參考文獻 |
洪浩倫、王志添、陳錕山 (2007) 。利用多尺度匹配自動套疊衛星雷達影像。 Journal of Photogrammetry and Remote Sensing,12 (4) ,381-401。
環境保護局空氣品質保護科 (2020) 。桃園市空氣汙染防制計畫。桃園市政府環境保護局
郭益全、蔡金川、蔣永正、王鐘和、張義璋、余志儒 (2000) 。稻作生長與環境關係之精準管理。水稻精準農業 (耕) 體系之研究,25-52。
陳烈夫、魏夢麗、鄭統隆、廖大經、陳正昌、曾東海、劉大江 (1996) 。台灣水稻產量的一些生理問題。農業試驗所專刊,59,79-88。
陳錦麟 (2018) 。利用Sentinel-1 & 2遙測影像推估土壤含水量空間分佈-以桃園石門灌區為例。國立臺灣大學生物環境系統工程學研究所碩士論文。
陳繼藩 (2011) 。遙測衛星影像應用於地表乾燥指標及地表土壤含水量之研究。國立中央大學太空及遙測研究中心。
黃郁晴 (2020) 。應用多時序 Sentinel-1 雷達影像進行崩塌地偵測。國立中央大學土木工程研究所碩士論文。
楊承憲 (2021) 。遙測影像應用機器學習推估台灣山區土壤含水量分佈。國立成功大學資源工程研究所碩士論文。
劉玫婷、李欣輯、徐永衡、陳永明 (2021) 。2021年乾旱事件農作物損失調查紀實。國家災害防救科技中心災害防救電子報,194。
鄭友誠 (2016) 。氣候變遷下農業灌溉水資源調適因應策略。行政院農委會農田水利處。
盧虎生 (2004) 。水稻之發育過程與健康管理。水稻健康管理研討會,17-32。
Alahacoon, N., & Edirisinghe, M. (2022) . A comprehensive assessment of remote sensing and traditional based drought monitoring indices at global and regional scale. Geomatics, Natural Hazards and Risk, 13 (1) , 762–799. https://doi.org/10.1080/19475705.2022.2044394
Artiola, J., Pepper, I., & Brusseau, M. (2004) . Environmental Monitoring and Characterization.
Attema, E. P. W., & Ulaby, F. T. (1978) . Vegetation modeled as a water cloud. Radio Science, 13 (2) , 357–364. https://doi.org/10.1029/RS013i002p00357
Babaeian, E., Sadeghi, M., Jones, S. B., Montzka, C., Vereecken, H., & Tuller, M. (2019) . Ground, Proximal, and Satellite Remote Sensing of Soil Moisture. Reviews of Geophysics, 57 (2) , 530–616. https://doi.org/10.1029/2018RG000618
Baghdadi, N. N., El Hajj, M., Zribi, M., & Fayad, I. (2016) . Coupling SAR C-Band and Optical Data for Soil Moisture and Leaf Area Index Retrieval Over Irrigated Grasslands. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 9 (3) , 1229–1243. https://doi.org/10.1109/JSTARS.2015.2464698
Baghdadi, N., Choker, M., Zribi, M., Hajj, M. E., Paloscia, S., Verhoest, N. E. C., Lievens, H., Baup, F., & Mattia, F. (2016) . A New Empirical Model for Radar Scattering from Bare Soil Surfaces. Remote Sensing, 8 (11) , Article 11. https://doi.org/10.3390/rs8110920
Baghdadi, N., El Hajj, M., Zribi, M., & Bousbih, S. (2017) . Calibration of the Water Cloud Model at C-Band for Winter Crop Fields and Grasslands. Remote Sensing, 9 (9) , Article 9. https://doi.org/10.3390/rs9090969
Baghdadi, N., Zribi, M., Paloscia, S., Verhoest, N. E. C., Lievens, H., Baup, F., & Mattia, F. (2015) . Semi-Empirical Calibration of the Integral Equation Model for Co-Polarized L-Band Backscattering. Remote Sensing, 7 (10) , Article 10. https://doi.org/10.3390/rs71013626
Bao, Y., Lin, L., Wu, S., Kwal Deng, K. A., & Petropoulos, G. P. (2018) . Surface soil moisture retrievals over partially vegetated areas from the synergy of Sentinel-1 and Landsat 8 data using a modified water-cloud model. International Journal of Applied Earth Observation and Geoinformation, 72, 76–85. https://doi.org/10.1016/j.jag.2018.05.026
Baret, F., & Guyot, G. (1991) . Potentials and limits of vegetation indices for LAI and APAR assessment. Remote Sensing of Environment, 35 (2) , 161–173. https://doi.org/10.1016/0034-4257 (91) 90009-U
Baret, F., Guyot, G., & Major, D. J. (1989) . TSAVI: A Vegetation Index Which Minimizes Soil Brightness Effects On LAI And APAR Estimation. 12th Canadian Symposium on Remote Sensing Geoscience and Remote Sensing Symposium, 3, 1355–1358. https://doi.org/10.1109/IGARSS.1989.576128
Baret, F., Jacquemoud, S., & Hanocq, J. F. (1993) . About the soil line concept in remote sensing. Advances in Space Research, 13 (5) , 281–284. https://doi.org/10.1016/0273-1177 (93) 90560-X
Bayat, B., van der Tol, C., & Verhoef, W. (2020) . Retrieval of land surface properties from an annual time series of Landsat TOA radiances during a drought episode using coupled radiative transfer models. Remote Sensing of Environment, 238, 110917. https://doi.org/10.1016/j.rse.2018.09.030
Bazzi, H., Baghdadi, N., El Hajj, M., Zribi, M., Minh, D. H. T., Ndikumana, E., Courault, D., & Belhouchette, H. (2019) . Mapping Paddy Rice Using Sentinel-1 SAR Time Series in Camargue, France. Remote Sensing, 11 (7) , Article 7. https://doi.org/10.3390/rs11070887
Bogena, H. R., Huisman, J. A., Oberdörster, C., & Vereecken, H. (2007) . Evaluation of a low-cost soil water content sensor for wireless network applications. Journal of Hydrology, 344 (1) , 32–42. https://doi.org/10.1016/j.jhydrol.2007.06.032
Bounoua, L., Collatz, G. J., Los, S. O., Sellers, P. J., Dazlich, D. A., Tucker, C. J., & Randall, D. A. (2000) . Sensitivity of Climate to Changes in NDVI. Journal of Climate, 13 (13) , 2277–2292. https://doi.org/10.1175/1520-0442 (2000) 013<2277:SOCTCI>2.0.CO;2
Champion, I., Prevot, L., & Guyot, G. (2000) . Generalized semi-empirical modelling of wheat radar response. International Journal of Remote Sensing, 21 (9) , 1945–1951. https://doi.org/10.1080/014311600209869
Dobson, M. C., & Ulaby, F. T. (1986) . Active Microwave Soil Moisture Research. IEEE Transactions on Geoscience and Remote Sensing, GE-24 (1) , 23–36. https://doi.org/10.1109/TGRS.1986.289585
Dubois, P. C., van Zyl, J., & Engman, T. (1995) . Measuring soil moisture with imaging radars. IEEE Transactions on Geoscience and Remote Sensing, 33 (4) , 915–926. https://doi.org/10.1109/36.406677
El Hajj, M., Baghdadi, N., Zribi, M., & Bazzi, H. (2017) . Synergic Use of Sentinel-1 and Sentinel-2 Images for Operational Soil Moisture Mapping at High Spatial Resolution over Agricultural Areas. Remote Sensing, 9 (12) , Article 12. https://doi.org/10.3390/rs9121292
El Hajj, M., Baghdadi, N., Zribi, M., Belaud, G., Cheviron, B., Courault, D., & Charron, F. (2016) . Soil moisture retrieval over irrigated grassland using X-band SAR data. Remote Sensing of Environment, 176, 202–218. https://doi.org/10.1016/j.rse.2016.01.027
Eshqi Molan, Y. (2020) . Soil Moisture Contributions to InSAR Phase and Decorrelation. Earth Sciences Theses and Dissertations. https://scholar.smu.edu/hum_sci_earthsciences_etds/15
Ezzahar, J., Ouaadi, N., Zribi, M., Elfarkh, J., Aouade, G., Khabba, S., Er-Raki, S., Chehbouni, A., & Jarlan, L. (2020) . Evaluation of Backscattering Models and Support Vector Machine for the Retrieval of Bare Soil Moisture from Sentinel-1 Data. Remote Sensing, 12 (1) , Article 1. https://doi.org/10.3390/rs12010072
Firdaus, R. B. R., Leong Tan, M., Rahmat, S. R., & Senevi Gunaratne, M. (2020) . Paddy, rice and food security in Malaysia: A review of climate change impacts. Cogent Social Sciences, 6 (1) , 1818373. https://doi.org/10.1080/23311886.2020.1818373
Foroughi, H., Naseri, A. A., Nasab, S. B., Hamzeh, S., Sadeghi, M., Tuller, M., & Jones, S. B. (2020) . A new mathematical formulation for remote sensing of soil moisture based on the Red-NIR space. International Journal of Remote Sensing, 41 (20) , 8034–8047. https://doi.org/10.1080/01431161.2020.1770365
Gao, Z., Gao, W., & Chang, N.-B. (2011) . Integrating temperature vegetation dryness index (TVDI) and regional water stress index (RWSI) for drought assessment with the aid of LANDSAT TM/ETM+ images. International Journal of Applied Earth Observation and Geoinformation, 13 (3) , 495–503. https://doi.org/10.1016/j.jag.2010.10.005
Gao, Z., Xu, X., Wang, J., Yang, H., Huang, W., & Feng, H. (2013) . A method of estimating soil moisture based on the linear decomposition of mixture pixels. Mathematical and Computer Modelling, 58 (3) , 606–613. https://doi.org/10.1016/j.mcm.2011.10.054
Gaultier, L., Collard, F., Hanna, Z. E. K., Guitton, G., Herlédan, S., & Séach, G. L. (2020) . Taking advantage of Multisensor Synergy: New discovery and analysis tools (No. EGU2020-22600) . EGU2020. Copernicus Meetings. https://doi.org/10.5194/egusphere-egu2020-22600
Gherboudj, I., Magagi, R., Berg, A. A., & Toth, B. (2011) . Soil moisture retrieval over agricultural fields from multi-polarized and multi-angular RADARSAT-2 SAR data. Remote Sensing of Environment, 115 (1) , 33–43. https://doi.org/10.1016/j.rse.2010.07.011
Ghulam, A., Qin, Q., & Zhan, Z. (2007) . Designing of the perpendicular drought index. Environmental Geology, 52 (6) , 1045–1052. https://doi.org/10.1007/s00254-006-0544-2
Ghulam, A., Qin, Q., Teyip, T., & Li, Z.-L. (2007) . Modified perpendicular drought index (MPDI) : A real-time drought monitoring method. ISPRS Journal of Photogrammetry and Remote Sensing, 62 (2) , 150–164. https://doi.org/10.1016/j.isprsjprs.2007.03.002
Glenn, E. P., Huete, A. R., Nagler, P. L., & Nelson, S. G. (2008) . Relationship Between Remotely-sensed Vegetation Indices, Canopy Attributes and Plant Physiological Processes: What Vegetation Indices Can and Cannot Tell Us About the Landscape. Sensors, 8 (4) , Article 4. https://doi.org/10.3390/s8042136
Grace, J., Nichol, C., Disney, M., Lewis, P., Quaife, T., & Bowyer, P. (2007) . Can we measure terrestrial photosynthesis from space directly, using spectral reflectance and fluorescence. Global Change Biology. http://dx.doi.org/10.1111/j.1365-2486.2007.01352.x
Greifeneder, F., Notarnicola, C., & Wagner, W. (2021) . A Machine Learning-Based Approach for Surface Soil Moisture Estimations with Google Earth Engine. Remote Sensing, 13 (11) , Article 11. https://doi.org/10.3390/rs13112099
Guan, X., Huang, C., Liu, G., Meng, X., & Liu, Q. (2016) . Mapping Rice Cropping Systems in Vietnam Using an NDVI-Based Time-Series Similarity Measurement Based on DTW Distance. Remote Sensing, 8 (1) , Article 1. https://doi.org/10.3390/rs8010019
Hajj, M. E., Baghdadi, N., Belaud, G., Zribi, M., Cheviron, B., Courault, D., Hagolle, O., & Charron, F. (2014) . Irrigated Grassland Monitoring Using a Time Series of TerraSAR-X and COSMO-SkyMed X-Band SAR Data. Remote Sensing, 6 (10) , Article 10. https://doi.org/10.3390/rs61010002
He, B., Xing, M., & Bai, X. (2014) . A Synergistic Methodology for Soil Moisture Estimation in an Alpine Prairie Using Radar and Optical Satellite Data. Remote Sensing, 6 (11) , Article 11. https://doi.org/10.3390/rs61110966
Hsing, Y. I. C. (2008) . Rice in Taiwan. In H. Selin (Ed.) , Encyclopaedia of the History of Science, Technology, and Medicine in Non-Western Cultures (pp. 1–3) . Springer Netherlands. https://doi.org/10.1007/978-94-007-3934-5_10245-1
Huang, S., Tang, L., Hupy, J. P., Wang, Y., & Shao, G. (2021) . A commentary review on the use of normalized difference vegetation index (NDVI) in the era of popular remote sensing. Journal of Forestry Research, 32 (1) , 1–6. https://doi.org/10.1007/s11676-020-01155-1
Huete, A. R. (1988) . A soil-adjusted vegetation index (SAVI) . Remote Sensing of Environment, 25 (3) , 295–309. https://doi.org/10.1016/0034-4257 (88) 90106-X
Kalantari, Z., Ferreira, C. S. S., Koutsouris, A. J., Ahlmer, A.-K., Cerdà, A., & Destouni, G. (2019) . Assessing flood probability for transportation infrastructure based on catchment characteristics, sediment connectivity and remotely sensed soil moisture. Science of The Total Environment, 661, 393–406. https://doi.org/10.1016/j.scitotenv.2019.01.009
Kashyap, B., & Kumar, R. (2021) . Sensing Methodologies in Agriculture for Soil Moisture and Nutrient Monitoring. IEEE Access, 9, 14095–14121. https://doi.org/10.1109/ACCESS.2021.3052478
Kaufman, Y. J., & Tanre, D. (1992) . Atmospherically resistant vegetation index (ARVI) for EOS-MODIS. IEEE Transactions on Geoscience and Remote Sensing, 30 (2) , 261–270. https://doi.org/10.1109/36.134076
Khabbazan, S., Vermunt, P., Steele-Dunne, S., Ratering Arntz, L., Marinetti, C., van der Valk, D., Iannini, L., Molijn, R., Westerdijk, K., & van der Sande, C. (2019) . Crop Monitoring Using Sentinel-1 Data: A Case Study from The Netherlands. Remote Sensing, 11 (16) , Article 16. https://doi.org/10.3390/rs11161887
Kornelsen, K. C., & Coulibaly, P. (2013) . Advances in soil moisture retrieval from synthetic aperture radar and hydrological applications. Journal of Hydrology, 476, 460–489. https://doi.org/10.1016/j.jhydrol.2012.10.044
Lang, R. H., & Saleh, H. A. (1985) . Microwave Inversion of Leaf Area and Inclination Angle Distributions from Backscattered Data. IEEE Transactions on Geoscience and Remote Sensing, GE-23 (5) , 685–694. https://doi.org/10.1109/TGRS.1985.289387
Li, J., & Wang, S. (2018) . Using SAR-Derived Vegetation Descriptors in a Water Cloud Model to Improve Soil Moisture Retrieval. Remote Sensing, 10 (9) , Article 9. https://doi.org/10.3390/rs10091370
Liang, J., Liang, G., Zhao, Y., & Zhang, Y. (2021) . A synergic method of Sentinel-1 and Sentinel-2 images for retrieving soil moisture content in agricultural regions. Computers and Electronics in Agriculture, 190, 106485. https://doi.org/10.1016/j.compag.2021.106485
Lievens, H., & Verhoest, N. E. C. (2011) . On the Retrieval of Soil Moisture in Wheat Fields From L-Band SAR Based on Water Cloud Modeling, the IEM, and Effective Roughness Parameters. IEEE Geoscience and Remote Sensing Letters, 8 (4) , 740–744. https://doi.org/10.1109/LGRS.2011.2106109
Lievens, H., Vernieuwe, H., Álvarez-Mozos, J., De Baets, B., & Verhoest, N. E. C. (2009) . Error in Radar-Derived Soil Moisture due to Roughness Parameterization: An Analysis Based on Synthetical Surface Profiles. Sensors, 9 (2) , Article 2. https://doi.org/10.3390/s90201067
Liu, G. R., Liang, C. K., Kuo, T. H., Lin, T. H., & Huang, S. J. (2004) . Comparison of the NDVI, ARVI and AFRI vegetation index, along with their relations with the AOD using SPOT 4 vegetation data. Terrestrial, Atmospheric and Oceanic Sciences, 15 (1) , 15–31. https://doi.org/10.3319/tao.2004.15.1.15 (a)
Liu, H. Q., & Huete, A. (1995) . A feedback based modification of the NDVI to minimize canopy background and atmospheric noise. IEEE Transactions on Geoscience and Remote Sensing, 33 (2) , 457–465. https://doi.org/10.1109/TGRS.1995.8746027
Liu, H., Zhao, Z., & Jezek, K. C. (2004) . Correction of Positional Errors and Geometric Distortions in Topographic Maps and DEMs Using a Rigorous SAR Simulation Technique. Photogrammetric Engineering & Remote Sensing, 70 (9) , 1031–1042. https://doi.org/10.14358/PERS.70.9.1031
Liu, Y., Qian, J., & Yue, H. (2021) . Combined Sentinel-1A With Sentinel-2A to Estimate Soil Moisture in Farmland. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 14, 1292–1310. https://doi.org/10.1109/JSTARS.2020.3043628
Liu, Y., Qian, J., & Yue, H. (2021) . Comprehensive Evaluation of Sentinel-2 Red Edge and Shortwave-Infrared Bands to Estimate Soil Moisture. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 14, 7448–7465. https://doi.org/10.1109/JSTARS.2021.3098513
Liu, Y., Yue, H., Wang, H., & Zhang, W. (2017) . Comparison of SMMI, PDI and its applications in Shendong mining area. IOP Conference Series: Earth and Environmental Science, 57, 012025. https://doi.org/10.1088/1755-1315/57/1/012025
Longo-Minnolo, G., Consoli, S., Vanella, D., Ramírez-Cuesta, J. M., Greimeister-Pfeil, I., Neuwirth, M., & Vuolo, F. (2022) . A stand-alone remote sensing approach based on the use of the optical trapezoid model for detecting the irrigated areas. Agricultural Water Management, 274, 107975. https://doi.org/10.1016/j.agwat.2022.107975
Lu, Z., & Meyer, D. J. (2002) . Study of high SAR backscattering caused by an increase of soil moisture over a sparsely vegetated area: Implications for characteristics of backscattering. International Journal of Remote Sensing, 23 (6) , 1063–1074. https://doi.org/10.1080/01431160110040035
Manjunath, K. R., More, R. S., Jain, N. K., Panigrahy, S., & Parihar, J. S. (2015) . Mapping of rice-cropping pattern and cultural type using remote-sensing and ancillary data: A case study for South and Southeast Asian countries. International Journal of Remote Sensing, 36 (24) , 6008–6030. https://doi.org/10.1080/01431161.2015.1110259
McVicar, T. R., & Jupp, D. L. B. (1998) . The current and potential operational uses of remote sensing to aid decisions on drought exceptional circumstances in Australia: A review. Agricultural Systems, 57 (3) , 399–468. https://doi.org/10.1016/S0308-521X (98) 00026-2
Moran, M. S., Clarke, T. R., Inoue, Y., & Vidal, A. (1994) . Estimating crop water deficit using the relation between surface-air temperature and spectral vegetation index. Remote Sensing of Environment, 49 (3) , 246–263. https://doi.org/10.1016/0034-4257 (94) 90020-5
Naeimi, V., Scipal, K., Bartalis, Z., Hasenauer, S., & Wagner, W. (2009) . An Improved Soil Moisture Retrieval Algorithm for ERS and METOP Scatterometer Observations. IEEE Transactions on Geoscience and Remote Sensing, 47 (7) , 1999–2013. https://doi.org/10.1109/TGRS.2008.2011617
Nazir, A., Ullah, S., Saqib, Z. A., Abbas, A., Ali, A., Iqbal, M. S., Hussain, K., Shakir, M., Shah, M., & Butt, M. U. (2021) . Estimation and Forecasting of Rice Yield Using Phenology-Based Algorithm and Linear Regression Model on Sentinel-II Satellite Data. Agriculture, 11 (10) , Article 10. https://doi.org/10.3390/agriculture11101026
Oh, Y., Sarabandi, K., & Ulaby, F. T. (1992) . An empirical model and an inversion technique for radar scattering from bare soil surfaces. IEEE Transactions on Geoscience and Remote Sensing, 30 (2) , 370–381. https://doi.org/10.1109/36.134086
Paloscia, S., Pettinato, S., Santi, E., Notarnicola, C., Pasolli, L., & Reppucci, A. (2013) . Soil moisture mapping using Sentinel-1 images: Algorithm and preliminary validation. Remote Sensing of Environment, 134, 234–248. https://doi.org/10.1016/j.rse.2013.02.027
Paloscia, S., Pettinato, S., Santi, E., Notarnicola, C., Pasolli, L., & Reppucci, A. (2013) . Soil moisture mapping using Sentinel-1 images: Algorithm and preliminary validation. Remote Sensing of Environment, 134, 234–248. https://doi.org/10.1016/j.rse.2013.02.027
Panciera, R., Tanase, M. A., Lowell, K., & Walker, J. P. (2014) . Evaluation of IEM, Dubois, and Oh Radar Backscatter Models Using Airborne L-Band SAR. IEEE Transactions on Geoscience and Remote Sensing, 52 (8) , 4966–4979. https://doi.org/10.1109/TGRS.2013.2286203
Pendey, V., & Pandey, P. K. (2010) . Spatial and Temporal Variability of Soil Moisture. International Journal of Geosciences, 1 (2) , Article 2. https://doi.org/10.4236/ijg.2010.12012
Petropoulos, G. P., Ireland, G., & Barrett, B. (2015) . Surface soil moisture retrievals from remote sensing: Current status, products & future trends. Physics and Chemistry of the Earth, Parts A/B/C, 83–84, 36–56. https://doi.org/10.1016/j.pce.2015.02.009
Pipia, L., Amin, E., Belda, S., Salinero-Delgado, M., & Verrelst, J. (2021) . Green LAI Mapping and Cloud Gap-Filling Using Gaussian Process Regression in Google Earth Engine. Remote Sensing, 13 (3) , Article 3. https://doi.org/10.3390/rs13030403
Qin, Y., Xiao, X., Dong, J., Zhou, Y., Zhu, Z., Zhang, G., Du, G., Jin, C., Kou, W., Wang, J., & Li, X. (2015) . Mapping paddy rice planting area in cold temperate climate region through analysis of time series Landsat 8 (OLI) , Landsat 7 (ETM+) and MODIS imagery. ISPRS Journal of Photogrammetry and Remote Sensing, 105, 220–233. https://doi.org/10.1016/j.isprsjprs.2015.04.008
Quesney, A., Le Hégarat-Mascle, S., Taconet, O., Vidal-Madjar, D., Wigneron, J. P., Loumagne, C., & Normand, M. (2000) . Estimation of Watershed Soil Moisture Index from ERS/SAR Data. Remote Sensing of Environment, 72 (3) , 290–303. https://doi.org/10.1016/S0034-4257 (99) 00102-9
Ranjbar, S., Akhoondzadeh, M., Brisco, B., Amani, M., & Hosseini, M. (2021) . Soil Moisture Change Monitoring from C and L-band SAR Interferometric Phase Observations. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 14, 7179–7197. https://doi.org/10.1109/JSTARS.2021.3096063
Richardson, A. J., & Weigand, C. L. (1977) . DISTINGUISHING VEGETATION FROM SOIL BACKGROUND INFORMATION. Photogrammetric Engineering and Remote Sensing, 43 (12) . https://trid.trb.org/view/60764
Sadeghi, M., Babaeian, E., Tuller, M., & Jones, S. B. (2017) . The optical trapezoid model: A novel approach to remote sensing of soil moisture applied to Sentinel-2 and Landsat-8 observations. Remote Sensing of Environment, 198, 52–68. https://doi.org/10.1016/j.rse.2017.05.041
Sandholt, I., Rasmussen, K., & Andersen, J. (2002) . A simple interpretation of the surface temperature/vegetation index space for assessment of surface moisture status. Remote Sensing of Environment, 79 (2) , 213–224. https://doi.org/10.1016/S0034-4257 (01) 00274-7
Schmidt, H., & Karnieli, A. (2001) . Sensitivity of vegetation indices to substrate brightness in hyper-arid environment: The Makhtesh Ramon Crater (Israel) case study. International Journal of Remote Sensing, 22 (17) , 3503–3520. https://doi.org/10.1080/01431160110063779
Sharma, P., Kumar, D., & Srivastava, H. (2018) . Assessment of Different Methods for Soil Moisture Estimation: A Review. Journal of Remote Sensing & GIS, 9, 57–73.
Sheng, R. T.-C., Huang, Y.-H., Chan, P.-C., Bhat, S. A., Wu, Y.-C., & Huang, N.-F. (2022) . Rice Growth Stage Classification via RF-Based Machine Learning and Image Processing. Agriculture, 12 (12) , Article 12. https://doi.org/10.3390/agriculture12122137
Said, S., Kothyari, U. C., & Arora, M. K. (2012) . Vegetation effects on soil moisture estimation from ERS-2 SAR images. Hydrological Sciences Journal, 57 (3) , 517–534. https://doi.org/10.1080/02626667.2012.665608
Son, N. T., Chen, C. F., Chen, C. R., Chang, L. Y., Duc, H. N., & Nguyen, L. D. (2013) . Prediction of rice crop yield using MODIS EVI−LAI data in the Mekong Delta, Vietnam. International Journal of Remote Sensing, 34 (20) , 7275–7292. https://doi.org/10.1080/01431161.2013.818258
Son, N.-T., Chen, C.-F., Chen, C.-R., & Guo, H.-Y. (2020) . Classification of multitemporal Sentinel-2 data for field-level monitoring of rice cropping practices in Taiwan. Advances in Space Research, 65 (8) , 1910–1921. https://doi.org/10.1016/j.asr.2020.01.028
Srinivasa Rao, S., Dinesh kumar, S., Das, S. N., Nagaraju, M. S. S., Venugopal, M. V., Rajankar, P., Laghate, P., Reddy, M. S., Joshi, A. K., & Sharma, J. R. (2013) . Modified Dubois Model for Estimating Soil Moisture with Dual Polarized SAR Data. Journal of the Indian Society of Remote Sensing, 41 (4) , 865–872. https://doi.org/10.1007/s12524-013-0274-3
Tanre, D., Holben, B. N., & Kaufman, Y. J. (1992) . Atmospheric correction algorithm for NOAA-AVHRR products: Theory and application. IEEE Transactions on Geoscience and Remote Sensing, 30 (2) , 231–248. https://doi.org/10.1109/36.134074
Ulaby, F. T., Allen, C. T., Eger, G., & Kanemasu, E. (1984) . Relating the microwave backscattering coefficient to leaf area index. Remote Sensing of Environment, 14 (1) , 113–133. https://doi.org/10.1016/0034-4257 (84) 90010-5
Ulaby, F. T., McDonald, K., Sarabandi, K., & Dobson, M. C. (1988) . Michigan Microwave Canopy Scattering Models (MIMICS) . International Geoscience and Remote Sensing Symposium, “Remote Sensing: Moving Toward the 21st Century”., 2, 1009–1009. https://doi.org/10.1109/IGARSS.1988.570506
Urban, M., Berger, C., Mudau, T. E., Heckel, K., Truckenbrodt, J., Onyango Odipo, V., Smit, I. P. J., & Schmullius, C. (2018) . Surface Moisture and Vegetation Cover Analysis for Drought Monitoring in the Southern Kruger National Park Using Sentinel-1, Sentinel-2, and Landsat-8. Remote Sensing, 10 (9) , Article 9. https://doi.org/10.3390/rs10091482
Vereecken, H., Huisman, J. A., Bogena, H., Vanderborght, J., Vrugt, J. A., & Hopmans, J. W. (2008) . On the value of soil moisture measurements in vadose zone hydrology: A review. Water Resources Research, 44 (4) . https://doi.org/10.1029/2008WR006829
Verhoest, N. E. C., Lievens, H., Wagner, W., Álvarez-Mozos, J., Moran, M. S., & Mattia, F. (2008) . On the Soil Roughness Parameterization Problem in Soil Moisture Retrieval of Bare Surfaces from Synthetic Aperture Radar. Sensors, 8 (7) , Article 7. https://doi.org/10.3390/s8074213
Verstraeten, W. W., Veroustraete, F., van der Sande, C. J., Grootaers, I., & Feyen, J. (2006) . Soil moisture retrieval using thermal inertia, determined with visible and thermal spaceborne data, validated for European forests. Remote Sensing of Environment, 101 (3) , 299–314. https://doi.org/10.1016/j.rse.2005.12.016
Vreugdenhil, M., Wagner, W., Bauer-Marschallinger, B., Pfeil, I., Teubner, I., Rüdiger, C., & Strauss, P. (2018) . Sensitivity of Sentinel-1 Backscatter to Vegetation Dynamics: An Austrian Case Study. Remote Sensing, 10 (9) , Article 9. https://doi.org/10.3390/rs10091396
Wang, D., Morton, D., Masek, J., Wu, A., Nagol, J., Xiong, X., Levy, R., Vermote, E., & Wolfe, R. (2012) . Impact of sensor degradation on the MODIS NDVI time series. Remote Sensing of Environment, 119, 55–61. https://doi.org/10.1016/j.rse.2011.12.001
Wang, Hui, Liu, Mao-hua, Wang, Yue-xuan, Dao-kun, Ma, & Hai-xia, Li. (2008) . Development of farmland soil moisture and temperature monitoring system based on wireless sensor network [J]. Journal of Jilin University (Engineering and Technology Edition) , 3,604-608.
Yadav, V. P., Prasad, R., Bala, R., & Vishwakarma, A. K. (2020) . An improved inversion algorithm for spatio-temporal retrieval of soil moisture through modified water cloud model using C- band Sentinel-1A SAR data. Computers and Electronics in Agriculture, 173, 105447. https://doi.org/10.1016/j.compag.2020.105447
Yin, Q., Liu, M., Cheng, J., Ke, Y., & Chen, X. (2019) . Mapping Paddy Rice Planting Area in Northeastern China Using Spatiotemporal Data Fusion and Phenology-Based Method. Remote Sensing, 11 (14) , Article 14. https://doi.org/10.3390/rs11141699
Zhu, A.-X., Zhao, F.-H., Pan, H.-B., & Liu, J.-Z. (2021) . Mapping Rice Paddy Distribution Using Remote Sensing by Coupling Deep Learning with Phenological Characteristics. Remote Sensing, 13 (7) , Article 7. https://doi.org/10.3390/rs13071360
Zribi, M., Gorrab, A., & Baghdadi, N. (2014) . A new soil roughness parameter for the modelling of radar backscattering over bare soil. Remote Sensing of Environment, 152, 62–73. https://doi.org/10.1016/j.rse.2014.05.009 |