博碩士論文 110226047 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:24 、訪客IP:18.116.52.45
姓名 林芳慈(Fang-Tzu Lin)  查詢紙本館藏   畢業系所 光電科學與工程學系
論文名稱 壓電材料誘發聲波對膽固醇液晶結構之影響
(Impact of piezoelectric-induced acoustic waves on cholesteric liquid crystal structure)
相關論文
★ 利用電控動態手紋結構製作雙穩態散射型液晶光閥之研究★ 液晶摻雜十二氫氧基硬酯酸於鍍有聚乙烯基咔唑薄膜液晶盒中之多穩態特性及其應用
★ 利用偶氮苯摻雜膽固醇液晶製作光控線性偏振旋轉器★ 利用扭轉型聚合物網絡液晶製作 偏振選擇性光散射之研究
★ 中孔洞奈米粒子摻雜液晶之光電特性及其應用之研究★ 藍相液晶摻雜旋性聚合物之表面穩定效應之研究
★ 層列C型/層列C*型液晶摻雜偶氮苯材料之光電特性研究★ 離子性材料對向列型液晶自發性配向及其應用之研究
★ 膽固醇液晶摻雜離子性層列型液晶之動態散射特性研究★ 膽固醇液晶及扭轉向列型液晶之線性偏振旋轉器
★ 低操作電壓高分子分散型液晶及其應用之研究★ 單面及雙面旋性聚合物穩固藍相液晶之光電特性
★ 利用液晶相位空間光調制器實現波長及焦距可調之反射式Fresnel光學透鏡★ 光控及電控散射型/吸收型液晶光閥之研究
★ 利用雙扭轉向列型液晶製作可電光調控之線性偏振光液晶光圈★ 電控及光控膽固醇液晶光閥特性與結構之研究
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   至系統瀏覽論文 (2028-11-30以後開放)
摘要(中) 一般而言,控制液晶分子排列通常以電控、光控以及熱控為主,然而利用聲波改變液晶分子排列的研究並不多見,因此本論文的研究主要為利用聲波改變膽固醇液晶分子的排列,而聲波的來源為環形壓電陶瓷板的振動。在第一部分中,實驗過程皆將液晶盒控溫於60°C下進行,膽固醇液晶為向列型液晶(HTW106700-100)以及手性分子(R-5011)之混合,且玻璃基板為圓形並作水平配向處理,將環形壓電陶瓷板黏貼於液晶盒邊緣並施加特定頻率之正弦交流電訊號使其產生聲波傳遞至膽固醇液晶當中,此時膽固醇液晶排列受聲波產生擾動自焦錐態切換為非完美平面態,最終關閉聲波後,由實驗結果可說明聲波能促使膽固醇液晶在水平配向之液晶盒中流動並穩定在非完美平面態。此外,藉由記錄施加不同聲波強度形成非完美平面態的速率,發現聲波的強度與液晶排列的速率呈現正相關,且在聲波強度較強的情況下會有熱效應的產生;在生成非完美平面態的過程當中,另發現部分區域存在混亂之膽固醇液晶結構,此結構生成之原因將於第五章之非完美平面態穿透頻譜作詳細討論。
在第二部分實驗當中,使用與第一部分相同之膽固醇液晶注入基板無配向處理之圓形液晶盒,且實驗條件同為在溫控盒60°C下進行,持續施加特定頻率的正弦交流電於環形壓電陶瓷板產生聲波於液晶盒後,起始焦錐態會切換為多個具有亮暗態分佈的圓形特殊結構,且此特殊結構隨時間的推移而變大且相互推擠,最終關閉聲波後依舊穩定於此態,而此特殊結構之穿透率高,研究中為探究其結構之排列方式,我們藉由穿透頻譜、摻雜二色性染料以及更改短螺距膽固醇液晶為長螺距之膽固醇液晶進行分析,並命名此圓形特殊結構為徑向螺紋結構(Radial lying helix)。
摘要(英) In general, many methods exist to change the arrangements of liquid crystal (LC) molecules, including optical, electrical, and thermal approaches. However, research on changing LC arrangements by acoustic waves is relatively rare. Therefore, the main purpose of this thesis is to modify the arrangements of cholesteric liquid crystal (CLC) molecules using acoustic waves. Moreover, the source of acoustic waves is generated by the vibrations of a piezoelectric ceramic ring.
In the first part, all experiments were conducted in a temperature controller at 60°C. The CLCs are a mixture of nematic LCs (HTW106700-100) and chiral dopant (R-5011). Furthermore, the shape of the glass substrates is circular and the substrate is treated with horizontal alignment. To induce acoustic waves in the CLCs, a piezoelectric ceramic ring was attached to the LC cell′s edge, and a sinusoidal voltage with a specific frequency was applied. These acoustic waves disrupted the CLC alignment, leading to a transition from the focal conic textures to the imperfect planar textures. After turning off the acoustic waves, the experimental results indicated that acoustic waves could induce the flow of CLCs in the LC cell and stabilize it in the imperfect planar textures. Additionally, it was found that the intensity of the acoustic waves was positively correlated with the rate of LC rearrangement, and under high acoustic wave intensity, a thermal effect was observed. Furthermore, during the process of generating the imperfect planar textures, disordered CLC structures were observed in certain regions, which will be analyzed by transmission spectra of the imperfect planar textures.
In the second part, the composition of CLCs was the same as in the first part, and the cell was treated without any alignment layer. The experimental conditions remained the same, conducted in a temperature controller at 60°C. When we keep applying a sinusoidal voltage with a specific frequency to the piezoelectric ring to generate acoustic waves transmitted into the LC cell, the initial focal conic textures can be switched to multiple circular structures with bright and dark distributions. The experimental results show that these unique structures grew larger and larger and compressed over time. To explore the arrangement of its structure, we conducted an analysis using transmission spectra, doped dichroic dye, and changing the short-pitch CLCs to long-pitch CLCs. Ultimately, we named this circular unique structure the "Radial Lying Helix" structure.
關鍵字(中) ★ 膽固醇液晶
★ 聲波
關鍵字(英) ★ cholesteric liquid crystal
★ acoustic waves
論文目次 摘要 i
Abstract ii
致謝 iv
目錄 v
圖目錄 viii
表目錄 xii
符號說明 xiii
第一章 緒論 1
§1-1 前言 1
§1-2 研究動機 1
§1-3 文獻回顧 2
§1-4 論文架構 4
第二章 液晶簡介 6
§2-1 液晶導論 6
§2-1-1 液晶起源 6
§2-1-2 物質狀態分類 6
§2-2 液晶分類 7
§2-3 液晶的物理特性 13
§2-3-1 光學異向性(Optical anisotropy) 13
§2-3-2 介電異向性(Dielectric anisotropy) 17
§2-3-3 連續彈性體理論(Elastic continuum theory) 19
§2-3-4 溫度對液晶的影響 20
第三章 實驗相關理論 21
§3-1 壓電材料介紹 21
§3-1-1 壓電材料起源 21
§3-1-2 壓電材料特性 21
§3-1-3 壓電材料相關參數 23
§3-1-4 壓電材料種類及應用 24
§3-2 聲波對液晶之影響 25
§3-3 膽固醇液晶排列結構 28
第四章 實驗方法與過程 31
§4-1 材料介紹 31
§4-2 樣品製備 34
§4-2-1 圓形玻璃基板清洗 34
§4-2-2 玻璃基板表面水平配向膜之處理 34
§4-2-3 液晶空盒製作 35
§4-2-4 液晶盒厚度量測 36
§4-3 實驗裝置 38
§4-3-1 液晶盒觀測 38
§4-3-2 實驗架設 39
第五章 實驗結果與討論 41
§5-1 聲波引致填充於水平配向液晶盒之膽固醇液晶結構切換 41
§5-1-1 施加不同振幅且頻率為60 kHz之交流電於環形壓電陶瓷板所產生之聲波影響膽固醇液晶之觀測與分析 43
§5-1-2 施加不同振幅且頻率為30 kHz之交流電於環形壓電陶瓷板並產生聲波影響膽固醇液晶之觀測與分析 55
§5-1-3 利用頻譜分析聲波對膽固醇液晶結構之影響 66
§5-2 聲波引致填充於無配向液晶盒之膽固醇液晶結構切換 71
§5-2-1 聲波引致膽固醇液晶特殊結構生成 71
§5-2-2 聲波引致膽固醇液晶特殊結構生成之初步分析 75
§5-2-3 透過摻雜染料以分析特殊結構對膽固醇液晶之影響 79
§5-2-4 聲波對長螺距的膽固醇液晶之影響 81
第六章 結論與未來展望 84
§6-1 結論 84
§6-1-1 聲波引致填充於水平配向液晶盒之膽固醇液晶結構切換 84
§6-1-2 聲波引致填充於無配向液晶盒之膽固醇液晶結構切換 85
§6-2 未來展望 86
參考文獻 88
參考文獻 [1]P. H. Tuan, J. C. Tung, H. C. Liang, P. Y. Chiang, K. F. Huang, and Y. F. Chen, “Resolving the formation of modern Chladni figures,” Euro. Phys. Lett. 111, 64004 (2015).
[2]林建安,“表面聲波對膽固醇液晶結構之影響”國立中央大學,光電科學與工程學系(2021).
[3]R. Ozaki, T. Shinpo, M. Ozaki, and H. Moritake “Reorientation of Cholesteric Liquid Crystal Molecules Using Acoustic Streaming,” Jpn. J. Appl. Phys. 46, L489 (2007).
[4]Y. Shimizu, D. Koyama, M. Fukui, A. Emoto, K. Nakamura, and M. Matsukawa, “Ultrasound liquid crystal lens,” Appl. Phys. Lett. 112, 161104 (2018).
[5]https://en.wikipedia.org/wiki/Friedrich_Reinitzer
[6]https://en.wikipedia.org/wiki/Otto_Lehmann_%28physicist%29
[7]H. Kawamoto, “The history of liquid-crystal displays,” Proc. IEEE 90, 460-500 (2002).
[8]松本正一、角田市良(劉瑞祥 譯),“液晶之基礎與應用”,國立編譯館出版(1996).
[9]R. J. A. Tough and M. J. Bradshaw, “The determination of the order parameters of nematic liquid crystals by mean field extrapolation,” J. Phys. France, 44(3), pp.447-454 (1983).
[10]P. J. Collings and J. W. Goodby, “Introduction to Liquid Crystals Chemistry and Physics,” CRC Press (1997).
[11]H.-S. Kitzerow and C. Bahr, “Chirality in Liquid Crystals,” Springer, New York (2001).
[12]M. J. Cook and M. R. Wilson, “Calculation of helical twisting power for liquid crystal chiral dopants,” J. Chem. Phys. 112, 1560-1564 (2000).
[13]A. Yariv and P. Yeh, “Optical Waves in Crystals,” John Wiley & Sons, Inc., New York (1983).
[14]G. Vertogen, “Elastic constants and the continuum theory of liquid crystals,” Physica A. 117, 221-231 (1983).
[15]https://en.wikipedia.org/wiki/Paul-Jacques_Curie
[16]周卓明,“壓電力學”,全華科技圖書股份有限公司出版(2003).
[17]“陶瓷技術手冊”,經濟部技術處發行,中華民國產業科技發展協進會與中華民國粉末冶金協會出版(1994).
[18]O. A. Kapustina, “Acoustooptical Phenomena in Liquid Crystals,” Gordon and Breach, Science Publishers, Inc. (1984).
[19]C. H. Yu, P. C. Wu, and W. Lee, “Electro-thermal formation of uniform lying helix alignment in a cholesteric liquid crystal,” Crystals 9, 183 (2019).
[20]G. Carbone, D. Corbett, S. J. Elston, P. Raynes, A. Jesacher, R. Simmonds, and M. Booth, “Uniform lying helix alignment on periodic surface relief structure generated via laser scanning lithography,” Mol. Cryst. Liq. Cryst. 544, 37-49 (2011).
[21]C. H. Yu, P. C. Wu, and W. Lee, “Alternative generation of well-aligned uniform lying helix texture in a cholesteric liquid crystal cell,” AIP Adv. 7, 105107 (2017).
[22]A. Varanytsia and L. C. Chien, “Giant flexoelectro-optic effect with liquid crystal dimer CB7CB,” Sci. Rep. 7, 41333 (2017).
[23]C. T. Wang, W. Y. Wang, and T. H. Lin, “A stable and switchable uniform lying helix structure in cholesteric liquid crystals,” Appl. Phys. Lett. 99, 041108 (2011).
[24]https://www.dakenchem.com/product/cas-no-944537-61-5-r5011/
[25]https://www.sigmaaldrich.com/TW/en/product/aldrich/341584
[26]https://www.norlandprod.com/adhesives/noa%2065.html
[27]O. D. Lavrentovich and D.-K. Yang, “Cholesteric cellular patterns with electric-field-controlled line tension,” Phys. Rev. E 57, R6269(R) (1998).
[28]A. M. Gonzalez and A. Garcia,” Revisiting the Characterization of the Losses in Piezoelectric Materials from Impedance Spectroscopy at Resonance,” Materials, 9. 27 (2016).
[29]M. Liu, L. Zhang, and T. Wang, “Supramolecular Chirality in Self-Assembled Systems,” Chem. Rev. 115(15), 7304-7397 (2015).
[30]J. Kumar, T. Nakashima, and T. Kawai, “Inversion of Supramolecular Chirality in Bichromophoric Perylene Bisimides: Influence of Temperature and Ultrasound,” Langmuir 30, 6030-6037 (2014).
[31]N. Komiya, T. Muraoka, M. Iida, M. Miyanaga, K. Takahashi, and T. Naota, “Ultrasound-Induced Emission Enhancement Based on Structure-Dependent Homo- and Heterochiral Aggregations of Chiral Binuclear Platinum Complexes,” J. Am. Chem. Soc. 133, 16054-16061 (2011).
[32]W. C. Yip, C. Welch, G. H. Mehl, and T. D. Wilkinson, “A cholesteric liquid crystal device having stable uniform lying helix structure,” J. Mol. Liq. 299, 112141 (2019).
[33]黃康哲、尹慶中,“聲導波操控向列型液晶的排列之研究”國立交通大學,機械工程學系(2009).
[34]L. L. Ma, S. S. Li, and L. J. Chen, “Rationally Designed Dynamic Superstructures Enabled by Photoaligning Cholesteric Liquid Crystals,” Adv. Opt. Mater. 3, 1691-1692 (2015).
[35]A. Ryabchun and A. Bobrovsky, “Cholesteric Liquid Crystal Materials for Tunable Diffractive Optics,” Adv. Opt. Mater. 6, 1800335 (2018).
指導教授 鄭恪亭(Ko-Ting Cheng) 審核日期 2023-11-22
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明