參考文獻 |
[1] International Ocean Colour Coordinating Group [IOCCG]. Earth Observations in Support of Global Water Quality Monitoring, IOCCG Report Series No. 17. Dartmouth, NS: IOCCG. 2018.
[2] Environmental Protection Administration Executive Yuan, R.O.C. Taiwan. Sea area environmental classification and marine environmental quality standards. 2018.
[3] Luo, Y.; Liu, J.-W.; Wu, J.-W.; Yuan, Z.; Zhang, J.-W.; Gao, C.; Lin, Z.-Y. Comprehensive Assessment of Eutrophication in Xiamen Bay and Its Implications for Management Strategy in Southeast China. Int. J. Environ. Res. Public Health 2022, 19, 13055. https://doi.org/10.3390/ ijerph192013055. 2022.
[4] Agarwal, N. Sharma, R. Thapliyal, P. Gangwar, R. Kumar, P. Kumar, R. Geostationary Satellite-Based Observations for Ocean Applications. Current Science. 117. 506. 10.18520/cs/v117/i3/506-515. 2019.
[5] Klemas, Victor. Resolution requirements for coastal applications of new geostationary satellites. Proceedings of MTS/IEEE OCEANS, 2005. 2005. 227 -233 Vol. 1. 10.1109/OCEANS.2005.1639767. 2005.
[6] Romdani, Andhy & Chen, Jia-Lin & Chien, Hwa & Jing-Hua, Lin & Liao, ChingYuan & Hou, Cheng-Chien. Downdrift Port Siltation Adjacent to a River Mouth: Effects of Mesotidal Conditions and Typhoon. Journal of Waterway, Port, Coastal,
and Ocean Engineering. 149. 10.1061/JWPED5.WWENG-1940. 2023.
63
[7] Chau, P.M.; Wang, C.-K.; Huang, A.-T. The Spatial-Temporal Distribution of GOCI-Derived Suspended Sediment in Taiwan Coastal Water Induced by Typhoon Soudelor. Remote Sens. 2021, 13, 194. 2021.
[8] Chen, C.W.; Oguchi, T.; Hayakawa, Y.S.; Saito, H.; Chen, H.; Lin, G.W.; Wei, L.W.; Chao, Y.C. Sediment yield during typhoon events in relation to landslides, rainfall, and catchment areas in Taiwan. Geomorphology 2018, 303, 540–548. 2018.
[9] Hung, C.; Lin, G.-W.; Kuo, H.-L.; Zhang, J.-M.; Chen, C.-W.; Chen, H. Impact of an Extreme Typhoon Event on Subsequent Sediment Discharges and RainfallDriven Landslides in Affected Mountainous Regions of Taiwan. Geofluids 2018, 2018, 1–11. 2018.
[10] Chien, H.; Chiang, W.S.; Kao, S.J.; Liu, J.T.; Liu, K.K.; Liu, P.L.F. Sediment Dynamics observed in the Jhoushuei River and Adjacent Coastal Zone in Taiwan
Strait. Oceanography 2011, 24, 122–131. 2011.
[11] Kao, S. J., S. Jan, S. C. Hsu, T. Y. Lee, and M. Dai. Sediment budget in the Taiwan Strait with high fluvial sediment inputs from mountainous rivers: New observations and synthesis. Terr. Atmos. Ocean. Sci., 19, 525-546, doi:
10.3319/TAO.2008.19.5.525. 2008.
[12] Chen WB, Liu WC, Kimura N, Hsu MH. Particle release transport in Danshuei River estuarine system and adjacent coastal ocean: a modeling assessment. Environ Monit Assess. 2010 Sep;168(1-4):407-28. doi: 10.1007/s10661-009-1123-2. Epub 2009 Aug 13. PMID: 19680754. 2010.
[13] Huang, C.; Liu, Y.; Luo, Y.; Wang, Y.; Liu, X.; Zhang, Y.; Zhuang, Y.; Tian, Y. Improvement and Assessment of Ocean Color Algorithms in the Northwest 64 Pacific Fishing Ground Using Himawari-8, MODIS-Aqua, and VIIRS-SNPP. Remote Sens. 2022, 14, 3610. https://doi.org/10.3390/ rs14153610. 2022.
[14] Groom, S., Sathyendranath, S., Ban, Y., Bernard, S., Brewin, R., Brotas, V., Brockmann, C., Chauhan, P., Choi, J., Chuprin, A., Ciavatta, S., Cipollini, P., Donlon, C., Franz, B., He, X., Hirata, T., Jackson, T., Kampel, M., Krasemann, H., … Wang, M. Satellite Ocean Colour: Current Status and Future Perspective. In Frontiers in Marine Science (Vol. 6). Frontiers Media SA. https://doi.org/10.3389/fmars.2019.00485. 2019.
[15] Valdés, L., Lomas, M.W. New light for ship-based time series. In: What are Marine Ecological Time Series telling us about the ocean? A status report, pp. 11–17. Ed. by T. D. O′Brien, L. Lorenzoni, K. Isensee, and L. Valdés. IOC
UNESCO, IOC Technical Series, No. 129. 297 pp. 2017.
[16] Lopez-Betancur, D., Moreno, I., Guerrero-Mendez, C., Saucedo-Anaya, T., González, E., Bautista-Capetillo, C., & González-Trinidad, J. (2022).Convolutional Neural Network for Measurement of Suspended Solids and Turbidity. Applied Sciences, 12(12), 6079. MDPI AG. Retrieved from
http://dx.doi.org/10.3390/app12126079. 2022.
[17] Bin Omar, A., & Bin MatJafri, M. Turbidimeter Design and Analysis: A Review on Optical Fiber Sensors for the Measurement of Water Turbidity.Sensors, 9(10), 8311–8335. MDPI AG. Retrieved from http://dx.doi.org/10.3390/s91008311. 2009.
[18] Zhao, J., Zhang, F., Chen, S., Wang, C., Chen, J., Zhou, H., & Xue, Y. Remote Sensing Evaluation of Total Suspended Solids Dynamic with Markov Model: A
Case Study of Inland Reservoir across Administrative Boundary in South China. 65 Sensors, 20(23), 6911. MDPI AG. Retrieved from http://dx.doi.org/10.3390/s20236911. 2020.
[19] Wang, Chongyang & Chen, Shuisen & li, Dan & Wang, Danni & Liu, Wei & Yang, Ji. A Landsat-based model for retrieving total suspended solids concentration of estuaries and coasts in China. Geoscientific Model Development. 4347-4365. 10.5194/gmd-10-4347-2017. 2017.
[20] Yang, X., Mao, Z., Huang, H., & Zhu, Q. (2016). Using GOCI Retrieval Data to Initialize and Validate a Sediment Transport Model for Monitoring Diurnal Variation of SSC in Hangzhou Bay, China. Water, 8(3), 108. MDPI AG. Retrieved from http://dx.doi.org/10.3390/w8030108. 2016.
[21] He, X.; Bai, Y.; Pan, D.; Huang, N.; Dong, X.; Chen, J.; Chen, C.-T.A.; Cui, Q. Using geostationary satellite ocean color data to map the diurnal dynamics of suspended particulate matter in coastal waters. Remote Sens. Environ. 2013, 133, 225–239. 2013.
[22] Moon, J.E.; Park, Y.J.; Ryu, J.H.; Choi, J.K.; Ahn, J.H.; Min, J.E.; Son, Y.B.; Lee, S.J.; Han, H.J.; Ahn, Y.H. Initial validation of GOCI water products against
in situ data collected around Korean peninsula for 2010–2011. Ocean Sci. J. 2012, 47, 261–277. 2012.
[23] Franklin, J. B., Sathish, T., Vinithkumar, N. V., & Kirubagaran, R. A novel approach to predict chlorophyll-a in coastal-marine ecosystems using multiple linear regression and principal component scores. In Marine Pollution Bulletin
(Vol. 152, p. 110902). Elsevier BV. https://doi.org/10.1016/j.marpolbul.2020.110902. 2020.
[24] Pan, J., Huang, L., Devlin, A., & Lin, H. Quantification of Typhoon-Induced Phytoplankton Blooms Using Satellite Multi-Sensor Data. Remote Sensing, 10(2),
318. MDPI AG. Retrieved from http://dx.doi.org/10.3390/rs10020318. 2018.
[25] Ying Ying Tang, D., Wayne Chew, K., Ting, H.-Y., Sia, Y.-H., Gentili, F. G., Park, Y.-K., Banat, F., Culaba, A. B., Ma, Z., & Loke Show, P. Application of
regression and artificial neural network analysis of Red-Green-Blue image components in prediction of chlorophyll content in microalgae. In Bioresource Technology (Vol. 370, p. 128503). Elsevier BV.
https://doi.org/10.1016/j.biortech.2022.128503. 2023.
[26] Su, H., Lu, X., Chen, Z., Zhang, H., Lu, W., & Wu, W. (2021). Estimating Coastal Chlorophyll-A Concentration from Time-Series OLCI Data Based on Machine Learning. Remote Sensing, 13(4), 576. MDPI AG. Retrieved from
http://dx.doi.org/10.3390/rs13040576. 2021.
[27] Hu, C., Lee Z., and Franz, B.A. Chlorophyll-a algorithms for oligotrophic oceans: A novel approach based on three-band reflectance difference, J. Geophys.
Res., 117, C01011, doi:10.1029/2011JC007395. 2012.
[28] O′Reilly, J.E., & Werdell, P. J. Chlorophyll algorithms for ocean color sensors - OC4, OC5 & OC6. Remote Sensing of Environment, 229, 32-47. doi: 10.1016/j.rse.2019.04.021. 2019.
[29] Xiao, W., Wang, L., Laws, E., Xie, Y., Chen, J., Liu, X., Chen, B., & Huang, B. Realized niches explain spatial gradients in seasonal abundance of phytoplankton groups in the South China Sea. In Progress in Oceanography (Vol.
162, pp. 223–239). Elsevier BV. https://doi.org/10.1016/j.pocean.2018.03.008.
2018.
[30] Huang, Y.-G., Yang, H.-F., Jia, J.-J., Li, P., Zhang, W.-X., Wang, Y. P., Ding, Y.-F., Dai, Z.-J., Shi, B.-W., & Yang, S.-L. Declines in suspended sediment concentration and their geomorphological and biological impacts in the Yangtze
River Estuary and adjacent sea. In Estuarine, Coastal and Shelf Science (Vol. 265, p. 107708). Elsevier BV. https://doi.org/10.1016/j.ecss.2021.107708. 2022.
[31] Chen, C., Mao, Z., Tang, F., Han, G., & Jiang, Y. Declining riverine sediment input impact on spring phytoplankton bloom off the Yangtze River Estuary from
17-year satellite observation. In Continental Shelf Research (Vol. 135, pp. 86–91). Elsevier BV. https://doi.org/10.1016/j.csr.2017.01.012. 2017.
[32] Wang, Y., Chen, J., Zhou, F., Zhang, W., & Hao, Q. Spatial and Temporal Variations of Chlorophyll a and Primary Productivity in the Hangzhou Bay. Journal of Marine Science and Engineering, 10(3), 356. MDPI AG. Retrieved from http://dx.doi.org/10.3390/jmse10030356. 2022.
[33] Guo, K., Zou, T., Jiang, D., Tang, C., & Zhang, H. (). Variability of Yellow River turbid plume detected with satellite remote sensing during water-sediment regulation. In Continental Shelf Research (Vol. 135, pp. 74–85). Elsevier BV. https://doi.org/10.1016/j.csr.2017.01.017. 2017.
[34] Wang, T., & Zhang, S. Effect of Summer Typhoon Linfa on the Chlorophylla Concentration in the Continental Shelf Region of Northern South China Sea. Journal of Marine Science and Engineering, 9(8), 794. MDPI AG. Retrieved from
http://dx.doi.org/10.3390/jmse9080794. 2021.
[35] Lu, Z., & Gan, J. Controls of seasonal variability of phytoplankton blooms in the Pearl River Estuary. In Deep Sea Research Part II: Topical Studies in 68 Oceanography (Vol. 117, pp. 86–96). Elsevier BV. https://doi.org/10.1016/j.dsr2.2013.12.011. 2015.
[36] Tseng, Y.-H.; Lu, C.-Y.; Zheng, Q.; Ho, C.-R. Characteristic Analysis of Sea Surface Currents around Taiwan Island from CODAR Observations. Remote Sens. 2021, 13, 3025. https://doi.org/10.3390/ rs13153025. 2021.
[37] He, Q., Zhan, H., Xu, J., Cai, S., Zhan, W., Zhou, L., & Zha, G. Eddy-induced chlorophyll anomalies in the western South China Sea. Journal of Geophysical Research: Oceans, 124, 9487– 9506. https://doi.org/10.1029/2019JC015371. 2019.
[38] Hsu, P.-C., Lu, C.-Y., Hsu, T.-W., & Ho, C.-R. Diurnal to Seasonal Variations in Ocean Chlorophyll and Ocean Currents in the North of Taiwan Observed by Geostationary Ocean Color Imager and Coastal Radar. Remote Sensing, 12(17), 2853. MDPI AG. Retrieved from http://dx.doi.org/10.3390/rs12172853. 2020.
[39] Hung, C., Shih, M.-F., & Lin, T.-Y. The Climatological Analysis of Typhoon Tracks, Steering Flow, and the Pacific Subtropical High in the Vicinity of Taiwan and the Western North Pacific. Atmosphere, 11(5), 543. MDPI AG. Retrieved
from http://dx.doi.org/10.3390/atmos11050543. 2020.
[40] Hsu, P.-C.; Lee, H.-J.; Lu, C.-Y. Impacts of the Kuroshio and Tidal Currents on the Hydrological Characteristics of Yilan Bay, Northeastern Taiwan. Remote
Sens. 2021, 13, 4340. https://doi.org/ 10.3390/rs13214340. 2021.
[41] Pandey, R. S., & Liou, Y.-A. Typhoon strength rising in the past four decades. In Weather and Climate Extremes (Vol. 36, p. 100446). Elsevier BV. https://doi.org/10.1016/j.wace.2022.100446. 2022.
[42] National Disaster Prevention Technology Center. (2016). Typhoon Megi Disaster Report. Taiwan.
[43] Hong Kong Observatory. (2017). Tropical Cyclones in 2016.[44] Zhang, H., Liu, X., Wu, R., Liu, F., Yu, L., Shang, X., Qi, Y., et al. Ocean Response to Successive Typhoons Sarika and Haima (2016) Based on Data
Acquired via Multiple Satellites and Moored Array. Remote Sensing, 11(20), 2360. MDPI AG. Retrieved from http://dx.doi.org/10.3390/rs11202360. 2019.
[45] Yin, W., & Huang, D. Applications of geostationary satellite data in the study of ocean and coastal short-term processes. In Remote Sensing of Ocean and Coastal Environments (pp. 139–154). Elsevier. https://doi.org/10.1016/b978-0-12-819604-5.00009-3. 2021.
[46] Jeon, Ho-Kun & Cho, Hongyeon. Missing Pattern Analysis of the GOCI-I Optical Satellite Image Data. Ocean and Polar Research. 44. 179-190. 10.4217/OPR.2022009. 2022.
[47] Moon, K. Park, Y. Ishizaka J. Evaluation of chlorophyll retrievals from geostationary ocean color imager (GOCI) for the north-east Asian region. Remote Sens Environ 184:482–495. doi:10.1016/j.rse.2016.07.031. 2016.
[48] Choi, J.-K., Park, Y. J., Ahn, J. H., Lim, H.-S., Eom, J., and Ryu, J.-H. GOCI, the world′s first geostationary ocean color observation satellite, for the monitoring
of temporal variability in coastal water turbidity, J. Geophys. Res., 117, C09004, doi:10.1029/2012JC008046. 2012.
[49] Wang, M. Ahn, J-H. Jiang, L. Shi, W. Son, S. Park, Y-J. Ryu, J-H. Ocean color products from the Korean Geostationary Ocean Color Imager (GOCI). Optics express. 21. 3835-3849. 10.1364/OE.21.003835. 2013.
[50] Concha, J., Mannino, A., Franz, B., & Kim, W. Uncertainties in the Geostationary Ocean Color Imager (GOCI) Remote Sensing Reflectance for Assessing Diurnal Variability of Biogeochemical Processes. Remote Sensing, 11(3), 295. MDPI AG. Retrieved from http://dx.doi.org/10.3390/rs11030295. 2019.
[51] O′Reilly, J.E., and 24 Coauthors. SeaWiFS Postlaunch Calibration and Validation Analyses, Part 3. NASA Tech. Memo. 2000-206892, Vol. 11, S.B. Hooker and E.R. Firestone, Eds., NASA Goddard Space Flight Center, 49 pp.
2000.
[52] Mobley, C.; Werdell, P.; Franz, B.; Ahmad, Z.; Bailey, S. Atmospheric Correction for Satellite Ocean Color Radiometry; Technical Report NASA/TM2016-217551; NASA Goddard Space Flight Center: Greenbelt, MD, USA. 2016.
[53] Gordon, H.R.; Wang, M. Retrieval of water-leaving radiance and aerosol optical thickness over the oceans with SeaWiFS: A preliminary algorithm. Appl. Opt. 1994, 33, 443–452. 1994.
[54] Bailey, S.W.; Franz, B.A.; Werdell, P.J. Estimation of near-infrared waterleaving reflectance for satellite ocean color data processing. Opt. Express 2010, 18, 7521–7527. 2010.
[55] Ahmad, Z.; Franz, B.A.; McClain, C.R.; Kwiatkowska, E.J.; Werdell, J.; Shettle, E.P.; Holben, B.N. (2010). New aerosol models for the retrieval of aerosol
optical thickness and normalized water-leaving radiances from the SeaWiFS and MODIS sensors over coastal regions and open oceans. Appl. Opt. 2010, 49, 5545–5560. 2010.
71
[56] Morel, A.; Antoine, D.; Gentili, B. Bidirectional reflectance of oceanic waters: Accounting for Raman emission and varying particle scattering phase function.
Appl. Opt. 2002, 41, 6289–6306. 2002.
[57] Choi, M., Lim, H., Kim, J., Lee, S., Eck, T. F., Holben, B. N., Garay, M. J., Hyer, E. J., Saide, P. E., and Liu, H. Validation, comparison, and integration of
GOCI, AHI, MODIS, MISR, and VIIRS aerosol optical depth over East Asia during the 2016 KORUS-AQ campaign, Atmos. Meas. Tech., 12, 4619–4641, https://doi.org/10.5194/amt-12-4619-2019. 2019.
[58] Wang, G., Garcia, D., Liu, Y., de Jeu, R., & Johannes Dolman, A. A threedimensional gap filling method for large geophysical datasets: Application to global satellite soil moisture observations. In Environmental Modelling &
Software (Vol. 30, pp. 139–142). Elsevier BV. https://doi.org/10.1016/j.envsoft.2011.10.015. 2012.
[59] Garcia, D. Robust smoothing of gridded data in one and higher dimensions with missing values. In Computational Statistics & Data Analysis (Vol. 54, Issue 4, pp. 1167–1178). Elsevier BV. https://doi.org/10.1016/j.csda.2009.09.020.
2010.
[60] Xu, Y., & Chen, J. Remote sensing and buoy based monitoring of chlorophyll a in the Yangtze Estuary reveals nutrient-limited status dynamics: A case study
of typhoon. In Frontiers in Marine Science (Vol. 9). Frontiers Media SA. https://doi.org/10.3389/fmars.2022.1017936. 2022.
[61] Zheng, Z.-W.; Chen, Y.-R. (2022). Influences of Tidal Effect on Upper Ocean Responses to Typhoon Passages Surrounding Shore Region off Northeast Taiwan.
J. Mar. Sci. Eng. 2022, 10, 1419. https://doi.org/ 10.3390/jmse10101419. 2022.
[62] Piton, V., Herrmann, M., Marsaleix, P., Duhaut, T., Ngoc, T. B., Tran, M. C., Shearman, K., & Ouillon, S. Influence of winds, geostrophy and typhoons on the
seasonal variability of the circulation in the Gulf of Tonkin: A high-resolution 3D regional modeling study. In Regional Studies in Marine Science (Vol. 45, p. 101849). Elsevier BV. https://doi.org/10.1016/j.rsma.2021.101849. 2021. 2021
[63] Beckers, J. M., & Rixen, M. EOF calculations and data filling from incomplete oceanographic datasets. Journal of Atmospheric and Oceanic Technology, 20(12), 1839-1856. 2003.
[64] Alvera-Azcárate, A., Barth, A., & Weisberg, R. H. Use of singular value decomposition to examine the completeness of an oceanographic database. Journal of Atmospheric and Oceanic Technology, 24(9), 1577-1583. 2007.
[65] Kondrashov, D., & Ghil, M. Spatio-temporal filling of missing points in geophysical data sets. Nonlinear Processes in Geophysics, 13(2), 151-159. 2006.
[66] Hocke, K., & Kämpfer, N. Sudden stratospheric warmings seen in radiosonde data. Journal of Geophysical Research: Atmospheres, 114(D10). 2009.
[67] Ćatipović, L., Matić, F., & Kalinić, H. Reconstruction Methods in Oceanographic Satellite Data Observation—A Survey. In Journal of Marine Science and Engineering (Vol. 11, Issue 2, p. 340). MDPI AG. https://doi.org/10.3390/jmse11020340. 2023.
[68] Hsu, P.-C., Lu, C.-Y., Hsu, T.-W., & Ho, C.-R. Diurnal to Seasonal Variations in Ocean Chlorophyll and Ocean Currents in the North of Taiwan Observed by Geostationary Ocean Color Imager and Coastal Radar. In Remote Sensing (Vol. 12, Issue 17, p. 2853). MDPI AG. https://doi.org/10.3390/rs12172853.
[69] Central Weather Bureau. Typhoon Megi official report. 2016 |