摘要(英) |
The current earthquake warning can only inform the masses a few minutes before the arrival of the earthquake wave. It is easy to cause serious damage in the case of less preparation time. Since 1988, the academic community has used satellite images to analyze the land surface temperature (LST) and point to the positive geothermal anomalies around the fault zone strong enough to be observed by satellites starting days in term of LST before the earthquake. However, these previous studies use polar-orbit satellites as a dataset which is not enough to see the detailed changes in geothermal anomalies. This study applied spatial and temporal adaptive reflectance fusion model (STARFM) to Landsat 8 and Himawari-8 images to synthesize Landsat-alike images with 30 m resolution hourly. The scatter plot shows a slope of 0.994 and an R-squared value of 0.52 between fused images and the corresponding Landsat images. The numerical results that are so close to the 1:1 correspondence and have correlations indicate that the fused images generated in this study are sufficient to be regarded as high temporal resolution Landsat 8/9 data for subsequent analysis.
Three earthquake cases were selected for analysis in this study. The first case analyzed in this study is a series of large-scale earthquake events that occurred in Taitung Taiwan since 17th September, 2022. There are 4 earthquake events with a Richter magnitude scale greater than 5. By analyzing the LST extracted along the Chihshang fault zone in the period of 1st to 22nd September 2022, the result shows that the temperature in the southern section of the fault is relatively high and even the temperature rises in the early morning when is no solar heating. In addition, this study uses GIS stacked maps to confirm that the types of ground features in the southern section of the fault belong to farmland and trees, and there are almost no buildings. Such geomorphic features increase the possibility that the heat on the surface is transmitted upwards from the ground. However, this pre-earthquake warming trend did not appear in the other two earthquakes in Hualien, but there was a slight cooling trend. After further analysis, it was found that the two earthquake cases in Hualien had different focal mechanisms from Case One. Different fault dislocation methods may lead to different efficiencies in the upward transfer of geothermal heat. For example, the two earthquakes in Hualien belonged to reverse faults, and the heat in the ground is not easily transmitted during the compression of the strata. It was not until the earthquake occurred that the surface ruptured and the geothermal heat appeared.
However, the characteristics of these events alone are not enough to predict seismic activity. In addition to the correlation between geothermal anomalies and focal mechanisms, follow-up research can also try to find out whether there are fixed hotspots around the fault, and whether their location and intensity will be changed by seismic events. Such hotspots may also assist in siting for geothermal resource development. |
參考文獻 |
1. 中央氣象局強震即時警報宣導網。https://scweb.cwb.gov.tw/Earthquake/eew_DEMO/#
2. 強震動の基礎 ウエッブテキスト2000版。 https://www.kyoshin.bosai.go.jp/kyoshin/gk/publication/1/I-4.1.3.html
3. 中央氣象局地震測報中心,地震百問,何謂彈性回彈理論? https://scweb.cwb.gov.tw/zh-TW/Guidance/FAQdetail/10
4. 交通部中央氣象局地震測報中心,30 周年專刊,第104頁。
5. 中央氣象局地震測報中心,地震百問,臺灣的地震頻率如何?https://scweb.cwb.gov.tw/zh-tw/guidance/faqdetail/55
6. 經濟部中央地質調查所,常見問答,斷層與活動斷層之區別?https://www.moeacgs.gov.tw/faqs/faqs_more?id=c57ff88aef8047c098e318e12a382132
7. 經濟部中央地質調查所,臺灣活動斷層分布圖。https://faultnew.moeacgs.gov.tw/About/Fault_map
8. 徐敏彰、劉振榮、林唐煌 (2007)。MODIS 衛星資料在反演地表溫度之應用。2007年臺灣地球科學聯合學術研討會。
9. Rasul, A., Balzter, H., & Smith, C. (2015). Spatial variation of the daytime Surface Urban Cool Island during the dry season in Erbil, Iraqi Kurdistan, from Landsat 8. Urban climate, 14, 176-186.
10. Gornyi, V. I., Sal′Man, A. G., Tronin, A. A. E., & Shilin, B. V. (1988). Outgoing infrared radiation of the earth as an indicator of seismic activity. In Akademiia Nauk SSSR Doklady Vol. 301, No. 1, pp. 67-69.
11. Tronin, A. A. (1996). Satellite thermal survey—a new tool for the study of seismoactive regions. International journal of remote sensing, 17(8), 1439-1455.
12. Tronin, A. A., Hayakawa, M., & Molchanov, O. A. (2002). Thermal IR satellite data application for earthquake research in Japan and China. Journal of Geodynamics, 33(4-5), 519-534.
13. Panda, S. K., Choudhury, S., Saraf, A. K., & Das, J. D. (2007). MODIS land surface temperature data detects thermal anomaly preceding 8 October 2005 Kashmir earthquake. International Journal of Remote Sensing, 28(20), 4587-4596
14. Sifakis, N., & Deschamps, P. Y. (1992). "Mapping of air pollution using SPOT satellite data." Photogrammetric Engineering and Remote Sensing, 58, 1433-1433.
15. Gao, F., Masek, J., Schwaller, M., & Hall, F. (2006). On the Blending of the Landsat and MODIS Surface Reflectance: Predicting Daily Landsat Surface Reflectance. IEEE Transactions on Geoscience and Remote sensing, 44(8), 2207-2218.
16. USGS. Landsat Satellite Missions. from https://www.usgs.gov/landsat-missions/landsat-satellite-missions
17. USGS. Landsat 8. from https://www.usgs.gov/landsat-missions/landsat-8
18. USGS. Landsat 9. from https://www.usgs.gov/landsat-missions/landsat-9
19. USGS. Landsat 8 Data Users Handbook Version 5.0.
20. Meteorological Satellite Center of JMA. (2019). Plan for Himawari-8/9. form https://www.data.jma.go.jp/mscweb/en/general/himawari89plan.html
21. Meteorological Satellite Center of JMA. (2019). Imager (AHI). form https://www.data.jma.go.jp/mscweb/en/himawari89/space_segment/spsg_ahi.html
22. JMA. Himawari-8/9 Himawari Standard Data User′s Guide from https://www.data.jma.go.jp/mscweb/en/himawari89/space_segment/hsd_sample/HS_D_users_guide_en_v12.pdf
23. 中央氣象局地震測報中心,中央氣象局地震觀測網介紹https://scweb.cwb.gov.tw/zh-TW/page/ObservationNetwork/170
24. 林啟文、陳文山、劉彥求、陳柏村 (2009)。經濟部中央地質調查所特刊,第 23 號,第 63-80 頁。
25. 林啟文、陳文山、劉彥求、陳柏村 (2009)。經濟部中央地質調查所特刊,第 23 號,第 21-30 頁。
26. 林啟文、陳文山、劉彥求、陳柏村 (2009)。經濟部中央地質調查所特刊,第 23 號,第 31-48 頁。
27. Benavente, P., Protopapas, P., & Pichara, K. (2017). Automatic survey-invariant classification of variable stars. The Astrophysical Journal, 845(2), 147.
28. Learn by Marketing. (2019). K-means Clustering-What it is and How it Works. from http://www.learnbymarketing.com/methods/k-means-clustering/
29. 中央氣象局地震測報中心,地震百問,何謂震度?https://scweb.cwb.gov.tw/zh-TW/Guidance/FAQdetail/36
30. 交通部中央氣象局地震測報中心。第111086號地震資訊。取自https://scweb.cwb.gov.tw/zh-tw/earthquake/details/2022091721411966086
31. 交通部中央氣象局地震測報中心。第111090號地震資訊。取自https://scweb.cwb.gov.tw/zh-tw/earthquake/details/2022091722452858090
32. 交通部中央氣象局地震測報中心。第111107號地震資訊。取自https://scweb.cwb.gov.tw/zh-tw/earthquake/details/2022091813191961107
33. 交通部中央氣象局地震測報中心。第111111號地震資訊。取自https://scweb.cwb.gov.tw/zh-tw/earthquake/details/2022091814441568111
34. 交通部中央氣象局地震測報中心。第109008號地震資訊。取自https://scweb.cwb.gov.tw/zh-tw/earthquake/details/2020021519000657008
35. 交通部中央氣象局地震測報中心。第111059號地震資訊。取自https://scweb.cwb.gov.tw/zh-tw/earthquake/details/2022062009050760059
36. 交通部中央氣象局地震測報中心。第111069號地震資訊。取自https://scweb.cwb.gov.tw/zh-tw/earthquake/details/2022062510271950069
37. 交通部中央氣象局地震測報中心。第111072號地震資訊。取自https://scweb.cwb.gov.tw/zh-tw/earthquake/details/2022062521343552072
38. Qiang, Z., Dian, C., Li, L., Xu, M., Ge, F., Liu, T., ... & Guo, M. (1999). Atellitic thermal infrared brightness temperature anomaly image—short-term and impending earthquake precursors. Science in China series D: Earth Sciences, 42, 313-324.
39. Ouzounov, D., & Freund, F. (2004). Mid-infrared emission prior to strong earthquakes analyzed by remote sensing data. Advances in space research, 33(3), 268-273.
40. 中央氣象局地震測報中心,地震百問,何謂震源機制?https://scweb.cwb.gov.tw/zh-TW/Guidance/FAQdetail/12
41. 交通部中央氣象局地震測報中心。第111086號震源機制資訊。取自https://scweb.cwb.gov.tw/zh-tw/earthquake/cmt/2022091721411966086
42. 交通部中央氣象局地震測報中心。第111090號震源機制資訊。取自https://scweb.cwb.gov.tw/zh-tw/earthquake/cmt/2022091722452858090
43. 交通部中央氣象局地震測報中心。第111107號震源機制資訊。取自https://scweb.cwb.gov.tw/zh-tw/earthquake/cmt/2022091813191961107
44. 交通部中央氣象局地震測報中心。第111111號震源機制資訊。取自https://scweb.cwb.gov.tw/zh-tw/earthquake/cmt/2022091814441568111
45. 交通部中央氣象局地震測報中心。第109008號震源機制資訊。取自https://scweb.cwb.gov.tw/zh-tw/earthquake/cmt/2020021519000657008
46. 交通部中央氣象局地震測報中心。第111059號震源機制資訊。取自https://scweb.cwb.gov.tw/zh-tw/earthquake/cmt/2022062009050760059
47. 交通部中央氣象局地震測報中心。第111069號震源機制資訊。取自https://scweb.cwb.gov.tw/zh-tw/earthquake/cmt/2022062510271950069
48. 交通部中央氣象局地震測報中心。第111072號震源機制資訊。取自https://scweb.cwb.gov.tw/zh-tw/earthquake/cmt/2022062521343552072 |