參考文獻 |
[1] Helber, P., Bischke, B., Dengel, A., & Borth, D. (2019). Eurosat: A novel dataset and deep learning benchmark for land use and land cover classification. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 12(7), 2217-2226.
[2] Yaloveha, V., Hlavcheva, D., & Podorozhniak, A. (2021). Spectral Indexes Evaluation for Satellite Images Classification using CNN. Journal of Information and Organizational Sciences, 45(2), 435-449.
[3] Loyola-Gonzalez, O. (2019). Black-box vs. white-box: Understanding their advantages and weaknesses from a practical point of view. IEEE access, 7, 154096-154113.
[4] Esteva, A., Robicquet, A., Ramsundar, B., Kuleshov, V., DePristo, M., Chou, K., ... & Dean, J. (2019). A guide to deep learning in healthcare. Nature medicine, 25(1), 24-29.
[5] Papoutsis, I., Bountos, N. I., Zavras, A., Michail, D., & Tryfonopoulos, C. (2023). Benchmarking and scaling of deep learning models for land cover image classification. ISPRS Journal of Photogrammetry and Remote Sensing, 195, 250-268.
[6] Kussul, N., Lavreniuk, M., Skakun, S., & Shelestov, A. (2017). Deep learning classification of land cover and crop types using remote sensing data. IEEE Geoscience and Remote Sensing Letters, 14(5), 778-782.
[7] Springenberg, J. T., Dosovitskiy, A., Brox, T., & Riedmiller, M. (2014). Striving for simplicity: The all convolutional net. arXiv preprint arXiv:1412.6806.
[8] Huang, J., Chai, J., & Cho, S. (2020). Deep learning in finance and banking: A literature review and classification. Frontiers of Business Research in China, 14(1), 1-24.
[9] Voulodimos, A., Doulamis, N., Doulamis, A., & Protopapadakis, E. (2018). Deep learning for computer vision: A brief review. Computational intelligence and neuroscience, 2018.
[10] Sun, Z., Di, L., & Fang, H. (2019). Using long short-term memory recurrent neural network in land cover classification on Landsat and Cropland data layer time series. International journal of remote sensing, 40(2), 593-614.
[11] He, K., Zhang, X., Ren, S., & Sun, J. (2016). Deep residual learning for image recognition. In Proceedings of the IEEE conference on computer vision and pattern recognition (pp. 770-778).
[12] Sutskever, I., Vinyals, O., & Le, Q. V. (2014). Sequence to sequence learning with neural networks. Advances in neural information processing systems, 27.
[13] Pritt, M., & Chern, G. (2017, October). Satellite image classification with deep learning. In 2017 IEEE applied imagery pattern recognition workshop (AIPR) (pp. 1-7). IEEE.
[14] Ahmed, T., & Sabab, N. H. N. (2022). Classification and understanding of cloud structures via satellite images with EfficientUNet. SN Computer Science, 3, 1-11.
[15] Ma, L., Liu, Y., Zhang, X., Ye, Y., Yin, G., & Johnson, B. A. (2019). Deep learning in remote sensing applications: A meta-analysis and review. ISPRS journal of photogrammetry and remote sensing, 152, 166-177.
[16] Cheng, G., Yang, C., Yao, X., Guo, L., & Han, J. (2018). When deep learning meets metric learning: Remote sensing image scene classification via learning discriminative CNNs. IEEE transactions on geoscience and remote sensing, 56(5), 2811-2821.
[17] Mou, L., Bruzzone, L., & Zhu, X. X. (2018). Learning spectral-spatial-temporal features via a recurrent convolutional neural network for change detection in multispectral imagery. IEEE Transactions on Geoscience and Remote Sensing, 57(2), 924-935.
[18] Chen, H., & Shi, Z. (2020). A spatial-temporal attention-based method and a new dataset for remote sensing image change detection. Remote Sensing, 12(10), 1662.
[19] Chen, Y., Jiang, H., Li, C., Jia, X., & Ghamisi, P. (2016). Deep feature extraction and classification of hyperspectral images based on convolutional neural networks. IEEE transactions on geoscience and remote sensing, 54(10), 6232-6251.
[20] Xu, F., Uszkoreit, H., Du, Y., Fan, W., Zhao, D., & Zhu, J. (2019). Explainable AI: A brief survey on history, research areas, approaches and challenges. In Natural Language Processing and Chinese Computing: 8th CCF International Conference, NLPCC 2019, Dunhuang, China, October 9–14, 2019, Proceedings, Part II 8 (pp. 563-574). Springer International Publishing.
[21] Guidotti, R., Monreale, A., Ruggieri, S., Turini, F., Giannotti, F., & Pedreschi, D. (2018). A survey of methods for explaining black box models. ACM computing surveys (CSUR), 51(5), 1-42.
[22] Gunning, D., & Aha, D. (2019). DARPA’s explainable artificial intelligence (XAI) program. AI magazine, 40(2), 44-58.
[23] Kakogeorgiou, I., & Karantzalos, K. (2021). Evaluating explainable artificial intelligence methods for multi-label deep learning classification tasks in remote sensing. International Journal of Applied Earth Observation and Geoinformation, 103, 102520.
[24] Hoffman, R. R., Mueller, S. T., Klein, G., & Litman, J. (2018). Metrics for explainable AI: Challenges and prospects. arXiv preprint arXiv:1812.04608.
[25] Ali, S., Abuhmed, T., El-Sappagh, S., Muhammad, K., Alonso-Moral, J. M., Confalonieri, R., ... & Herrera, F. (2023). Explainable Artificial Intelligence (XAI): What we know and what is left to attain Trustworthy Artificial Intelligence. Information Fusion, 99, 101805.
[26] Simonyan, K., Vedaldi, A., & Zisserman, A. (2013). Deep inside convolutional networks: Visualising image classification models and saliency maps. arXiv preprint arXiv:1312.6034.
[27] Hsu, C. Y., & Li, W. (2023). Explainable GeoAI: can saliency maps help interpret artificial intelligence’s learning process? An empirical study on natural feature detection. International Journal of Geographical Information Science, 37(5), 963-987.
[28] Lundberg, S. M., & Lee, S. I. (2017). A unified approach to interpreting model predictions. Advances in neural information processing systems, 30.
[29] Peters, U. (2022). Explainable AI lacks regulative reasons: why AI and human decision-making are not equally opaque. AI and Ethics, 1-12.
[30] Iwana, B. K., Kuroki, R., & Uchida, S. (2019, October). Explaining convolutional neural networks using softmax gradient layer-wise relevance propagation. In 2019 IEEE/CVF International Conference on Computer Vision Workshop (ICCVW) (pp. 4176-4185). IEEE.
[31] Islam, M. R., Ahmed, M. U., Barua, S., & Begum, S. (2022). A systematic review of explainable artificial intelligence in terms of different application domains and tasks. Applied Sciences, 12(3), 1353.
[32] Zhang, Y., Weng, Y., & Lund, J. (2022). Applications of explainable artificial intelligence in diagnosis and surgery. Diagnostics, 12(2), 237.
[33] Chen, H. Y., & Lee, C. H. (2020). Vibration signals analysis by explainable artificial intelligence (XAI) approach: Application on bearing faults diagnosis. IEEE Access, 8, 134246-134256.
[34] Adadi, A., & Berrada, M. (2018). Peeking inside the black-box: a survey on explainable artificial intelligence (XAI). IEEE access, 6, 52138-52160.
[35] Shrikumar, A., Greenside, P., & Kundaje, A. (2017, July). Learning important features through propagating activation differences. In International conference on machine learning (pp. 3145-3153). PMLR.
[36] Sundararajan, M., Taly, A., & Yan, Q. (2017, July). Axiomatic attribution for deep networks. In International conference on machine learning (pp. 3319-3328). PMLR.
[37] Selvaraju, R. R., Cogswell, M., Das, A., Vedantam, R., Parikh, D., & Batra, D. (2017). Grad-cam: Visual explanations from deep networks via gradient-based localization. In Proceedings of the IEEE international conference on computer vision (pp. 618-626).
[38] Zeiler, M. D., & Fergus, R. (2014). Visualizing and understanding convolutional networks. In Computer Vision–ECCV 2014: 13th European Conference, Zurich, Switzerland, September 6-12, 2014, Proceedings, Part I 13 (pp. 818-833). Springer International Publishing.
[39] Ribeiro, M. T., Singh, S., & Guestrin, C. (2016, August). " Why should I trust you?" Explaining the predictions of any classifier. In Proceedings of the 22nd ACM SIGKDD international conference on knowledge discovery and data mining (pp. 1135-1144).
[40] Bach, S., Binder, A., Montavon, G., Klauschen, F., Müller, K. R., & Samek, W. (2015). On pixel-wise explanations for non-linear classifier decisions by layer-wise relevance propagation. PloS one, 10(7), e0130140.
[41] Montavon, G., Lapuschkin, S., Binder, A., Samek, W., & Müller, K. R. (2017). Explaining nonlinear classification decisions with deep taylor decomposition. Pattern recognition, 65, 211-222.
[42] Gu, J., Yang, Y., & Tresp, V. (2019). Understanding individual decisions of cnns via contrastive backpropagation. In Computer Vision–ACCV 2018: 14th Asian Conference on Computer Vision, Perth, Australia, December 2–6, 2018, Revised Selected Papers, Part III 14 (pp. 119-134). Springer International Publishing.
[43] Hasanpour Zaryabi, E., Moradi, L., Kalantar, B., Ueda, N., & Halin, A. A. (2022). Unboxing the black box of attention mechanisms in remote sensing big data using xai. Remote Sensing, 14(24), 6254.
[44] Sumbul, G., Charfuelan, M., Demir, B., & Markl, V. (2019, July). Bigearthnet: A large-scale benchmark archive for remote sensing image understanding. In IGARSS 2019-2019 IEEE International Geoscience and Remote Sensing Symposium (pp. 5901-5904). IEEE.
[45] Sarker, I. H. (2021). Deep learning: a comprehensive overview on techniques, taxonomy, applications and research directions. SN Computer Science, 2(6), 420.
[46] Lakshmanna, K., Kaluri, R., Gundluru, N., Alzamil, Z. S., Rajput, D. S., Khan, A. A., ... & Alhussen, A. (2022). A review on deep learning techniques for IoT data. Electronics, 11(10), 1604.
[47] O′Shea, K., & Nash, R. (2015). An introduction to convolutional neural networks. arXiv preprint arXiv:1511.08458.
[48] Carranza-García, M., García-Gutiérrez, J., & Riquelme, J. C. (2019). A framework for evaluating land use and land cover classification using convolutional neural networks. Remote Sensing, 11(3), 274.
[49] Masolele, R. N., De Sy, V., Herold, M., Marcos, D., Verbesselt, J., Gieseke, F., ... & Martius, C. (2021). Spatial and temporal deep learning methods for deriving land-use following deforestation: A pan-tropical case study using Landsat time series. Remote Sensing of Environment, 264, 112600.
[50] Zhou, B., Khosla, A., Lapedriza, A., Oliva, A., & Torralba, A. (2016). Learning deep features for discriminative localization. In Proceedings of the IEEE conference on computer vision and pattern recognition (pp. 2921-2929).
[51] Casalicchio, G., Molnar, C., & Bischl, B. (2019). Visualizing the feature importance for black box models. In Machine Learning and Knowledge Discovery in Databases: European Conference, ECML PKDD 2018, Dublin, Ireland, September 10–14, 2018, Proceedings, Part I 18 (pp. 655-670). Springer International Publishing.
[52] Montavon, G., Binder, A., Lapuschkin, S., Samek, W., & Müller, K. R. (2019). Layer-wise relevance propagation: an overview. Explainable AI: interpreting, explaining and visualizing deep learning, 193-209.
[53] Byrne, R. M. (2019, August). Counterfactuals in Explainable Artificial Intelligence (XAI): Evidence from Human Reasoning. In IJCAI (pp. 6276-6282).
[54] Lapuschkin, S., Wäldchen, S., Binder, A., Montavon, G., Samek, W., & Müller, K. R. (2019). Unmasking Clever Hans predictors and assessing what machines really learn. Nature communications, 10(1), 1096.
[55] Sumbul, G., Kang, J., Kreuziger, T., Marcelino, F., Costa, H., Benevides, P., ... & Demir, B. (2020). BigEarthNet dataset with a new class-nomenclature for remote sensing image understanding. arXiv preprint arXiv:2001.06372.
[56] Gesmundo, A. (2022). A continual development methodology for large-scale multitask dynamic ml systems. arXiv preprint arXiv:2209.07326.
[57] Neumann, M., Pinto, A. S., Zhai, X., & Houlsby, N. (2019). In-domain representation learning for remote sensing. arXiv preprint arXiv:1911.06721.
[58] Wang, Y., Albrecht, C. M., Braham, N. A. A., Mou, L., & Zhu, X. X. (2022). Self-supervised learning in remote sensing: A review. arXiv preprint arXiv:2206.13188.
[59] Allam, S. (2016). The Impact of Artificial Intelligence on Innovation-An Exploratory Analysis. Sudhir Allam," The Impact of Artificial Intelligence on Innovation-An Exploratory Analysis", International Journal of Creative Research Thoughts (IJCRT), ISSN, 2320-2882.
[60] Gunning, D. (2017). Explainable artificial intelligence (xai). Defense advanced research projects agency (DARPA), nd Web, 2(2), 1.
[61] Longo, L., Goebel, R., Lecue, F., Kieseberg, P., & Holzinger, A. (2020, August). Explainable artificial intelligence: Concepts, applications, research challenges and visions. In International cross-domain conference for machine learning and knowledge extraction (pp. 1-16). Cham: Springer International Publishing.
[62] Hohman, F., Kahng, M., Pienta, R., & Chau, D. H. (2018). Visual analytics in deep learning: An interrogative survey for the next frontiers. IEEE transactions on visualization and computer graphics, 25(8), 2674-2693.
[63] Arrieta, A. B., Díaz-Rodríguez, N., Del Ser, J., Bennetot, A., Tabik, S., Barbado, A., ... & Herrera, F. (2020). Explainable Artificial Intelligence (XAI): Concepts, taxonomies, opportunities and challenges toward responsible AI. Information fusion, 58, 82-115.
[64] Szegedy, C., Liu, W., Jia, Y., Sermanet, P., Reed, S., Anguelov, D., ... & Rabinovich, A. (2015). Going deeper with convolutions. In Proceedings of the IEEE conference on computer vision and pattern recognition (pp. 1-9).
[65] Russakovsky, O., Deng, J., Su, H., Krause, J., Satheesh, S., Ma, S., ... & Fei-Fei, L. (2015). Imagenet large scale visual recognition challenge. International journal of computer vision, 115, 211-252.
[66] Chaudhuri, U., Dey, S., Datcu, M., Banerjee, B., & Bhattacharya, A. (2021). Interband retrieval and classification using the multilabeled sentinel-2 bigearthnet archive. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 14, 9884-9898.
[67] Patel, N., & Mukherjee, R. (2015). Extraction of impervious features from spectral indices using artificial neural network. Arabian Journal of Geosciences, 8, 3729-3741.
[68] Chen, J., Yang, K., Chen, S., Yang, C., Zhang, S., & He, L. (2019). Enhanced normalized difference index for impervious surface area estimation at the plateau basin scale. Journal of Applied Remote Sensing, 13(1), 016502-016502.
[69] Lapuschkin, S., Binder, A., Montavon, G., Muller, K.R., Samek, W.: Analyzing classifiers: Fisher vectors and deep neural networks. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition. pp. 2912–2920 (2016)
[70] Motohka, T., Nasahara, K. N., Oguma, H., & Tsuchida, S. (2010). Applicability of green-red vegetation index for remote sensing of vegetation phenology. Remote Sensing, 2(10), 2369-2387.
[71] Sun, Y., Qin, Q., Ren, H., Zhang, T., & Chen, S. (2019). Red-edge band vegetation indices for leaf area index estimation from sentinel-2/msi imagery. IEEE Transactions on Geoscience and Remote Sensing, 58(2), 826-840.
[72] Vescovo, L., Wohlfahrt, G., Balzarolo, M., Pilloni, S., Sottocornola, M., Rodeghiero, M., & Gianelle, D. (2012). New spectral vegetation indices based on the near-infrared shoulder wavelengths for remote detection of grassland phytomass. International journal of remote sensing, 33(7), 2178-2195.
[73] Rouse, J. W., Haas, R. H., Schell, J. A., & Deering, D. W. (1974). Monitoring vegetation systems in the Great Plains with ERTS. NASA Spec. Publ, 351(1), 309.
[74] Parekh, J. R., Poortinga, A., Bhandari, B., Mayer, T., Saah, D., & Chishtie, F. (2021). Automatic detection of impervious surfaces from remotely sensed data using deep learning. Remote Sensing, 13(16), 3166.
[75] Jiang, W., Ni, Y., Pang, Z., He, G., Fu, J., Lu, J., ... & Lei, T. (2020). A new index for identifying water body from sentinel-2 satellite remote sensing imagery. ISPRS Annals of the Photogrammetry, Remote Sensing and Spatial Information Sciences, 3, 33-38. |