博碩士論文 110226093 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:34 、訪客IP:18.117.81.240
姓名 黃宇恆(Yu-Heng Huang)  查詢紙本館藏   畢業系所 光電科學與工程學系
論文名稱 黑斑龍膽之光學特性對其生存策略的重要性
(The Importance of Optical Properties in the Survival Strategy of the Gentiana scabrida Hayata var. punctulata S. S. Ying)
相關論文
★ 非反掃描式平行接收之雙光子螢光超光譜顯微術★ 以二次通過成像量測架構及降低誤差迭代演算法重建人眼之點擴散函數
★ LASER光源暨LED在老鼠毛生長的低能量光治療比較分析★ 應用線狀結構照明提升雙光子顯微鏡解析度
★ 以同調結構照明顯微術進行散射樣本解析度之提升★ 掃描式二倍頻結構照明顯微術
★ 小貓自泵相位共軛鏡於數位光學相位共軛與時間微分之研究★ 鏡像輔助斷層掃描相位顯微鏡
★ 以數位全像術重建多波長環狀光束之研究★ 相位共軛反射鏡用於散射介質中光學聚焦之研究
★ 雙光子螢光超光譜顯微術於多螢光生物樣本之研究★ 倍頻非螢光基態耗損超解析之顯微成像方法
★ 葉綠素雙光子螢光超光譜影像於光合作用研究之應用★ 雙光子掃描結構照明顯微術
★ 微投影光學切片超光譜顯微術★ 使用結構照明顯微術觀察活體小鼠毛囊生長週期之變化
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   至系統瀏覽論文 (2028-11-9以後開放)
摘要(中) 黑斑龍膽為臺灣特有種草本科植物,具有花瓣晴天打開,陰天關閉的花瓣運動;有特殊的紫外光圖形;花瓣黑斑以下的部分比起黑斑以上的部分有更強的紫外反射率,種種特徵,似乎讓黑斑龍膽更加適應高山嚴苛的生存環境,所以本研究將針對黑斑龍膽的光學特性、其花瓣運動和授粉行為進行研究與觀察,試圖了解黑斑龍膽的生存策略。本論文主要有三項研究結果:第一,花瓣運動可以經由花瓣溫度下降觸發,臨界溫度為15°C,有效避免花朵的授粉器官受到低溫或是雨水的傷害,這樣的行為有助於植物面對更加多雨與低溫的高山環境;第二,黑斑龍膽的紫外光圖形與授粉行為息息相關,破壞紫外光圖形能有效干擾昆蟲的拜訪;第三,黑斑龍膽花瓣的表面結構在黑斑以上與黑斑以下有著明顯差異,這些差異造成不同光學特性,黑斑以上的表面結構產生均勻的漫反射訊號,而黑斑以下表面結構的漫反射訊號則具有亮區。這三項研究結果能幫助我們進一步了解黑斑龍膽的生存策略,花瓣運動提高授粉效率,紫外光影像吸引昆蟲,而表面結構造成的漫反射訊號特徵,使花朵在可見光波段有著亮暗對比的色彩呈現。
摘要(英) Gentiana scabrida Hayata var. punctulata S. S. Ying is a Taiwan endemic herbaceous plant that exhibits petal movements, opening in sunny conditions and closing on overcast days. It features unique ultraviolet patterns, with the petal region below the black spots having a stronger ultraviolet reflectance than the area above the black spots. These characteristics appear to help the Gentiana scabrida Hayata var. punctulata S. S. Ying adapt to the harsh alpine environment. Consequently, this study aims to investigate and observe the optical properties, petal movements, and pollination behavior of Gentiana scabrida Hayata var. punctulata S. S. Ying to gain insights into its survival strategy. These research yields three main findings. First, petal movements are triggered by a decrease in petal temperature, with a critical temperature of 15°C, effectively protecting the flower′s reproductive organs from damage caused by low temperatures or rain. This behavior aids the plant in coping with the rainy and cold conditions of the high mountains. Second, the ultraviolet patterns of Gentiana scabrida Hayata var. punctulata S. S. Ying are closely related to its pollination behavior, and disrupting these patterns can effectively deter insect visits. Third, the surface structures of Gentiana scabrida Hayata var. punctulata S. S. Ying‘s petals exhibit significant differences above and below the black spots, resulting in distinct optical properties. The surface structures above the black spots produce even diffused reflection signals, while those below the black spots have bright regions. These findings provide insights into Gentiana scabrida Hayata var. punctulata S. S. Ying‘s survival strategies. Petal movement enhances pollination efficiency, ultraviolet patterns attract insects, and the characteristics of diffuse reflectance signals created by surface structures result in a conspicuous color contrast in the visible light spectrum.
關鍵字(中) ★ 黑斑龍膽
★ 光學特性
★ 生存策略
關鍵字(英)
論文目次 中文摘要 i
ABSTRACT ii
致謝 iii
目錄 iv
表目錄 vi
圖目錄 vii
1 第一章 緒論 1
1.1 研究動機與目的 1
1.2 文獻探討與回顧 3
1.2.1 花瓣運動 4
1.2.2 紫外光影像 5
1.2.3 表面結構與漫反射訊號 6
1.3 論文架構 9
2 第二章 實驗原理 10
2.1 花瓣的光學特性 10
2.1.1 結構光 11
2.1.2 散射光 16
2.2 成像散射儀系統 17
2.3 照度模擬太陽輻射光譜 18
3 第三章 系統架構 20
3.1 黑斑龍膽的採集 20
3.1.1 花瓣表面複製品 20
3.2 生物實驗 21
3.2.1 遮光實驗 21
3.2.2 降溫實驗 23
3.2.3 濾波實驗 24
3.2.4 拜訪實驗 25
3.2.5 統計數據的分析方法 26
3.3 光學實驗 27
3.3.1 層析實驗 27
3.3.2 成像散射儀系統 28
4 第四章 實驗結果 34
4.1 生物實驗 34
4.1.1 遮光實驗 34
4.1.2 降溫實驗 35
4.1.3 濾波實驗 38
4.1.4 拜訪實驗 43
4.2 光學實驗 45
4.2.1 層析實驗 45
4.2.2 黑斑龍膽的表面結構複製品SEM 46
4.2.3 系統座標校正 48
4.2.4 黑斑龍膽的漫反射訊號 51
4.2.5 黑斑龍膽表面複製品的漫反射訊號 56
5 第五章 結論 66
參考文獻 67
參考文獻 [1] J.-W. Xu, "黑斑龍膽花瓣表面結構及其光學特性之研究," National Central University, 2020.
[2] A. J. Schulte, M. Mail, L. A. Hahn, and W. Barthlott, "Ultraviolet patterns of flowers revealed in polymer replica–caused by surface architecture," Beilstein Journal of Nanotechnology, vol. 10, no. 1, pp. 459-466, 2019.
[3] C. Zhang et al., "Are nectar guide colour changes a reliable signal to pollinators that enhances reproductive success?," Plant Ecology & Diversity, vol. 10, no. 2-3, pp. 89-96, 2017, doi: 10.1080/17550874.2017.1350763.
[4] A. Kumar, M. Memo, and A. Mastinu, "Plant behaviour: an evolutionary response to the environment?," Plant Biology, vol. 22, no. 6, pp. 961-970, Nov 2020, doi: 10.1111/plb.13149.
[5] A. Von Hase, R. M. Cowling, and A. G. Ellis, "Petal movement in cape wildflowers protects pollen from exposure to moisture," Plant Ecology, vol. 184, no. 1, pp. 75-87, May 2006, doi: 10.1007/s11258-005-9053-8.
[6] M. R. Bynum and W. K. Smith, "Floral movements in response to thunderstorms improve reproductive effort in the alpine species Gentiana algida (Gentianaceae)," American Journal of Botany, vol. 88, no. 6, pp. 1088-1095, Jun 2001, doi: 10.2307/2657092.
[7] Y. P. He, Y. W. Duan, J. Q. Liu, and W. K. Smith, "Floral closure in response to temperature and pollination in Gentiana straminea Maxim. (Gentianaceae), an alpine perennial in the Qinghai-Tibetan Plateau," Plant Systematics and Evolution, vol. 256, no. 1-4, pp. 17-33, Nov 2005, doi: 10.1007/s00606-005-0345-1.
[8] C. Dai et al., "Touch induces rapid floral closure in gentians," Science Bulletin, vol. 67, no. 6, pp. 577-580, Mar 2022, doi: 10.1016/j.scib.2021.12.026.
[9] J. P. Mu, G. Y. Li, and S. C. Sun, "Petal Color, Flower Temperature, and Behavior in an Alpine Annual Herb, Gentiana leucomelaena (Gentianaceae)," Arctic Antarctic and Alpine Research, vol. 42, no. 2, pp. 219-226, May 2010, doi: 10.1657/1938-4246-42.2.219.
[10] M. Gimenes, L. S. Araujo, and A. M. Medina, "The light intensity mediates the pollination efficacy of a Caatinga morning glory Ipomoea bahiensis (Convolvulaceae)," Sociobiology, vol. 68, no. 4, Dec 2021, Art no. e5906, doi: 10.13102/sociobiology.v68i4.5906.
[11] Q. Z. Hou et al., "Why flowers close at noon? A case study of an alpine species Gentianopsis paludosa (Gentianaceae)," Ecology and Evolution, vol. 12, no. 1, Jan 2022, Art no. e8490, doi: 10.1002/ece3.8490.
[12] D. Peitsch, A. Fietz, H. Hertel, J. Desouza, D. F. Ventura, and R. Menzel, "THE SPECTRAL INPUT SYSTEMS OF HYMENOPTERAN INSECTS AND THEIR RECEPTOR-BASED COLOR-VISION," Journal of Comparative Physiology a-Sensory Neural and Behavioral Physiology, vol. 170, no. 1, pp. 23-40, Jan 1992, doi: 10.1007/bf00190398.
[13] K. Lunau, "Visual ecology of flies with particular reference to colour vision and colour preferences," Journal of Comparative Physiology a-Neuroethology Sensory Neural and Behavioral Physiology, vol. 200, no. 6, pp. 497-512, Jun 2014, doi: 10.1007/s00359-014-0895-1.
[14] Z. Chen, C. Q. Liu, H. Sun, and Y. Niu, "The ultraviolet colour component enhances the attractiveness of red flowers of a bee-pollinated plant," Journal of Plant Ecology, vol. 13, no. 3, pp. 354-360, Jun 2020, doi: 10.1093/jpe/rtaa023.
[15] A. S. Leonard and D. R. Papaj, "′X′ marks the spot: The possible benefits of nectar guides to bees and plants," Functional Ecology, vol. 25, no. 6, pp. 1293-1301, Dec 2011, doi: 10.1111/j.1365-2435.2011.01885.x.
[16] M. Giraldo, S. Yoshioka, and D. Stavenga, "Far field scattering pattern of differently structured butterfly scales," Journal of Comparative Physiology A, vol. 194, no. 3, pp. 201-207, 2008.
[17] B. D. Wilts, H. L. Leertouwer, and D. G. Stavenga, "Imaging scatterometry and microspectrophotometry of lycaenid butterfly wing scales with perforated multilayers," Journal of the Royal Society Interface, vol. 6, no. suppl_2, pp. S185-S192, 2009.
[18] S. Vignolini et al., "The flower of H ibiscus trionum is both visibly and measurably iridescent," New Phytologist, vol. 205, no. 1, pp. 97-101, 2015.
[19] C. J. van der Kooi, B. D. Wilts, H. L. Leertouwer, M. Staal, J. T. M. Elzenga, and D. G. Stavenga, "Iridescent flowers? Contribution of surface structures to optical signaling," New Phytologist, vol. 203, no. 2, pp. 667-673, 2014.
[20] L. Hanssen, "Integrating-sphere system and method for absolute measurement of transmittance, reflectance, and absorptance of specular samples," Applied Optics, vol. 40, no. 19, pp. 3196-3204, 2001.
[21] S. Vignolini et al., "The mirror crack′d: both pigment and structure contribute to the glossy blue appearance of the mirror orchid, Ophrys speculum," New Phytologist, vol. 196, no. 4, pp. 1038-1047, 2012.
[22] 黃靖軒, "利用橢圓反射鏡建立成像散射儀," 碩士, 光電科學與工程學系, 國立中央大學, 桃園縣, 2023.
[23] D. Stavenga, H. Leertouwer, P. Pirih, and M. Wehling, "Imaging scatterometry of butterfly wing scales," Optics Express, vol. 17, no. 1, pp. 193-202, 2009.
[24] S. Vignolini et al., "Directional scattering from the glossy flower of Ranunculus: how the buttercup lights up your chin," Journal of the Royal Society Interface, vol. 9, no. 71, pp. 1295-1301, Jun 2012, doi: 10.1098/rsif.2011.0759.
[25] C. J. van der Kooi, A. G. Dyer, P. G. Kevan, and K. Lunau, "Functional significance of the optical properties of flowers for visual signalling," Annals of Botany, vol. 123, no. 2, pp. 263-276, 2019.
[26] S. K. Nayar, K. Ikeuchi, and T. Kanade, "SURFACE REFLECTION - PHYSICAL AND GEOMETRICAL PERSPECTIVES," Ieee Transactions on Pattern Analysis and Machine Intelligence, vol. 13, no. 7, pp. 611-634, Jul 1991, doi: 10.1109/34.85654.
[27] J. W. Goodman, Introduction to Fourier Optics. 1968.
[28] H. e. al, "pvlib python: a python package for modeling solar energy systems.," Journal of Open Source Software, vol. 3, no. 29, p. 884, 2018, doi: 10.21105/joss.00884.
[29] W. Holmgren et al. "pvlib/pvlib-python: v0.9.4 (v0.9.4)." (accessed.
[30] C. H. M. Reno, and J. Stein, "Global horizontal irradiance clear sky models : implementation and analysis," 2014, doi: DOI:10.2172/1039404.
[31] L. T. Sharpe, Stockman, A., Jagla, W. & Jägle, H, "A luminous efficiency function, V*(l), for daylight adaptation.," Journal of Vision, 2005.
[32] A. Stockman, & Sharpe, L. T., " Spectral sensitivities of the middle- and long-wavelength sensitive cones derived from measurements in observers of known genotype," Vision Research, 2000.
[33] L. A. Clementson and B. Wojtasiewicz, "Dataset on the absorption characteristics of extracted phytoplankton pigments," Data in Brief, vol. 24, 2019, doi: https://doi.org/10.1016/j.dib.2019.103875.
[34] A. E. Bargagliotti and R. N. Greenwell, "Combinatorics and Statistical Issues Related to the Kruskal-Wallis Statistic," Communications in Statistics-Simulation and Computation, vol. 44, no. 2, pp. 533-550, 2015, doi: 10.1080/03610918.2013.786781.
[35] B. R. Frieden, Probability, Statistical, Optics, and Data Testing. 2001.
[36] T. Britannica and E. o. Encyclopaedia. "paper chromatography." https://www.britannica.com/science/paper-chromatography (accessed.
[37] R. L. A. Kourounioti et al., "Buckling as an origin of ordered cuticular patterns in flower petals," Journal of the Royal Society Interface, vol. 10, no. 80, Mar 2013, Art no. 20120847, doi: 10.1098/rsif.2012.0847.
指導教授 陳思妤(Szu-Yu Chen) 審核日期 2023-11-10
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明