參考文獻 |
Achanta, R., Shaji, A., Smith, K., Lucchi, A., Fua, P., & Süsstrunk, S. (2010). Slic
superpixels (No. REP_WORK).
Asokan, A., & Anitha, J. J. E. S. I. (2019). Change detection techniques for remote
sensing applications: a survey. Earth Science Informatics, 12(2), 143-160.
Arya Krishnan, Chithira Rakshmi. (2015). Comparative Study on Pansharpening Methods for Satellite Images, International Research Journal of Engineering and Technology, 9(2), 2615-2620.
Baker, C., Lawrence, R. L., Montagne, C., & Patten, D. (2007). Change detection of wetland ecosystems using Landsat imagery and change vector analysis. Wetlands, 27(3), 610-619.
Celik, N. (2018, July). Change detection of urban areas in Ankara through Google Earth engine. In 2018 41st International Conference on Telecommunications and Signal Processing (TSP) (pp. 1-5). IEEE.
Ciriza, R., Sola, I., Albizua, L., Álvarez-Mozos, J., & González-Audícana, M. (2017). Automatic detection of uprooted orchards based on orthophoto texture analysis. Remote Sensing, 9(5), 492.
Classification Algorithms and Methods, “Introduction to Categorisation of Objects from their Data, ” Science Education through Earth Observation for High Schools, [Online]. Available: https://seos-project.eu/classification/classification-c01-p05.html. [Accessed 1 June 2023].
CSRSR, “System and Product,”[Online]. Available: https://www1.csrsr.ncu.edu.tw/rsrs/rsrs_product.php. [Accessed 21 January 2023].
Deng, X., Zhao, C., Lin, Y., Zhang, T., Qu, Y., Zhang, F., Wang, Z., Wu, F. 2014a. Downscaling the impacts of large-scale LUCC on surface temperature along with IPCC RCPs: a global perspective. Energies, 7(4), 2720-2739.
Desclée, B., Bogaert, P., & Defourny, P. (2006). Forest change detection by statistical object-based method. Remote sensing of environment, 102(1-2), 1-11.
Guidotti, R., Monreale, A., Ruggieri, S., Turini, F., Giannotti, F., & Pedreschi, D. (2018). A survey of methods for explaining black box models. ACM computing surveys (CSUR), 51(5), 1-42.
Haralick, R. M., Shanmugam, K., & Dinstein, I. H. (1973). Textural features for image classification. IEEE Transactions on systems, man, and cybernetics, (6), 610-621
Hölbling, D., Friedl, B., & Eisank, C. (2015). An object-based approach for semi-
automated landslide change detection and attribution of changes to landslide
classes in northern Taiwan. Earth Science Informatics, 8(2), 327-335.
Hurtt, G. C., Chini, L., Sahajpal, R., Frolking, S., Bodirsky, B. L., Calvin, K., Doelman, J. C., Fisk, J., Fujimori, S., Klein Goldewijk, K., Hasegawa, T., Havlik, P., Heinimann, A., Humpenöder, F., Jungclaus, J., Kaplan, J. O., Kennedy, J., Krisztin, T., Lawrence, D., Lawrence, P., Ma, L., Mertz, O., Pongratz, J., Popp, A., Poulter, B., Riahi, K., Shevliakova, E., Stehfest, E., Thornton, P., Tubiello, F. N., van Vuuren, D. P., and Zhang, X.: Harmonization of global land use change and management for the period 850–2100 (LUH2) for CMIP6, Geosci. Model Dev., 13, 5425–5464, https://doi.org/10.5194/gmd-13-5425-2020, 2020.
Huang, J., Liu, Y., Wang, M., Zheng, Y., Wang, J., & Ming, D. (2019). Change Detection of High Spatial Resolution Images Based on Region-Line Primitive Association Analysis and Evidence Fusion. Remote Sensing, 11(21), 2484.
ImageFeatures,“Gray Level Co-occurrence Matrix,” ImageFeatures, [Online]. Available: https://juliaimages.org/ImageFeatures.jl/stable/tutorials/glcm/. [Accessed 1 June 2023].
Kelly, M., Blanchard, S. D., Kersten, E., & Koy, K. (2011). Terrestrial remotely sensed imagery in support of public health: New avenues of research using object-based image analysis. Remote Sensing, 3(11), 2321-2345.
Lambin, E. F., Turner, B. L., Geist, H. J., Agbola, S. B., Angelsen, A., Bruce, J. W., ... & Xu, J. (2001). The causes of land-use and land-cover change: moving beyond the myths. Global environmental change, 11(4), 261-269.
Li, Q., Gong, H., Dai, H., Li, C., He, Z., Wang, W., ... & Mu, T. (2021). Unsupervised hyperspectral image change detection via deep learning self-generated credible labels. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 14, 9012-9024.
Li, Q., Gong, L., & Zhang, J. (2019). A correlation change detection method integrating PCA and multi-texture features of SAR image for building damage detection. European Journal of Remote Sensing, 52(1), 435-447.
Lister, T. W., Lister, A. J., & Alexander, E. (2014). Land use change monitoring in Maryland using a probabilistic sample and rapid photointerpretation. Applied Geography, 51, 1-7.
Liu, J., Liu, M., Tian, H., Zhuang, D., Zhang, Z., Zhang, W., ... & Deng, X. (2005). Spatial and temporal patterns of China′s cropland during 1990–2000: an analysis based on Landsat TM data. Remote sensing of Environment, 98(4), 442-456.
Liu, S., Zheng, Y., Dalponte, M., & Tong, X. (2020). A novel fire index-based burned area change detection approach using Landsat-8 OLI data. European journal of remote sensing, 53(1), 104-112.
Luo, H., Liu, C., Wu, C., & Guo, X. (2018). Urban change detection based on Dempster–Shafer theory for multitemporal very high-resolution imagery. Remote Sensing, 10(7), 980.
Magnussen, S., & Russo, G. (2012). Uncertainty in photo-interpreted forest inventory
variables and effects on estimates of error in Canada’s National Forest Inventory.
The Forestry Chronicle, 88(4), 439-447.
Mardiris, V., & Chatzis, V. (2016). A Configurable Design for Morphological Erosion and Dilation Operations in Image Processing using Quantum-dot Cellular Automata. Journal of Engineering Science & Technology Review, 9(2).
Massarelli C (2018) Fast detection of significantly transformed areas due to illegal waste burial with a procedure applicable to landsat images. Int J Remote Sens, 39:754–769. https://doi.org/10.1080/01431161. 2017.1390272.
Nielsen, A. A., Conradsen, K., & Simpson, J. J. (1998). Multivariate alteration detection (MAD) and MAF postprocessing in multispectral, bitemporal image data: New approaches to change detection studies. Remote Sensing of Environment, 64(1), 1-
190.
Polykretis, C., Grillakis, M. G., & Alexakis, D. D. (2020). Exploring the impact of various spectral indices on land cover change detection using change vector analysis: A case study of Crete Island, Greece. Remote Sensing, 12(2), 319.
Ruiz Hernandez, I. E., & Shi, W. (2018). A Random Forests classification method for urban land-use mapping integrating spatial metrics and texture analysis. International journal of remote sensing, 39(4), 1175-1198.
Rwanga, S. S., & Ndambuki, J. M. (2017). Accuracy assessment of land use/land cover
classification using remote sensing and GIS. International Journal of Geosciences,
8(04), 611.
Sheykhmousa, M., Kerle, N., Kuffer, M., & Ghaffarian, S. (2019). Post-disaster
recovery assessment with machine learning-derived land cover and land use
information. Remote sensing, 11(10), 1174.
Shukla, P. R., Skeg, J., Buendia, E. C., Masson-Delmotte, V., Pörtner, H. O., Roberts,
D. C., ... & Malley, J. (2019). Climate Change and Land: an IPCC special report on climate change, desertification, land degradation, sustainable land management, food security, and greenhouse gas fluxes in terrestrial ecosystems.
SINGH, A., 1989, Digital change detection techniques using remotely-sensed data,
International Journal of Remote Sensing, 10(6), pp.989-1003.
Song, W., & Deng, X. (2017). Land-use/land-cover change and ecosystem service
provision in China. Science of the Total Environment, 576, 705-719.
Song, X. P., Hansen, M. C., Stehman, S. V., Potapov, P. V., Tyukavina, A., Vermote,
E. F., & Townshend, J. R. (2018). Global land change from 1982 to 2016. Nature,
560(7720), 639-643.
TEEB (2012), The Economics of Ecosystems and Biodiversity in Local and Regional
Policy and Management. Edited by Heidi Wittmer and Haripriya Gundimeda.
Earthscan: London and Washington.
Touati, R., & Mignotte, M. (2017). An energy-based model encoding nonlocal pairwise
pixel interactions for multisensor change detection. IEEE Transactions on
Geoscience and Remote Sensing, 56(2), 1046-1058.
Ullah, S., Bhatti, N., & Zia, M. (2021). Adaptive tuning of SLIC parameter K.
Multimedia Tools and Applications, 80(17), 25649-25672.
Verburg, P. H., Van De Steeg, J., Veldkamp, A., & Willemen, L. (2009). From cover
change to land function dynamics: A major challenge to improve land
characterization. Journal of environmental management, 90(3), 1327-1335.
Wang, Z., Liu, Y., Ren, Y., & Ma, H. (2018). Object-Level double constrained method
for land cover change detection. Sensors, 19(1), 79.
Winkler, K., Fuchs, R., Rounsevell, M., & Herold, M. (2021). Global land use changes
are four times greater than previously estimated. Nature communications, 12(1),
1-10.
Yuan, F., Sawaya, K. E., Loeffelholz, B. C., & Bauer, M. E. (2005). Land cover
classification and change analysis of the Twin Cities (Minnesota) Metropolitan
Area by multitemporal Landsat remote sensing. Remote sensing of Environment,
98(2-3), 317-328.
Zhu, Z., & Woodcock, C. E. (2014). Continuous change detection and classification of
land cover using all available Landsat data. Remote sensing of Environment, 144, 152-171. |