關鍵點,它是北極海冰流向北大西洋的主要通道,其中的西斯匹次卑爾根洋流(West Spitsbergen Current, WSC)是向北極海輸送熱量和鹽分的主要途徑。這個海流的特徵以及由西北轉西南迴流至北大西洋的循環過程對北極海冰迅速消退和NADW的形成至關重要。特別是,海洋渦漩可能是推動這一循環過程的關鍵因素。此外,弗拉姆海峽也是北極海邊緣冰區的重要部分。隨著海冰年輕化和變薄,它更易受波浪能量破壞。這不僅影響北極海冰的厚度和面積,也增加了波浪模式預測的挑戰,迫切需要對波浪與海冰交互作用進行更精確的參數化。
本研究專注於弗拉姆海峽邊緣冰區的波浪特性和WSC的變異性,旨在定量分析波浪與海冰的交互作用及探討WSC變動對NADW生成的影響。本研究利用國立中央大學自製的微型波浪浮標,於2021至2023年的夏末秋季(8月至10月),在弗拉姆海峽,位於北緯77.5至78.5度、東經6至13度範圍內的海域,以陣列形式進行實地觀測。實驗期間共佈放36顆浮標,量測示性波高、波浪周期、波浪能譜、海表粗糙度和海表溫度(Sea Surface Temperature, SST)等海洋參數,以量化受邊緣冰區海冰影響的波浪能譜衰減率。此外,我們將觀測數據與北極波浪數值模式數據集Arctic Ocean Wave Analysis and Forecast (AOWAF)與ECMWF Reanalysis v5(ERA5)波浪場進行比較,以多種統計指標定量評估模式的表現。同時,我們使用水平擴散係數、有限尺度Lyapunov指數(Finite-Size Lyapunov Exponents, FSLE)、渦漩辨識和海表溫指數衰減時間等分析手段,研究浮標軌跡和海表溫度觀測數據,探討WSC的海表動力、渦漩活動和海氣熱交換的時空分布特徵對NADW生成的影響。為了增加資料的樣本量,本研究還包括了OSMC(Observing System Monitoring Center)的漂流浮標軌跡數據,將其作為分析的額外數據來源。
本研究在弗拉姆海峽進行的波浪特性研究顯示,弗拉姆海峽九月的示性波高與海冰邊界位置存在正相關。當波浪模式納入波冰交互作用後,對波浪週期的估算更為準確。比較統計結果顯示,AOWAF和ERA5均低估了示性波高,其百分比誤差分別為13.02%和8.31%。在R2方面,兩者均接近0.9。然而,兩模式在平均週期的趨勢出現了歧異:AOWAF模式的估計僅低估5.36%,而ERA5則高估了36.6%,顯示AOWAF在考慮波冰交互作用方面具有優勢,這與波浪週期取決於波浪譜型有關。譜寬參數與波齡倒數分析結果顯示,受海冰影響的弗拉姆海峽高頻波浪譜寬較窄。基於對冰中波浪的實地觀測,發現海冰區的波浪能量衰減率隨週期的降低而增加,遵循?(?)=?*?-4.51的衰減形式。
在WSC變異性分析結果中,本研究發現WSC在耶爾馬克高原(Yermak Plateau, YP)西南區域和莫洛伊深淵(Molloy Deep, MD)東側出現流向分岔和相對WSC主流較強的中尺度海水混合(Richardson擴散)。這個分岔點同時也是SST指數衰減時間場的梯度增大、海洋熱量大量散失到大氣(≈120 W/m2)的區域。我們透過擴散係數場進一步發現,WSC在MD西側與HG區域等先前文獻指出的迴流區,出現海表水匯聚而形成沉降力的現象,這些迴流區主要由反氣旋式渦旋(佔94.44%)主導,這對當地的海洋垂直運動產生了影響。此外,風場條件被發現是有利於迴流區反氣旋式渦旋形成的關鍵因素之一。
摘要(英) In recent years, global warming has led to rapid melting of Arctic sea ice, increasing the influx of freshwater into the North Atlantic and thereby intensifying ocean stratification. The heat balance interaction between the atmosphere and ocean has been influencing the formation of North Atlantic Deep Water (NADW). The Fram Strait, located in the Arctic, is a critical point as the main channel through which Arctic sea ice flows into the North Atlantic. The West Spitsbergen Current (WSC) within this strait is the primary pathway for transporting heat and salinity to the Arctic Ocean. The characteristics of this current and its circulatory process, transitioning from northwest to southwest into the North Atlantic, are crucial for the rapid retreat of Arctic sea ice and the formation of NADW. Particularly, oceanic eddies may play a key role in driving this circulation. Furthermore, the Fram Strait constitutes a significant part of the Arctic′s marginal ice zone. With sea ice becoming younger and thinner, it is increasingly susceptible to wave energy, affecting the thickness and extent of the Arctic sea ice and posing challenges to wave model predictions. This underscores the urgent need for more accurate parameterization in modeling wave-ice interactions.
This study focuses on the wave characteristics in the marginal ice zone of the Fram Strait and the variability of the WSC, aiming to quantitatively analyze the interactions between waves and sea ice and investigate the impact of WSC variations on the formation of NADW. Utilizing micro-wave buoys developed by National Central University, field observations were conducted in an array format within the Fram Strait (77.5°N to 78.5°N, 6°E to 13°E) during the late summer and autumn seasons (August to October) from 2021 to 2023. A total of 36 buoys were deployed to measure significant wave height, wave period, wave spectrum, sea surface roughness, and temperature (SST), quantifying the attenuation rate of the wave spectrum affected by sea ice in the marginal ice zone. Observational data were compared with the Arctic Ocean Wave Analysis and Forecast (AOWAF) and ECMWF Reanalysis v5 (ERA5) wave fields, using various statistical metrics to assess model performance. Additionally, horizontal dispersion coefficients, Finite-Size Lyapunov Exponents (FSLE), eddy detection, and SST e-folding time were employed to study buoy trajectories and SST data, exploring the spatial and temporal distribution of WSC surface dynamics, eddy activity, and air-sea heat exchange and their impact on NADW formation. To augment the data sample size, this study also incorporated drifting buoy trajectory data from the Observing System Monitoring Center (OSMC) as an additional source for analysis.
Our study in the Fram Strait shows a positive correlation between significant wave height in September and the position of the ice edge. Including wave-ice interactions in wave models led to more accurate estimations of wave periods. Statistical comparisons reveal that both AOWAF and ERA5 models underestimated significant wave heights, with percentage errors of 13.02% and 8.31%, respectively, while both achieving R2 values close to 0.9. However, the models diverged in estimating average periods: AOWAF underestimated by only 5.36%, whereas ERA5 overestimated by 36.6%, indicating AOWAF′s superiority in accounting for wave-ice interactions, linked to wave period dependency on wave spectral shape. Spectral width parameters inversely correlated with wave age demonstrate narrower spectra for high-frequency waves in the ice-affected Fram Strait. Field observations of waves within ice reveal an increase in wave energy attenuation rates with decreasing periods, following an ?(?)=?*?-4.51 decay pattern.
In the variability analysis of WSC, the study found bifurcations and mesoscale sea water mixing (Richardson dispersion) near Yermak Plateau (YP) and Molloy Deep (MD), coinciding with increased SST index decay time gradients and significant heat loss to the atmosphere (~120 W/m²). Further analysis using horizontal dispersion coefficients revealed surface water convergence and downwelling in areas like MD′s western side and HG region, primarily dominated by anticyclonic eddies (94.44%). This influence on local ocean vertical motion, with wind conditions being a key factor favoring anticyclonic eddy formation in the recirculation area, suggests a significant role of eddies in the oceanic processes of the Fram Strait′s recirculation zone.
關鍵字(中) ★ 弗拉姆海峽
★ 微型資料浮標
★ 西斯匹次卑爾根洋流
★ 波冰交互作用
★ 迴流區
關鍵字(英) ★ Fram Strait
★ Drifting Wave Buoy
★ West Spitsbergen Current
★ Wave-ice interaction
★ Recirculation Zone
論文目次 中文摘要 I
ABSTRACT III
致謝 VI
目錄 VII
圖目錄 X
表目錄 XXIII
符號說明 XXIV
第一章 研究背景與目的 1
第二章 研究數據來源 8
2-1 漂流式浮標 8
2-1-1 自製微型漂流式浮標 8
2-1-2 佈放策略與過程 8
2-1-3 Observing System Monitoring Center (OSMC) 漂流浮標 11
2-2 海洋波浪場數值模式 11
2-2-1 ERA5 reanalysis 11
2-2-2 AOWAF (Arctic Ocean Wave Analysis and Forecast) 12
2-3 大氣參數場 13
2-3-1 ERA5 reanalysis 13
2-4 海冰參數的遙測數據。 13
2-4-1 海冰濃度場 13
2-4-2 合成孔徑雷達(Synthetic Aperture Radar, SAR)影像 13
2-5 海面高度場 14
第三章 研究分析方法 15
3-1 浮標觀測參數計算方法 15
3-1-1 波浪參數 15
3-1-2 海表粗糙度與風速 16
3-1-3 資料品管方法 17
3-2 波浪模式比較方法 17
3-3 波浪特性分析 18
3-3-1 譜寬參數 18
3-3-2 波齡倒數 (Inverse wave age, IWA) 19
3-4 波冰交互作用的衰減率 19
3-5 WSC海表動力變異性分析方法 20
3-5-1 海表溫指數衰減時間 20
3-5-2 海氣熱通量 20
3-5-3 有限尺度Lyapunov指數(Finite-size Lyapunov Exponents, FSLE) 22
3-5-4 水平擴散係數(Horizontal Dispersion Coefficient) 27
3-6 最佳化內插 28
3-7 以浮標軌跡探測海洋渦漩 29
3-7-1 識別方法 29
3-7-2 探測結果示例 33
3-8 海洋動力學特徵與渦漩相關性分析 33
3-8-1 去趨勢化海平面高度異常值 34
3-8-2 風應力旋度場 37
第四章 波浪與海冰交互作用:觀測、分析與模式評估 39
4-1 弗拉姆海峽的波浪觀測過程 41
4-2 平均示性波高對於海冰邊界位置的影響 60
4-3 波浪實地觀測與現有北極波浪模式之比較 62
4-3-1 比較結果 63
4-4 波浪在海冰中的頻譜衰減特性 66
第五章 WSC在迴流區的海表流變異及海氣熱交換特徵 72
5-1 WSC表面流對風的依賴性 73
5-2 WSC海氣熱交換的空間變異特徵 92
5-2-1 海表熱交換的空間分佈 94
5-2-2 WSC海表水混合強度的分析 99
5-3 迴流區的中尺度渦漩特性 103
第六章 結論與建議 109
參考文獻 112
參考文獻 Aagaard, K., & Greisman, P. (1975). Toward new mass and heat budgets for the Arctic Ocean. Journal of Geophysical Research, 80(27), 3821-3827.
An, S. I., Kim, H. J., & Kim, S. K. (2021). Rate‐Dependent Hysteresis of the Atlantic Meridional Overturning Circulation System and Its Asymmetric Loop. Geophysical Research Letters, 48(1), e2020GL090132.
Artale, V., Boffetta, G., Celani, A., Cencini, M., & Vulpiani, A. (1997). Dispersion of passive tracers in closed basins: Beyond the diffusion coefficient. Physics of Fluids, 9(11), 3162-3171.
Asplin, M. G., Galley, R., Barber, D. G., & Prinsenberg, S. (2012). Fracture of summer perennial sea ice by ocean swell as a result of Arctic storms. Journal of Geophysical Research: Oceans, 117(C6).
Aurell, E., Boffetta, G., Crisanti, A., Paladin, G., & Vulpiani, A. (1997). Predictability in the large: an extension of the concept of Lyapunov exponent. Journal of Physics A: Mathematical and General, 30(1), 1.
Barnier, B., Siefridt, L., & Marchesiello, P. (1995). Thermal forcing for a global ocean circulation model using a three-year climatology of ECMWF analyses. Journal of Marine Systems, 6(4), 363-380.
Bellomo, K., Clement, A., Mauritsen, T., Rädel, G., & Stevens, B. (2014). Simulating the role of subtropical stratocumulus clouds in driving Pacific climate variability. Journal of Climate, 27(13), 5119-5131.
Beszczynska-Möller, A., Fahrbach, E., Schauer, U., & Hansen, E. (2012). Variability in Atlantic water temperature and transport at the entrance to the Arctic Ocean, 1997–2010. ICES Journal of Marine Science, 69(5), 852-863.
Cheng, A. (2022). 次網格尺度海氣象因子空間變異性及其統計參數化. National Central University,
Collins, C., Doble, M., Lund, B., & Smith, M. (2018). Observations of surface wave dispersion in the marginal ice zone. Journal of Geophysical Research: Oceans, 123(5), 3336-3354.
Corrado, R., Lacorata, G., Palatella, L., Santoleri, R., & Zambianchi, E. (2017). General characteristics of relative dispersion in the ocean. Scientific reports, 7(1), 46291.
Ditlevsen, P., & Ditlevsen, S. (2023). Warning of a forthcoming collapse of the Atlantic meridional overturning circulation. Nature Communications, 14(1), 1-12.
Doble, M. J., & Bidlot, J.-R. (2013). Wave buoy measurements at the Antarctic sea ice edge compared with an enhanced ECMWF WAM: Progress towards global waves-in-ice modelling. Ocean Modelling, 70, 166-173.
Dong, C., Liu, Y., Lumpkin, R., Lankhorst, M., Chen, D., McWilliams, J. C., & Guan, Y. (2011). A scheme to identify loops from trajectories of oceanic surface drifters: An application in the Kuroshio Extension region. Journal of Atmospheric and Oceanic Technology, 28(9), 1167-1176.
Galaasen, E. V., Ninnemann, U. S., Irvalı, N., Kleiven, H. F., Rosenthal, Y., Kissel, C., & Hodell, D. A. (2014). Rapid reductions in North Atlantic Deep Water during the peak of the last interglacial period. Science, 343(6175), 1129-1132.
Gascard, J. C., Richez, C., & Rouault, C. (1995). New insights on large‐scale oceanography in Fram Strait: The West Spitsbergen current. Arctic oceanography: Marginal ice zones and continental shelves, 49, 131-182.
Haas, C., Pfaffling, A., Hendricks, S., Rabenstein, L., Etienne, J. L., & Rigor, I. (2008). Reduced ice thickness in Arctic Transpolar Drift favors rapid ice retreat. Geophysical Research Letters, 35(17).
Hansen, E., Gerland, S., Granskog, M., Pavlova, O., Renner, A., Haapala, J., . . . Tschudi, M. (2013). Thinning of Arctic sea ice observed in Fram Strait: 1990–2011. Journal of Geophysical Research: Oceans, 118(10), 5202-5221.
Hattermann, T., Isachsen, P. E., von Appen, W. J., Albretsen, J., & Sundfjord, A. (2016). Eddy‐driven recirculation of Atlantic water in Fram Strait. Geophysical Research Letters, 43(7), 3406-3414.
Hawkins, E., Smith, R. S., Allison, L. C., Gregory, J. M., Woollings, T. J., Pohlmann, H., & De Cuevas, B. (2011). Bistability of the Atlantic overturning circulation in a global climate model and links to ocean freshwater transport. Geophysical Research Letters, 38(10).
Heuzé, C. (2017). North Atlantic deep water formation and AMOC in CMIP5 models. Ocean Science, 13(4), 609-622.
Hofmann, Z., von Appen, W. J., & Wekerle, C. (2021). Seasonal and mesoscale variability of the two Atlantic Water recirculation pathways in Fram Strait. Journal of Geophysical Research: Oceans, 126(7), e2020JC017057.
Huang, B., Yin, X., Carton, J., Chen, L., Graham, G., Hogan, P., . . . Zhang, H.-M. (2023). Extremely High Sea Surface Temperatures in 2023. Authorea Preprints.
Johannessen, J., Johannessen, O., Svendsen, E., Shuchman, R., Manley, T., Campbell, W., . . . Olaussen, T. (1987). Mesoscale eddies in the Fram Strait marginal ice zone during the 1983 and 1984 Marginal Ice Zone Experiments. Journal of Geophysical Research: Oceans, 92(C7), 6754-6772.
Kara, A. B., Rochford, P. A., & Hurlburt, H. E. (2000). Efficient and accurate bulk parameterizations of air–sea fluxes for use in general circulation models. Journal of Atmospheric and Oceanic Technology, 17(10), 1421-1438.
Kodaira, T., Waseda, T., Nose, T., Sato, K., Inoue, J., Voermans, J., & Babanin, A. (2021). Observation of on-ice wind waves under grease ice in the western Arctic Ocean. Polar Science, 27, 100567.
Koh, T.-Y., & Legras, B. (2002). Hyperbolic lines and the stratospheric polar vortex. Chaos: An Interdisciplinary Journal of Nonlinear Science, 12(2), 382-394.
Kohout, A., Williams, M., Dean, S., & Meylan, M. (2014). Storm-induced sea-ice breakup and the implications for ice extent. Nature, 509(7502), 604-607.
Lacorata, G., Aurell, E., & Vulpiani, A. (2001). Drifter dispersion in the Adriatic Sea: Lagrangian data and chaotic model. Paper presented at the Annales Geophysicae.
Large, W., & Pond, S. (1981). Open ocean momentum flux measurements in moderate to strong winds. Journal of Physical Oceanography, 11(3), 324-336.
Le Bras, I., Straneo, F., Muilwijk, M., Smedsrud, L. H., Li, F., Lozier, M. S., & Holliday, N. P. (2021). How much Arctic fresh water participates in the subpolar overturning circulation? Journal of Physical Oceanography, 51(3), 955-973.
Li, J., Kohout, A. L., Doble, M. J., Wadhams, P., Guan, C., & Shen, H. H. (2017). Rollover of apparent wave attenuation in ice covered seas. Journal of Geophysical Research: Oceans, 122(11), 8557-8566.
Lin, C.-T. (2021). 微型資料浮標觀測波浪及 MSS 的比對分析與演算流程的改善. National Central University,
Lind, S., Ingvaldsen, R. B., & Furevik, T. (2018). Arctic warming hotspot in the northern Barents Sea linked to declining sea-ice import. Nature climate change, 8(7), 634-639.
Liu, W., Xie, S.-P., Liu, Z., & Zhu, J. (2017). Overlooked possibility of a collapsed Atlantic Meridional Overturning Circulation in warming climate. Science Advances, 3(1), e1601666.
Lumpkin, R., & Elipot, S. (2010). Surface drifter pair spreading in the North Atlantic. Journal of Geophysical Research: Oceans, 115(C12).
Manley, T. (1995). Branching of Atlantic Water within the Greenland‐Spitsbergen passage: An estimate of recirculation. Journal of Geophysical Research: Oceans, 100(C10), 20627-20634.
Mauritzen, C. (1996). Production of dense overflow waters feeding the North Atlantic across the Greenland-Scotland Ridge. Part 1: Evidence for a revised circulation scheme. Deep Sea Research Part I: Oceanographic Research Papers, 43(6), 769-806.
Mensah, V., Fujita, K., Howell, S., Ikeda, M., Komatsu, M., & Ohshima, K. I. (2023). Estimation of ice melt, freshwater budget, and their multi-decadal trends in the Baffin Bay and Labrador Sea. EGUsphere, 2023, 1-33.
Mensah, V., & Ohshima, K. I. (2023). A mapping methodology adapted to all polar and subpolar oceans with a stretching/shrinking constraint. Journal of Atmospheric and Oceanic Technology, 40(10), 1241-1261.
Meylan, M. H., Bennetts, L. G., & Kohout, A. L. (2014). In situ measurements and analysis of ocean waves in the Antarctic marginal ice zone. Geophysical Research Letters, 41(14), 5046-5051.
Montiel, F., Kohout, A. L., & Roach, L. A. (2022). Physical drivers of ocean wave attenuation in the marginal ice zone. Journal of Physical Oceanography, 52(5), 889-906.
Montiel, F., & Squire, V. A. (2017). Modelling wave-induced sea ice break-up in the marginal ice zone. Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences, 473(2206), 20170258.
Nurser, A., & Bacon, S. (2014). The rossby radius in the arctic ocean. Ocean Science, 10(6), 967-975.
Parkinson, C. L., & Cavalieri, D. J. (2008). Arctic sea ice variability and trends, 1979–2006. Journal of Geophysical Research: Oceans, 113(C7).
Polyakov, I. V., Pnyushkov, A. V., Alkire, M. B., Ashik, I. M., Baumann, T. M., Carmack, E. C., . . . Kanzow, T. (2017). Greater role for Atlantic inflows on sea-ice loss in the Eurasian Basin of the Arctic Ocean. Science, 356(6335), 285-291.
Polyakov, I. V., Timokhov, L. A., Alexeev, V. A., Bacon, S., Dmitrenko, I. A., Fortier, L., . . . Ivanov, V. V. (2010). Arctic Ocean warming contributes to reduced polar ice cap. Journal of Physical Oceanography, 40(12), 2743-2756.
Prasada Rao, C. x. K. (1988). Spectral width parameter for wind-generated ocean waves. Proceedings of the Indian Academy of Sciences-Earth and Planetary Sciences, 97, 173-181.
Rahmstorf, S., Crucifix, M., Ganopolski, A., Goosse, H., Kamenkovich, I., Knutti, R., . . . Wang, Z. (2005). Thermohaline circulation hysteresis: A model intercomparison. Geophysical Research Letters, 32(23).
Rippeth, T. P., Lincoln, B. J., Lenn, Y.-D., Green, J. M., Sundfjord, A., & Bacon, S. (2015). Tide-mediated warming of Arctic halocline by Atlantic heat fluxes over rough topography. Nature Geoscience, 8(3), 191-194.
Rogers, W., & Zieger, S. (2014). New wave-ice interaction physics in WAVEWATCH III®. Paper presented at the Proc. 22nd IAHR Intl. Symp. on Ice.
Rogers, W. E., Thomson, J., Shen, H. H., Doble, M. J., Wadhams, P., & Cheng, S. (2016). Dissipation of wind waves by pancake and frazil ice in the autumn B eaufort S ea. Journal of Geophysical Research: Oceans, 121(11), 7991-8007.
Rudels, B., & Quadfasel, D. (1991). Convection and deep water formation in the Arctic Ocean-Greenland Sea system. Journal of Marine Systems, 2(3-4), 435-450.
Rypina, I. I., Getscher, T., Pratt, L. J., & Ozgokmen, T. (2022). Applying dynamical systems techniques to real ocean drifters. Nonlinear processes in geophysics, 29(4), 345-361.
Sagen, H., Sandven, S., Worcester, P., Dzieciuch, M., & Skarsoulis, E. (2008). The Fram Strait acoustic tomography system. Journal of the Acoustical Society of America, 123(5), 2991.
Schmidtko, S., Johnson, G. C., & Lyman, J. M. (2013). MIMOC: A global monthly isopycnal upper‐ocean climatology with mixed layers. Journal of Geophysical Research: Oceans, 118(4), 1658-1672.
Spreen, G., de Steur, L., Divine, D., Gerland, S., Hansen, E., & Kwok, R. (2020). Arctic sea ice volume export through Fram Strait from 1992 to 2014. Journal of Geophysical Research: Oceans, 125(6), e2019JC016039.
Squire, V. A. (2020). Ocean wave interactions with sea ice: A reappraisal. Annual Review of Fluid Mechanics, 52, 37-60.
Squire, V. A., & Moore, S. C. (1980). Direct measurement of the attenuation of ocean waves by pack ice. Nature, 283(5745), 365-368.
Stroeve, J., Holland, M. M., Meier, W., Scambos, T., & Serreze, M. (2007). Arctic sea ice decline: Faster than forecast. Geophysical Research Letters, 34(9).
Sumata, H., de Steur, L., Gerland, S., Divine, D. V., & Pavlova, O. (2022). Unprecedented decline of Arctic sea ice outflow in 2018. Nature Communications, 13(1), 1747.
Sutherland, G., Rabault, J., Christensen, K. H., & Jensen, A. (2019). A two layer model for wave dissipation in sea ice. Applied Ocean Research, 88, 111-118.
Svingen, K., Brakstad, A., Våge, K., von Appen, W.-J., & Papritz, L. (2023). The Impact of Cold-Air Outbreaks and Oceanic Lateral Fluxes on Dense-Water Formation in the Greenland Sea from a 10-Year Moored Record (1999–2009). Journal of Physical Oceanography, 53(6), 1499-1517.
Teigen, S. H., Nilsen, F., & Gjevik, B. (2010). Barotropic instability in the West Spitsbergen Current. Journal of Geophysical Research: Oceans, 115(C7).
Tesi, T., Muschitiello, F., Mollenhauer, G., Miserocchi, S., Langone, L., Ceccarelli, C., . . . Hefter, J. (2021). Rapid Atlantification along the Fram Strait at the beginning of the 20th century. Science Advances, 7(48), eabj2946.
Thomson, J. (2022). Wave propagation in the marginal ice zone: connections and feedback mechanisms within the air–ice–ocean system. Philosophical Transactions of the Royal Society A, 380(2235), 20210251.
Thomson, J., Squire, V., Ackley, S., Rogers, E., Babanin, A., Guest, P., . . . Fairall, C. (2013). Sea state and boundary layer physics of the emerging arctic ocean. Washington Univ Seattle Applied Physics Laboratory, Report No. APL-UW-1306.
Tilling, R. L., Ridout, A., Shepherd, A., & Wingham, D. J. (2015). Increased Arctic sea ice volume after anomalously low melting in 2013. Nature Geoscience, 8(8), 643-646.
Tseng, R.-S. (2002). On the dispersion and diffusion near estuaries and around islands. Estuarine, Coastal and Shelf Science, 54(1), 89-100.
Wadhams, P., Squire, V. A., Goodman, D. J., Cowan, A. M., & Moore, S. C. (1988). The attenuation rates of ocean waves in the marginal ice zone. Journal of Geophysical Research: Oceans, 93(C6), 6799-6818.
Wang, M., & Overland, J. E. (2012). A sea ice free summer Arctic within 30 years: An update from CMIP5 models. Geophysical Research Letters, 39(18).
Wood, R. A., Rodríguez, J. M., Smith, R. S., Jackson, L. C., & Hawkins, E. (2019). Observable, low-order dynamical controls on thresholds of the Atlantic Meridional Overturning Circulation. Climate Dynamics, 53, 6815-6834.
Yanagi, T., Murashita, K., & Higuchi, H. (1982). Horizontal turbulent diffusivity in the sea. Deep Sea Research Part A. Oceanographic Research Papers, 29(2), 217-226.
Yu, J., Rogers, W. E., & Wang, D. W. (2022). A new method for parameterization of wave dissipation by sea ice. Cold Regions Science and Technology, 199, 103582.
Zamani, B., Krumpen, T., Smedsrud, L. H., & Gerdes, R. (2019). Fram Strait sea ice export affected by thinning: comparing high-resolution simulations and observations. Climate Dynamics, 53, 3257-3270.
俞聿修. (1999). 隨機波浪及其工程應用. In: 大連理工大學.
陳柏宏;劉大綱.(2022) 我國航行北極海航道的可行性分析.第44屆海洋工程研討會論文集, 713-717。
指導教授 錢樺(Hwa Chien) 審核日期 2024-1-22
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明