博碩士論文 110826002 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:30 、訪客IP:3.145.175.243
姓名 馮于甄(Yu-Chen Fung)  查詢紙本館藏   畢業系所 系統生物與生物資訊研究所
論文名稱 泌尿道上皮癌相關 miRNAs 在膀胱癌幹細胞能力的 影響之研究
(Study of the effects of urothelial carcinoma- related miRNAs on bladder stem cell ability)
相關論文
★ 探討牛樟芝CCM111對細胞訊息傳遞之影響★ Tyloxapol 在大腸癌細胞中的特異性及作用機制之研究
★ MAPK傳導路徑相關微型RNA在黑色素瘤細胞中功能之研究★ 利用MAPK訊息傳導路徑相關的miRNAs來治療BRAF抑制劑的抗藥性在黑色素瘤細胞中之研究
★ 探討miR-567在黑色素細胞瘤中的調控機制★ 探索微型核糖核酸與慢性腎臟病及血液透析病人泌尿道上皮癌生物標記的相關性
★ 以miRNA為基礎開發偵測放射線治療抗性及預後的生物標記★ 偵測微型核糖核酸 miR-524-5p表現量利用原位雜交染色法來作為輔助診斷惡性黑色素瘤的生物標記之研究
★ 研究牛樟芝萃取物 CCM111 的作用機制★ 探討黑色素腫瘤中p53調控miR-524-5p及miR-596表現之機制
★ 泌尿道上皮癌相關的miRNAs在膀胱癌之研究★ 探討BRAF抑制劑透過細胞間訊息誘導腫瘤形成之研究
★ 微型核糖核酸成為放射線治療的預後生物標記之研究★ 發展以血中微型 RNA 作為冠心症(CAD)的非侵入性疾病指標
★ microRNAs作為放射治療預後之生物標誌物與miR-148a-3p於頭頸癌放射敏感度之研究★ 研究miR-524-5p和miR-567治療在黑色素瘤與BRAF抑製劑的抗藥性黑色素瘤
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   至系統瀏覽論文 (2028-10-20以後開放)
摘要(中) 在人類泌尿道系統中,泌尿道上皮癌(Urothelial carcinoma, UC)是最常見的惡性 腫瘤,約佔膀胱癌(Bladder cancer, BC)的 90%。患者經過化療或手術後會有高 機率復發和轉移情況出現。根據文獻報導,癌症幹細胞(Cancer stem cell, CSC) 會在化療後聚集,因此導致治療失敗原因之一。最近也發現 miRNA 被認為是治 療癌症的分子生物標誌物以及治療靶點,加上先前實驗室研究已證明,六種 UC 血漿 miRNAs(包括 miR-19b-1-5p、miR-150-5p、miR-155-5p、miR-210-3p、miR-378a- 3p、miR-636)可以區分 UC 和 non-UC 的血液透析患者,因此想要在本研究中, 探討 UC-相關 miRNAs 影響在 BC 細胞腫瘤中的癌幹細胞功能。先前文獻發現, miR-19b-1-5p、miR-210-3p 和 miR-378a-3p 的過表達可減少 BC 細胞的增殖和遷移, 但 miR-155-5p、miR-150-5p 和 miR-636 會促進其 BC 細胞表現。然而,我們結果 表明,miR-19b-1-5p、miR-210-3p、miR-378a-3p 和 miR-155-5p 的過表達可以顯著 性減少 J82 和 RT4 細胞的增殖和致瘤性。另一個結果表明,miR-150-5p 和 miR- 155-5p 的過表達可以顯著性降低 J82 和 RT4 細胞的遷移。此外,miR-493-3p、miR- 155-5p 和 miR-636 的過表達通過球體形成實驗會顯著性降低 J82 和 RT4 細胞的癌 幹細胞能力。在西方墨點法中,透過 CSC 標記物(CD44 和 Nanog、Sox2)的表 達,證明其表現在 J82 和 RT4 球體中顯著性下降。因此,我們進一步收集細胞球 體,並進一步利用免疫螢光測定以研究 CSC 標記物的表現,加以證明球體經過 miRNAs 處理後會表達 Nanog。總之,我們的結果表明 UC-相關的 miRNAs 參與 了 BC 的進展,可以被認為是 BC 的新治療選擇。
摘要(英) Urothelial carcinoma (UC) is the most common malignancy type of bladder cancer (BC)
in the human urinary system, with about 90%. The patients had a high recurrence and
metastasis after the chemotherapy or surgery. It was reported that cancer stem cells
(CSC) are enriched after chemotherapy, leading to treatment failure. Recently, miRNAs
have been considered molecular biomarkers and therapeutic targets for the treatment of
cancers. Our previous study demonstrated that the expressions of six UC plasma
miRNAs - including miR-19b-1-5p, miR-150-5p, miR-155-5p, miR-210-3p, miR-
378a-3p, miR-636 could distinguish UC and non-UC patients with hemodialysis. In this
study, we investigated the biological functions of these UC-related miRNAs in the
tumorigenesis of BC cells. It had reported that miR-19b-1-5p, miR-210-3p, or miR-
378a-3p expressions could reduce BC cell proliferation and migration, but miR-155-5p,
miR-150-5p or miR-636 promoted BC cell proliferation and migration. However, our
results showed that overexpression of not only miR-19b-1-5p, miR-210-3p, or miR-
378a-3p but also miR-155-5p could reduce the proliferation and anchorage-
independent growth of J82 and RT4 cells significantly. Another result showed that
overexpression of miR-150-5p or miR-155-5p could facilitate the migration of J82 and
RT4 cells significantly. In addition, overexpression of miR-493-3p, miR-155-5p, or
miR-636 decreased the stem cell ability of J82 and RT4 cells by sphere formation assay.
Consistently, the CSC markers (CD44, Nanog, and Sox2) expression significantly
declined in the J82 and RT4 spheres. Thus, we further dissected the cultured urothelial
stem cells from sphere formation and performed an immunofluorescence assay to
investigate the expression of CSC markers. After miRNA treatment, we demonstrate that these spheres would express the stem cell markers NANOG. In summary, our results suggested that UC-related miRNAs were involved in the progression of BC and could be considered novel therapeutic options for BC.
關鍵字(中) ★ 泌尿道上皮癌
★ 癌症幹細胞
★ 微型核糖核酸
關鍵字(英) ★ Urothelial Carcinoma
★ Cancer Stem Cell
★ microRNA
論文目次 中文摘要 I
ABSTRACTII
圖目錄..VIII
ABBREVIATION LISTIX
一 介紹(INTRODUCTION).1
1. 膀胱癌(BLADDER CANCER) .1
1.1 泌尿道上皮癌(Urothelial carcinoma).1
1.2 診斷與治療(Diagnosis and Treatment)..2
2. 癌症幹細胞(CANCER STEM CELL).3
2.1 癌症中的癌症幹細胞(Cancer Stem Cells in Cancer).3
2.2 調控膀胱癌的途徑(Pathways Regulating of Bladder Cancer).4
2.3 膀胱癌的潛在治療靶點(Potential therapeutic target for bladder cancer) .4
3. 微型核糖核酸(MICRORNA)..5
3.1 miRNA 的發現(Discovery of miRNAs) 5
3.2 miRNA 的生成與調控(Biogenesis and regulation of miRNA) .6
3.3 miRNA 的失調與應用(miRNA dysregulation and application in cancer).7
4. 研究目的(RESEARCH PURPOSE)..8
4.1 探討 UC 相關微型 RNA 在膀胱癌中的作用..8
(Exploring the role of UC-associated microRNAs in bladder cancer)..8
二 實驗材料與方法(MATERIALS AND METHODS).. 10
1. 實驗材料(MATERIAL) .. 10
1.1 細胞株(Cell lines).. 10
1-2 微型核糖核酸模擬物(miRNA mimics). 10
1-3 試劑(Reagents).. 10
1-4 抗體(Antibodies) . 10
2. 實驗方法(METHOD) 11
2-1 miRNA 模擬物轉染(miRNA mimic transfection).. 11
2-2 細胞群落形成實驗(Colony formation) 11
2-3 細胞不依賴性生長(Anchorage-independent growth) 11
2-4 細胞爬行實驗(Cell migration assay). 11
2-5 細胞球體形成實驗(Sphere formation assay) 11
2-6 蛋白質萃取製備(Preparation of protein extraction).. 12
2-7 西方墨點法(Western blot). 12
2-8 免疫螢光染色(Immunofluorescence staining).. 13
2-9 統計 (Statistics) .. 13
三 實驗結果(RESULTS).. 14
1. UC-RELATED MIRNAS 對於膀胱癌細胞的生長和存活的影響。 14
2. UC-RELATED MIRNAS 對於膀胱癌細胞的致瘤性和轉化的影響。. 14
3. UC-RELATED MIRNAS 對於膀胱癌細胞的遷移的影響。 .. 15
4. UC-RELATED MIRNAS 對於膀胱癌細胞形成球體的影響。. 16
5. UC-RELATED MIRNAS 調節膀胱癌細胞中的 BC 幹細胞能力。 . 16
四 結論(CONCLUSION) 18
五 討論(DISCUSSION) 19
1. UC-RELATED MIRNAS 對於癌細胞的生長、存活、致瘤性和遷移的影響.. 19
2. UC-RELATED MIRNAS 對於癌症幹細胞的影響. 20
3. 探討 MIR-493-3P 在膀胱癌中扮演的角色.. 21
4. 探討 UC-RELATED MIRNAS 可能會參與的路徑進而影響膀胱癌的發生和復發. 21
5. 未來展望.. 22
六 參考文獻(REFERENCE).. 23
參考文獻 1. Hickling DR, Sun T-T, Wu X-R. Anatomy and Physiology of the Urinary Tract: Relation to Host Defense and Microbial Infection. Microbiol Spectr. 2015;3.
2. Milojevic B, Dzamic Z, Kajmakovic B, Milenkovic Petronic D, Sipetic Grujicic S. Urothelial carcinoma: Recurrence and risk factors. J BUON. 2015;20:391–8.
3. Chou R. Screening Adults for Bladder Cancer: A Review of the Evidence for the U.S. Preventive Services Task Force. Ann Intern Med. 2010;153:461.
4. Chang N-T, Chang Y-H, Huang Y-T, Chen S-C. Factors Associated with Refusal or Discontinuation of Treatment in Patients with Bladder Cancer: A Cohort Population-Based Study in Taiwan. IJERPH. 2021;18:618.
5. Sanli O, Dobruch J, Knowles MA, Burger M, Alemozaffar M, Nielsen ME, et al. Bladder cancer. Nat Rev Dis Primers. 2017;3:17022.
6. Springer SU, Chen C-H, Rodriguez Pena MDC, Li L, Douville C, Wang Y, et al. Non-invasive detection of urothelial cancer through the analysis of driver gene mutations and aneuploidy. eLife. 2018;7:e32143.
7. Piwowarczyk L, Stawny M, Mlynarczyk DT, Muszalska-Kolos I, Goslinski T, Jelińska A. Role of Curcumin and (−)-Epigallocatechin-3-O-Gallate in Bladder Cancer Treatment: A Review. Cancers. 2020;12:1801.
8. Li Y, Sun L, Guo X, Mo N, Zhang J, Li C. Frontiers in Bladder Cancer Genomic Research. Front Oncol. 2021;11:670729.
9. Broughman JR, Vuong W, Mian OY. Current Landscape and Future Directions on Bladder Sparing Approaches to Muscle-Invasive Bladder Cancer. Curr Treat Options in Oncol. 2021;22:3. 10. DeGeorge KC, Holt HR, Hodges SC. Bladder Cancer: Diagnosis and Treatment. Am Fam Physician. 2017;96:507–14.
11. Lenis AT, Lec PM, Chamie K, Mshs M. Bladder Cancer: A Review. JAMA. 2020;324:1980. 12. Ojha R, Bhattacharyya S, Singh SK. Autophagy in Cancer Stem Cells: A Potential Link Between Chemoresistance, Recurrence, and Metastasis. BioResearch Open Access. 2015;4:97–108.
13. Desai A, Yan Y, Gerson SL. Concise Reviews: Cancer Stem Cell Targeted Therapies: Toward Clinical Success. Stem Cells Translational Medicine. 2019;8:75–81.
14. Eun K, Ham SW, Kim H. Cancer stem cell heterogeneity: origin and new perspectives on CSC targeting. BMB Reports. 2017;50:117–25.
15. Vermeulen L, De Sousa E Melo F, Richel DJ, Medema JP. The developing cancer stem-cell model: clinical challenges and opportunities. The Lancet Oncology. 2012;13:e83–9.
16. Abugomaa A, Elbadawy M, Yamawaki H, Usui T, Sasaki K. Emerging Roles of Cancer Stem Cells in Bladder Cancer Progression, Tumorigenesis, and Resistance to Chemotherapy: A Potential Therapeutic Target for Bladder Cancer. Cells. 2020;9:235.
17. Matsui WH. Cancer stem cell signaling pathways. Medicine. 2016;95:S8–19.
18. Mashima T. Cancer Stem Cells (CSCs) as a Rational Therapeutic Cancer Target, and Screening for CSC-targeting Drugs. YAKUGAKU ZASSHI. 2017;137:129–32.
19. Chen C-L, Lin C-H, Li A-L, Huang C-C, Shen B-Y, Chiang Y-R, et al. Plasma miRNA profile is a biomarker associated with urothelial carcinoma in chronic hemodialysis patients. American Journal of Physiology-Renal Physiology. 2019;316:F1094–102.
20. Bhaskaran M, Mohan M. MicroRNAs: History, Biogenesis, and Their Evolving Role in Animal Development and Disease. Vet Pathol. 2014;51:759–74.
21. Chakraborty C, Sharma AR, Sharma G, Lee S-S. Therapeutic advances of miRNAs: A preclinical and clinical update. Journal of Advanced Research. 2021;28:127–38.
22. Calin GA, Dumitru CD, Shimizu M, Bichi R, Zupo S, Noch E, et al. Frequent deletions and down-regulation of micro- RNA genes miR15 and miR16 at 13q14 in chronic lymphocytic leukemia. Proc Natl Acad Sci USA. 2002;99:15524–9.
23. Valadi H, Ekström K, Bossios A, Sjöstrand M, Lee JJ, Lötvall JO. Exosome-mediated transfer of mRNAs and microRNAs is a novel mechanism of genetic exchange between cells. Nat Cell Biol. 2007;9:654–9.
24. Leidinger P, Keller A, Meese E. MicroRNAs – Important Molecules in Lung Cancer Research. Front Gene. 2012;2.
25. Diener C, Keller A, Meese E. Emerging concepts of miRNA therapeutics: from cells to clinic. Trends in Genetics. 2022;38:613–26.
26. Henry JC, Azevedo-Pouly ACP, Schmittgen TD. microRNA Replacement Therapy for Cancer. Pharm Res. 2011;28:3030–42.
27. Liu J, Zhou F, Guan Y, Meng F, Zhao Z, Su Q, et al. The Biogenesis of miRNAs and Their Role in the Development of Amyotrophic Lateral Sclerosis. Cells. 2022;11:572.
28. Chen L, Heikkinen L, Wang C, Yang Y, Sun H, Wong G. Trends in the development of miRNA bioinformatics tools. Briefings in Bioinformatics. 2019;20:1836–52.
29. Fiannaca A, La Rosa M, La Paglia L, Urso A. miRTissue: a web application for the analysis of miRNA-target interactions in human tissues. BMC Bioinformatics. 2018;19:434.
30. Krol J, Loedige I, Filipowicz W. The widespread regulation of microRNA biogenesis, function and decay. Nat Rev Genet. 2010;11:597–610.
31. Uzuner E, Ulu GT, Gürler SB, Baran Y. The Role of MiRNA in Cancer: Pathogenesis, Diagnosis,and Treatment. In: Allmer J, Yousef M, editors. miRNomics. New York, NY: Springer US; 2022. p. 375–422.
32. Peng Y, Croce CM. The role of MicroRNAs in human cancer. Sig Transduct Target Ther. 2016;1:15004.
33. Mollaei H, Safaralizadeh R, Rostami Z. MicroRNA replacement therapy in cancer. Journal Cellular Physiology. 2019;234:12369–84.
34. Cimmino A, Calin GA, Fabbri M, Iorio MV, Ferracin M, Shimizu M, et al. miR-15 and miR-16 induce apoptosis by targeting BCL2. Proc Natl Acad Sci USA. 2005;102:13944–9.
35. Fuziwara CS, Kimura ET. Insights into Regulation of the miR-17-92 Cluster of miRNAs in Cancer. Front Med. 2015;2.
36. Seven M, Karatas OF, Duz MB, Ozen M. The role of miRNAs in cancer: from pathogenesis to therapeutic implications. Future Oncology. 2014;10:1027–48.
37. Rapado-González Ó, Álvarez-Castro A, López-López R, Iglesias-Canle J, Suárez-Cunqueiro MM, Muinelo-Romay L. Circulating microRNAs as Promising Biomarkers in Colorectal Cancer. Cancers. 2019;11:898.
38. Fu D, Liu B, Jiang H, Li Z, Fan C, Zang L. Bone marrow mesenchymal stem cells-derived exosomal microRNA-19b-1-5p reduces proliferation and raises apoptosis of bladder cancer cells via targeting ABL2. Genomics. 2021;113:1338–48.
39. Güllü Amuran G, Tinay I, Filinte D, Ilgin C, Peker Eyüboğlu I, Akkiprik M. Urinary micro- RNA expressions and protein concentrations may differentiate bladder cancer patients from healthy controls. Int Urol Nephrol. 2020;52:461–8.
40. Yin R, Guo L, Gu J, Li C, Zhang W. Over expressing miR-19b-1 suppress breast cancer growth by inhibiting tumor microenvironment induced angiogenesis. The International Journal of Biochemistry & Cell Biology. 2018;97:43–51.
41. Yang X, Shi L, Yi C, Yang Y, Chang L, Song D. MiR-210-3p inhibits the tumor growth and metastasis of bladder cancer via targeting fibroblast growth factor receptor-like 1. Am J Cancer Res. 2017;7:1738–53.
42. Moisoiu T, Dragomir MP, Iancu SD, Schallenberg S, Birolo G, Ferrero G, et al. Combined miRNA and SERS urine liquid biopsy for the point of care diagnosis and molecular stratification of bladder cancer. Mol Med. 2022;28:39.
43. Chen Q, Zhang H, Zhang J, Shen L, Yang J, Wang Y, et al. miR-210-3p Promotes Lung Cancer Development and Progression by Modulating USF1 and PCGF3. OTT. 2021;Volume 14:3687–700. 44. Cui Y, Xie M, Zhang Z. LINC00958 Involves in Bladder Cancer Through Sponging miR-378a- 3p to Elevate IGF1R. Cancer Biotherapy and Radiopharmaceuticals. 2020;35:776–88.
45. Li H, Dai S, Zhen T, Shi H, Zhang F, Yang Y, et al. Clinical and biological significance of miR- 378a-3p and miR-378a-5p in colorectal cancer. European Journal of Cancer. 2014;50:1207–21. 46. Chen M. miR-150 Modulates Cisplatin Chemosensitivity and Invasiveness of Muscle-Invasive Bladder Cancer Cells via Targeting PDCD4 In Vitro. Med Sci Monit. 2014;20:1850–7.
47. Lian J, Lin S-H, Ye Y, Chang DW, Huang M, Dinney CP, et al. Serum microRNAs as predictors of risk for non-muscle invasive bladder cancer. Oncotarget. 2018;9:14895–908.
48. Wu Z, Li W, Li J, Zhang Y, Zhang X, Xu Y, et al. Higher expression of miR-150-5p promotes tumorigenesis by suppressing LKB1 in non-small cell lung cancer. Pathology - Research and Practice. 2020;216:153145.
49. Peng Y, Dong W, Lin T-X, Zhong G-Z, Liao B, Wang B, et al. MicroRNA-155 promotes bladder cancer growth by repressing the tumor suppressor DMTF1. Oncotarget. 2015;6:16043–58.
50. Taheri M, Shirvani-Farsani Z, Ghafouri-Fard S, Omrani MD. Expression profile of microRNAs in bladder cancer and their application as biomarkers. Biomedicine & Pharmacotherapy. 2020;131:110703.
51. Zhang X, Zhang Y, Liu X, Fang A, Wang J, Yang Y, et al. Direct quantitative detection for cell-free miR-155 in urine: a potential role in diagnosis and prognosis for non-muscle invasive bladder cancer. Oncotarget. 2016;7:3255–66.
52. Li Y, Zhang L, Dong Z, Xu H, Yan L, Wang W, et al. MicroRNA-155-5p promotes tumor progression and contributes to paclitaxel resistance via TP53INP1 in human breast cancer. Pathology - Research and Practice. 2021;220:153405.
53. He Q, Huang L, Yan D, Bi J, Yang M, Huang J, et al. CircPTPRA acts as a tumor suppressor in bladder cancer by sponging miR-636 and upregulating KLF9. Aging (Albany NY). 2019;11:11314– 28.
54. Ma J, Zhou C, Chen X. miR-636 inhibits EMT, cell proliferation and cell cycle of ovarian cancer by directly targeting transcription factor Gli2 involved in Hedgehog pathway. Cancer Cell Int. 2021;21:64.
55. Borowicz S, Van Scoyk M, Avasarala S, Karuppusamy Rathinam MK, Tauler J, Bikkavilli RK, et al. The Soft Agar Colony Formation Assay. JoVE. 2014;:51998.
56. Yamaguchi H, Wyckoff J, Condeelis J. Cell migration in tumors. Current Opinion in Cell Biology. 2005;17:559–64.
57. Zhang Q, Zhuang J, Deng Y, Yang L, Cao W, Chen W, et al. miR34a/GOLPH3 Axis abrogates Urothelial Bladder Cancer Chemoresistance via Reduced Cancer Stemness. Theranostics. 2017;7:4777–90.
58. Zuiverloon TCM, De Jong FC, Costello JC, Theodorescu D. Systematic Review: Characteristics and Preclinical Uses of Bladder Cancer Cell Lines. BLC. 2018;4:169–83.
59. Liu F, Kong X, Lv L, Gao J. MiR-155 targets TP53INP1 to regulate liver cancer stem cell acquisition and self-renewal. FEBS Letters. 2015;589:500–6.
60. Yang L, Wu X, Liang Y, Ye G, Che Y, Wu X, et al. miR‐155 increases stemness and decitabine resistance in triple‐negative breast cancer cells by inhibiting TSPAN5. Molecular Carcinogenesis. 2020;59:447–61.
61. Li Y, Huo J, He J, Ma X. LncRNA MONC suppresses the malignant phenotype of Endometrial Cancer Stem Cells and Endometrial Carcinoma Cells by regulating the MiR-636/GLCE axis. Cancer Cell Int. 2021;21:331.
62. Wang W-J, Li C-F, Chu Y-Y, Wang Y-H, Hour T-C, Yen C-J, et al. Inhibition of the EGFR/STAT3/CEBPD Axis Reverses Cisplatin Cross-resistance with Paclitaxel in the Urothelial Carcinoma of the Urinary Bladder. Clinical Cancer Research. 2017;23:503–13.
63. Lee SH, Hu W, Matulay JT, Silva MV, Owczarek TB, Kim K, et al. Tumor Evolution and Drug Response in Patient-Derived Organoid Models of Bladder Cancer. Cell. 2018;173:515-528.e17. 64. Ueno K, Hirata H, Majid S, Yamamura S, Shahryari V, Tabatabai ZL, et al. Tumor Suppressor MicroRNA-493 Decreases Cell Motility and Migration Ability in Human Bladder Cancer Cells by Downregulating RhoC and FZD4. Molecular Cancer Therapeutics. 2012;11:244–53.
65. Moon RT, Kohn AD, Ferrari GVD, Kaykas A. WNT and β-catenin signalling: diseases and therapies. Nat Rev Genet. 2004;5:691–701.
66. Chehrazi-Raffle A, Dorff TB, Pal SK, Lyou Y. Wnt/β-Catenin Signaling and Immunotherapy Resistance: Lessons for the Treatment of Urothelial Carcinoma. Cancers. 2021;13:889.
67. Ahmad I, Patel R, Liu Y, Singh LB, Taketo MM, Wu X-R, et al. Ras mutation cooperates with β-catenin activation to drive bladder tumorigenesis. Cell Death Dis. 2011;2:e124–e124.
68. Jiang L, Wen J, Luo W. Rho-associated kinase inhibitor, Y-27632, inhibits the invasion and proliferation of T24 and 5367 bladder cancer cells. Molecular Medicine Reports. 2015;12:7526–30. 69. Lu JJ, Yang WM, Li F, Zhu W, Chen Z. Tunneling Nanotubes Mediated microRNA-155 Intercellular Transportation Promotes Bladder Cancer Cells’ Invasive and Proliferative Capacity. IJN. 2019;Volume 14:9731–43.
70. Chen L, Yang X, Zhao J, Xiong M, Almaraihah R, Chen Z, et al. Circ_0008532 promotes bladder cancer progression by regulation of the miR-155-5p/miR-330-5p/MTGR1 axis. J Exp Clin Cancer Res. 2020;39:94.
指導教授 馬念涵(Nianhan Ma) 審核日期 2023-10-20
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明