博碩士論文 110329015 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:36 、訪客IP:3.19.31.73
姓名 戴國瑜(Kuo-Yu Tai)  查詢紙本館藏   畢業系所 材料科學與工程研究所
論文名稱 質子傳輸型固態氧化物燃料電池之水電解電化學性能量測與探討
(Electrochemical Performance on Water Electrolysis of Protonic Ceramic Electrochemical Cells)
相關論文
★ 鋅空氣電池之電解質開發★ 添加石墨烯助導劑對活性碳超高電容電極性質的影響
★ 耐高壓離子液體電解質★ 熱裂解法製備RuO2-Ta2O5/Ti電極 應用於離子液體電解液
★ 碳系超級電容器用耐高壓電解液研發★ 離子液體與碸類溶劑混合型電解液應用於鋰離子電池矽負極材料
★ 三元素摻雜LLTO混LLZO應用鋰離子電池★ 以濕蝕刻法於可撓性聚亞醯胺基板製作微通孔之研究
★ 以二氧化釩奈米粒子調變矽化鎂熱電材料之性能★ 可充電式鋁電池的 4-ethylpyridine–AlCl3電解液、規則中孔碳正極材料以及自放電特性研究
★ 釹摻雜鑭鍶鈷鐵奈米纖維應用於質子傳輸型陶瓷電化學電池空氣電極★ 於丁二腈電解質添加碳酸乙烯酯對鋰離子電池性能之影響
★ 多孔鎳集電層應用於三維微型固態超級電容器★ 二氧化錳/銀修飾奈米碳纖維應用於超級電容器
★ 氧化鎳-鑭鍶鈷鐵奈米纖維陰極電極應用於質子傳導型固態氧化物電化學電池★ 應用丁二腈基離子導體修飾PVDF-HFP 複合聚合物電解質與鋰電極界面之高穩定鋰離子電池
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   至系統瀏覽論文 ( 永不開放)
摘要(中) 可逆固態氧化物電池(Reversible Solid Oxide Fuel Cells, R-SOFCs)為一種兼具發電與儲能功能的可逆燃料電池。SOEC在高溫下電解水氣並以氫能進行電力儲存,待需要電力時再將氫能進行SOFC轉換成電力使用。該方法可以避免再生能源之間歇性發電,導致電力可能發生輸出斷層,即可有效提升可再生能源的產量。另外,此裝置可視為一個既穩定又乾淨的系統,並同時降低溫室氣體排放量,因為副產物僅有水氣,可當作新世代的潔淨能源。
在本實驗研究中,將探討LSCF以及GCCCO作為固態氧化物燃料電池之空氣電極材料,以及通過使用旋轉塗佈以及脈衝雷射技術製備空氣電極功能層的方法,探討其單電池於R-SOFC下的性能。LSCF作為空氣電極具有良好的電子與氧離子傳導能力,且在中溫操作下具有足夠高的雙向輸出性能;而GCCCO具有良好的電子、氧離子及質子之傳輸能力,可以在中溫下進一步提升R-SOFC性能。另外,將透過改變空氣電極功能層的製備方法,進一步降低歐姆和極化阻抗,使得單電池之能量密度以及電流轉換效率進一步地提升。因此本實驗研究將建立一套可靠的燃料電池(FC)與電解電池(EC)的測量方法以及數據分析,並在不同測量溫度下探討其電化學性能。
本實驗研究顯示,透過PLD製備空氣電極功能層的GCCCO單電池,其FC模式在800 ℃下的最高功率密度為962.4 mW/cm2,與旋轉塗佈製備的LSCF單電池相比高了128 %,其原因為歐姆阻抗以及極化阻抗分別降低了54 %和85 %。而PLD製備空氣電極功能層的GCCCO單電池在EC模式下,其產氫量為3.31E-06 g/s以及其法拉第效率為41.5 %,相對旋轉塗佈製備的LSCF單電池而言僅有25.7 %。
摘要(英) Operation of Reversible Solid Oxide Fuel Cells (R-SOFCs) have both power generation mode (SOFC) and energy storage mode (SOEC). SOEC electrolyzes water vapor at high temperature and stores electricity as hydrogen energy. When the times as electricity is needed, hydrogen is then converted into electricity by SOFC mode. In this way, the characteristics of intermittent power when generating electricity by renewable energy can be avoided, which may cause electricity output faults if more electricity was required at busy times. In addition, this device can be regarded as a stable and clean system as water vapor is the only by-product, which may also reduce greenhouse gas emissions.
In this study, the performance of LSCF and GCCCO as air electrode in R-SOFC, alongside with different methods of preparing interlayer, spin coating and PLD, were explored. As an air electrode, both LSCF and GCCCO has good electron and oxygen ion conductivities, and also shows good performance in R-SOFC at medium temperature. However, GCCCO can also conduct protons, which may further increase the performance of R-SOFC. Furthermore, the ohmic and polarization resistance will be further reduced by changing the preparation method of the interlayer. Hence, the maximum power density and Faradic efficiency of a single cell can be further improved. Moreover, a reliable measurement method will be established in both FC and EC mode in this study, as well as its electrochemical data analysis on different temperatures will be discussed.
This experimental study shows that the maximum power density of the GCCCO single cell prepared by PLD interlayer at 800°C in FC mode is 962.4 mW/cm2, which is 128 % higher than the LSCF single cell prepared by spin coating interlayer. Because the ohmic and polarization impedance are reduced by about 54 % and 85 % respectively. In EC mode, the GCCCO single cell prepared by PLD interlayer has a hydrogen production rate of 3.31E-06 g/s and its Faradaic efficiency of 41.5 %. In comparison, the Faradaic efficiency of LSCF single cell prepared by spin coating has only 25.7%.
關鍵字(中) ★ 可逆固態氧化物電池
★ 燃料電池
★ 電解電池
★ 旋轉塗佈技術
★ 脈衝雷射沉積技術
★ 空氣電極功能層
★ LSCF
★ GCCCO
關鍵字(英) ★ Reversible Solid Oxide Fuel Cells (R-SOFC)
★ fuel cells
★ electrolysis cells
★ spin coating
★ pulsed laser deposition
★ interlayer
★ LSCF
★ GCCCO
論文目次 摘要 VI
Abstract VIII
致謝 X
目錄 XI
圖目錄 XIV
表目錄 XVII
第一章、前言 1
第二章、實驗原理及文獻回顧 3
2.1 燃料電池簡介 3
2.2 質子傳輸型固態氧化物燃料電池 5
2.2.1質子傳輸型固態氧化物燃料電池之原理 5
2.2.2質子傳輸型固態氧化物燃料電池之結構 7
2.3質子傳輸型固態氧化物電解電池 9
2.3.1質子傳輸型固態氧化物電解電池之原理 9
2.3.2質子傳輸型固態氧化物電解電池之結構 10
2.3.3水電解原理 10
2.3.4電解電流原理 13
2.3.5漏電流原理 14
2.3.6產氫量分析 15
2.4空氣電極材料與傳輸機制 17
2.4.1空氣電極種類介紹 17
2.4.2 MIEC傳輸機制 19
2.4.3鈣鈦礦(Perovskite)結構及性質 20
2.4.4三重導體原理及傳輸機制 22
2.5空氣電極功能層 24
2.5.1空氣電極功能層之原理 24
2.5.2以脈衝雷射技術製備空氣電極功能層 25
2.6電化學分析原理 27
2.6.1極化曲線(I-V curve)之原理 27
2.6.2電化學交流阻抗頻譜之原理 29
2.6.3等效電路之簡介 31
2.7電池製備技術 33
2.7.1乾壓成型技術(Dry pressing technique) 33
2.7.2刮刀成型技術(Tape casting technique) 33
2.7.3旋轉塗佈技術(Spin coating technique) 34
2.7.4脈衝雷射沉積技術(Pulsed Laser Deposition technique) 35
2.8 研究動機及目的 36
第三章、實驗方法 37
3.1實驗藥品 37
3.2實驗方法及流程 38
3.2.1粉末合成 38
3.2.2刮刀成型技術製備陽極基板 39
3.2.3旋轉塗佈技術製備半電池 40
3.2.4旋轉塗佈技術製備LSCF空氣電極功能層全電池 41
3.2.5脈衝雷射沉積技術製備GCCCO空氣電極功能層全電池 42
3.3材料性質分析 45
3.3.1 X光粉末繞射儀 45
3.3.2掃描式電子顯微鏡(Scanning electron microscopy, SEM) 45
3.3.3氣相層析儀(Gas Chromatography, GC) 46
3.4單電池I-V性能量測 48
3.5電化學交流阻抗分析 49
3.6單電池之電解水產氫分析 49
3.6.1 GC檢量線製作 49
3.6.2量測漏電流 51
3.6.3量測總電流 51
3.6.4量測產氫量與法拉第效率 51
第四章、結果與討論 53
4.1材料相分析 53
4.1.1電解質粉末之相分析 53
4.1.2單電池之相分析 54
4.2單電池之I-V性能量測與分析 55
4.3單電池之EIS量測與分析 57
4.4單電池之電解水產氫量測與分析 61
第五章、結論 68
第六章、參考文獻 69
參考文獻 [1] S. Iida, K. Sakata, “Hydrogen technologies and developments in Japan”, Clean Energy, Vol 3, pp. 105-113, (2019).
[2] J. Moore, B. Shabani, “A Critical Study of Stationary Energy Storage Policies in Australia in an International Context: The Role of Hydrogen and Battery Technologies”, Energies, Vol 9, pp. 674-702, (2016).
[3] IEA, Technology Report, The Future of Hydrogen (2019).
[4] IRENA, Report prepared for the 2nd Hydrogen Energy Ministerial Meeting in Tokyo, Japan (2019).
[5] J. Mermelstein, O. Posdziech, “Development and Demonstration of a Novel Reversible SOFC System for Utility and Micro Grid Energy Storage”, Fuel Cells, Vol 17, pp. 562-570, (2017).
[6] W.R. Grove, “On voltaic series and the combination of gases by platinum” Philosophical Magazine and Journal of Science, Vol 14, pp. 127–130, (1839).
[7] Yunus Çengel, “Thermodynamics, 7e” Michael A. Boles, North Carolina State University—Raleigh, ISBN: 007352932x
[8] T. Miruszewski, K. Dzierzgowski, P. Winiarz, S. Wachowski, A. Mielewczyk-Gryn, M. Gazda, “Hebb-Wagner polarization method for determining the oxygen conductivity in barium cerate-zirconate”, Journal of Materials Chemistry A, Vol. 10, pp. 7218, (2022).
[9] W. Bian, W. Wu, B. Wang, W. Tang, M. Zhou, C. Jin, H. Ding, W. Fan, Y. Dong, J. Li, D. Ding, “Revitalizing interface in protonic ceramic cells by acid etch”, Nature, Vol. 604, pp. 479, (2022).
[10] J. R. Mawdsley, J. D. Carter, A. J. Kropf, B. Yildiz, V. A. Maroni, “Post-test evaluation of oxygen electrodes from solid oxide electrolysis stacks”, International Journal of Hydrogen Energy, Vol. 34, pp. 4198-4207, (2009).
[11] Y. Okumura, Y. Nose, J. Katayama, T. Uda, “High performance protonic ceramic fuel cells with acid-etched surfaces”, Journal of The Electrochemical Society, Vol. 158, pp. B1067-B1071, (2011).
[12] H. Sumi, H. Shinada, Y. Yamaguchi, T. Yamaguchi, Y. Fuhishiro, “Degradation evaluation by distribution of relaxation times analysis for microtubular solid oxide fuel cells”, Electrochimica Acta, Vol. 39, pp. 135913, (2020).
[13] P. Mottaghizadeh, M. Fardadi, F. Jabbari, J. Brouwer,: Dynamics and control of a thermally self-sustaining energy storage system using integrated solid oxide cells for an islanded building”, International Journa of Hydrogen Energy, Vol. 46, pp. 24891-24908, (2021).
[14] S. Z. Golkhatmi, M. I. Asghar, P. D. Lund, “A review on solid oxide fuel cell durability: Latest progress, mechanisms, and study tools”, Renewable and Sustainable Energy Reviews, Vol. 161, pp. 112339, (2022).
[15] 黃鎮江,「燃料電池」,新北市:全華圖書,ISBN 978-986-463-486-6(平裝),2017。
[16] L. Bi, S. Boulfrada, E. Traversa, “Steam electrolysis by solid oxide electrolysis cells (SOECs) with proton-conducting oxides”, Chemical Society Reviews, Vol 43, pp. 8255-8270, (2014).
[17] L. Malavasi, C. A. J. Fisherb, M. S. Islam, “Oxide-ion and proton conducting electrolyte materials for clean energy applications: structural and mechanistic features”, Chemical Society Reviews, Vol 39, pp. 4370-4387, (2010).
[18] M.R. Somalu, N.W. Norman, A. Muchtar, “A short review on the proton conducting electrolytes for solid oxide fuel cell applications”, Journal of Advanced Research in Fluid Mechanics and Thermal Sciences, Vol. 52, pp. 115-122, (2018).
[19] L. Bi, E.H. Da′as, S.P. Shafi, “Proton-conducting solid oxide fuel cell (SOFC) with Y-doped BaZrO3 electrolyte”, Electrochemistry Communications, Vol. 80, pp. 20-23, (2017).
[20] Z.H. Chen, R. Ran, W. Zhou, Z.P. Shao, S.M. Liu, “Assessment of Ba0.5Sr0.5Co1-yFeyO3-δ (y=0.0-1.0) for prospective application as cathode for IT-SOFCs or oxygen permeating membrane”, Electrochimica Acta, Vol. 52, pp. 7343-7351, (2007).
[21] C.A.J. Fisher, M. Yoshiya, Y. Iwamoto, J. Ishii, M. Asanuma, K. Yabuta, “Oxide ion diffusion in perovskite-structured Ba1-xSrxCo1-yFeyO2.5: a molecular dynamics study”, Solid State Ionics, Vol. 177, pp. 3425-3431, (2007).
[22] W. Zhou, R. Ran, Z.P. Shao, R. Cai, W.Q. Jin, N.P. Xu, J.M. Ahn, “Electrochemical performanc of silver-modified Ba0.5Sr0.5Co0.8Fe0.2O3-δ cathodes prepared via electroless deposition”, Electrochimica Acta, Vol. 53, pp. 4370-4380, (2008).
[23] T. Takahashi, H. Iwahara, “Ionic conduction in perovskite-type oxide solid solution and its application to the solid electrolyte fuel cell”, Energy Conversion, Vol. 11, pp. 105-111, (1971).
[24] O. Ulleberg, “Modeling of advanced alkaline electrolyzers: a system simulation approach”, International Journal of Hydrogen Energy, Vol. 28, pp. 21-33, (2003).
[25] S. Koomson, C. Lee, “Experimental analysis of internal leakage current using a 100 cm2 class planar solid oxide fuel cell”, International Journal of Hydrogen Energy, Vol. 46, pp. 31807-31815, (2021).
[26] M. Mori, T. Mrzljak, B. Drobnic, M. Sekavcnik, “Integral characteristics of hydrogen production in alkaline electrolysers”, Journal of Mechanical Engineering, Vol. 59, pp. 585-594, (2013).
[27] M.A. Azimova, S. McIntosh, “On the reversibility of anode supported proton conducting solid oxide cells”, Solid State Ionics, Vol. 203, pp. 57-61, (2011).
[28] S. Li, K. Xie, “Composite Oxygen Electrode Based on LSCF and BSCF for Steam Electrolysis in a Proton-Conducting Solid Oxide Electrolyzer”, Journal of Eletrochem. Soc., Vol. 160, pp. F224-F233, (2013).
[29] R. Qiu, W. Lian, Y. Ou, Z. Tao, Y. Cui, Z. Tian, C. Wang, Y. Chen, J. Liu, L. Lei, J. Zhang, “Multifactor theoretical analysis of current leakage in proton-conducting solid oxide fuel cells”, Journal of Power Sorces, Vol. 505, pp. 230038, (2021).
[30] M. Dippon, S.M. Babiniec, H. Ding, S. Ricote, N.P. Sullivan, “Exploring electronic conduction through BaCexZr0.9-xY0.1O3-d proton-conducting ceramics”, Solid State Ionics, Vol. 286, pp. 117-121, (2016).
[31] W. Wu, H. Ding, Y. Zhang, Y. Ding, P. Katiyar, P. K. Majumdar, T. He, D. Ding, “3D self-architectured steam electrode enable efficient and durable hydrogen production in a proton-conducting solid oxide electrolysis cell at temperatures lower than 600 oC”, Advanced Science, Vol.5, pp. 1800360, (2018).
[32] H. Zheng, M. Riegraf, N. Sata, R. Costa, “A double perovskite oxygen electrode in Zr-rich proton conducting ceramic cells for efficient electricity generation and hydrogen production”, Journal of Materials Chemistry A, Vol.11, pp.10955, (2023).
[33] J. K. Jung, I.G. Kim, K. S. Chung, U. B. Baek, “Gas chromatography techniques to evaluate the hydrogen permeation characteristics in rubber: ethylene propylene diene monomer”, Scientific Reports, Vol.11, pp. 4859, (2021).
[34] C. Duan, R. Kee, H. Zhu, N. Sullivan, L. Zhu, L. Bian, D. Jennings, R. O’Hayre, “Highly efficient reversible protonic ceramic electrochemical cells for power generation and fuel production”, Nature Energy, Vol. 4, pp. 230-240, (2019).
[35] S. P. Jiang, “Development of lanthanum strontium cobalt ferrite perovskite electrodes of solid oxide fuel cells – A review”, International Journal of Hydrogen Energy, Vol. 44, pp. 7448-7493, (2019).
[36] Y. Zhang, R. Knibbe, J. Sunarso, Y. Zhong, W. Zhou, Z. Shao, Z. Zhu, “Recent progress on advanced materials for solid‐oxide fuel cells operating below 500 °C”, Advanced Materials, Vol 29, pp. 170132-170160, (2017).
[37] R. Peng, T. Wu, W. Liu, X. Liu, G. Meng, “Cathode processes and materials for solid oxide fuel cells with proton conductors as electrolytes”, Journal of Materials Chemistry, Vol 20, pp. 6218-6225, (2010).
[38] F. He, D. Song, R. Peng, G. Meng, S. Yang, “Electrode performance and analysis of reversible solid oxide fuel cells with proton conducting electrolyte of BaCe0.5Zr0.3Y0.2O3-d”, Journal of Power Sources, Vol. 195, pp. 3359-3364, (2010).
[39] A. Ndubuisi, S. Abouali, K. Singh, V. Thangadurai, “Recent advances, practical challenges, and perspectives of intermediate temperature solid oxide fuel cell cathodes”, Journal of Materials Chenistry A,Vol 10, pp. 2196-2227, (2022).
[40] L. W. Tai, M. M. Nasrallah, H. U. Anderson, D. M. Sparlin, S. R. Sehlin, “Structure and electrical properties of La1-xSrxCo1-yFeyO3 Part 1. The system of La0.8Sr0.2Co1-yFeyO3”, Solid State Ionics, Vol 76, pp. 259-271, (1995).
[41] L. W. Tai, M. M. Nasrallah, H. U. Anderson, D. M. Sparlin, S. R. Sehlin, “Structure and electrical properties of La1-xSrxCo1-yFeyO3 Part 2. The system of La1-xSrxCo0.2Fe0.8”, Solid State Ionics, Vol 76, pp. 273-283, (1995).
[42] J. Kim, S. Sengodan, G. Kwon, D. Ding, J. Shin, M.L. Liu, G. Kim, “Triple-conducting layered perovskites as cathode materials for proton-conducting solid oxide fuel cells”, Chemistry Sustainability Energy Materials, Vol. 7, pp. 2811-2815, (2014).
[43] C. Tang, Y. Yao, N. Wang, X. Zhang, F. Zheng, L. Du, D. Luo, Y. Aoki, S. Ye, “Green hydrogen production by intermediate-temperature protonic solid oxide electrolysis cells: Advances, challenges, and perspectives” InfoMat, (2023).
[44] E. D. Wachsman, K. T. Lee, “Lowering the temperature of solid oxide fuel cells”, Science, Vol. 334, pp. 935-939, (2011).
[45] L. Fan, B. Zhu, P.-C. Su, C. He, “Nanomaterials and technologies for low temperature solid oxide fuel cells: Recent advances, challenges and opportunities”, Nano Energy, Vol. 45 pp. 148-176, (2018).
[46] B. Kamecki, G. Cempura, P. Jasinski, S.-F. Wang, S. Molin, “Turning electrochemical performance by microstructural optimization of the nanocrystalline functional oxygen electrode layer for solid oxide cells”, Applied Materials and Interfaces, Vol. 14, pp. 57449-57459, (2022).
[47] G. C. Kostogloudis, C. Ftikos, “Properties of A-site-deficient La0.6Sr0.4Co0.2Fe0.8O3-d-based perovskite oxides”, Solid State Ionics, Vol. 126, pp. 143-151, (1999).
[48] Y. G. Lyagaeva, D. A. Medvedev, A. K. Demin, P. Tsiakaras, O. G. Reznitskikh, “Thermal expansion of materials in the barium cerate-zirconate system”, Physics of the Solid State, Vol. 57, pp. 285-289, (2015).
[49] L. Santos-Gomez, J. Zamudio-Garcia, J. M. Porras-Vazquez, E. R. Losilla, D. Marrero, “Recent progress in nanostructured electordes for solid oxide fuel cells deposited by spray pyrolysis”, Journal of Power Sources, Vol. 507, pp. 230277, (2021).
[50] K. Akimoto, N. Wang, C. Tang, K. Shuto, S.W. Jeong, S. Kitano, H. Habazaki, Y. Aoki, “Functionality of the cathode-electrolyte interlayer in protonic solid oxide fuel cells”, ACS Applied Energy Materials, Vol. 5, pp. 12227-12238, (2022).
[51] S. Choi, C. J. Kucharczyk, Y. Liang, X. Zhang, I. Takeuchi, H.-I. Ji, S. M. Haile, “exceptional power density and stability at intermediate temperatures in protonic ceramic fuel cells”, Nature Energy, Vol. 3, pp. 202-210, (2018).
[52] C. Tang, K. Akimoto, N. Wang, L. Fadillah, S. Kitano, H. Habazaki, Y. Aoki, “The effect of an anode functional layer on the steam electrolysis performance of protonic solid oxide cells”, Journal of Materials Chemistry A, Vol. 9, pp. 14032, (2021).
[53] Z. Li, Z. Zheng, L. Xu, X. Lu, "A review of the applications of fuel cells in microgrids: opportunities and challenges", BMC Energy, Vol. 1, pp. 1-23, (2019).
[54] N. Sekar, P. Ramasamy, “Electrochemical impedance spectroscopy for microbial fuel cell characterization”, Journal of Microbial & Biochemical Technology, Vol. S6, (2013).
[55] C. C. Melo, A. L. I. Moraes, F. O. Rocco, F. S. Montilha, R. B. Canto, “A validation procedure for numerical models of ceramic powder pressing”, Journal of the European Ceramic Society, Vol. 38, pp. 2928-2936, (2018).
[56] H. Du, Y. Chang, C. Li, Q. Hu, J. Pang, Y. Sun, F. Weyland, N. Novak, L. Jin, “Ultrahigh room temperature electrocaloric response in lead-free bulk ceramic via tape casting”, Journal of Materials Chemistry C, Vol. 7, pp. 6860-6866, (2019).
[57] H. A. Mustafa, D. A. Jameel, “Modeling and the main stages of spin coating process: A review”, Journal of Applied Science and Technology Trends, Vol. 2, pp. 91-95, (2021).
[58] M. Bellardita, A. D. Paola, S. Yurdakal, L. Palmisano, “Chapter 2 – Preparation of catalysts and photocatalysts used for similar processes”, Heterogeneous Photocatalysis, pp. 25-56, (2019).
[59] 氣相層析法GC基礎知識及其原理詳解,讓你一看就上手!https://www.thermofisher.com/tw/zt/home/new-ideas/chromatography-and-mass-spectrometry-line-blog/gc-for-dummies.html (2024).
[60] D. Huan, N. Shi, L. Zhang, W. Tan, Y. Xie, W. Wang, C. Xia, R. Peng, Y. Lu, “New, efficient, and reliable air electrode material for proton-conducting reversible solid oxide cells”, ACS Applied Materials and Interfaces, Vol. 10, pp. 1761-1770, (2018).
[61] H. Shi, G. Yang, Z. Liu, G. Zhang, R. Ran, Z. Shao, W. Zhou, W. Jin, “High performance tubular solid oxide fuel cells with BSCF cathode”, International Journal of Hydrogen Energy, Vol. 37, pp. 13022-13029, (2012).
[62] C. Xiong, J. A. Taillon, C. Pellegrinelli, Y.-L. Huang, L. G. Salamanca-Riba, B. Chi, L. Jian, J. Pu, E. D. Wachsman, “Long-term Cr poisoning effect on LSCF-GDC composite cathodes sintered at different temperatures”, Journal of the Electrochemical Society, Vol. 163, pp. F1091-F1099, (2016).
[63] H. Shimada, A. Hagiwara, “Reduction in ohmic contact resistance at interface between Gd-doped CeO2 interlayer and Sc2O3-stabilized ZrO2 electrolyte in SOFCs to improve performance”, Solid State Ionics, Vol. 258, pp. 38-44, (2014).
[64] M. Wang, H. Wang, W. Li, X. Hu, K. Sun, Z. Zang, “Defect passivation using ultrathin PTAA layers for efficient and stable perovskite solar cells with a high fill factor and eliminated hysteresis”, Journal of Materials Chemistry A, Vol. 7, pp. 26421-26428, (2019).
[65] H. Li, W. Wei, F. Liu, X. Xu, Z. Li, Z. Liu, “Identification of internal polarization dynamics for solid oxide fuel cells investigated by electrochemical impedance spectroscopy and distribution of relaxation times”, Energy, Vol. 267, pp. 126482, (2023).
[66] H. Nakajima, T. Kitahara, “Real-time electrochemical impedance spectroscopy diagnosis of the marine solid oxide fuel cell”, Journal of Physics: Conference Series, Vol. 745, pp. 032149, (2016).
[67] W. Wang, S. P. Jiang, “A mechanistic study on the activation process of (La, Sr)MnO3 electrodes of solid oxide fuel cells”, Solid State Ionics, Vol. 177, pp. 1361-1369, (2006).
[68] S. Choi, T. C. Davenport, S. M. Haile, “Protonic ceramic electrochemical cells for hydrogen production and electricity generation: exceptional reversibility, stability, and demonstrated faradaic efficiency”, Energy and Environmental Science, Vol. 12, pp. 206-215, (2019).
[69] M. A. Umer, C.-Y. Cheng, B.-R. Lai, C.-J. Tseng, S.-Y Chen, S.-W. Lee, “Growth of Gd0.3Ca2.7Co3.82Cu0.18O9-d bulk heterojunction cathode interlayer by pulsed laser deposition for enhancing protonic solid oxide fuel cell performance”, Applied Surface Science, Vol. 638, pp. 158139, (2023).
[70] Y. Matsuzaki, Y. Tachikawa, Y. Baba, K. Sato, G. Kojo, H. Matsuo, J. Otomo, H. Matsumoto, S. Taniguchi, K. Sasaki, “Suppression of leakage current in proton-conducting BaZr0.8Y0.2O3-d electrolyte by forming hole-blocking layer”, Journal of The Electrochemical Society, Vol. 167, pp. 084515, (2020).
指導教授 李勝偉 審核日期 2024-1-30
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明