博碩士論文 110521105 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:47 、訪客IP:3.137.168.223
姓名 許廷魁(Ting-Kuei Hsu)  查詢紙本館藏   畢業系所 電機工程學系
論文名稱 修正式雙紐線軌跡結合自適應積分終端滑動模態控制與逆模型遲滯補償實現壓電平台精確追蹤
(Modified Lemniscate Trajectory with Adaptive Integral Terminal Sliding Mode Control and Inversion-Based Hysteresis Compensation for Piezoelectric Stage Precise Tracking)
相關論文
★ 基於適應性徑向基神經網路與非奇異快速終端滑模控制結合線上延遲估測器應用於二軸機械臂運動軌跡精確控制★ 新型三維光學影像量測系統之設計與控制
★ 新型雙紐線軌跡設計與進階控制實現壓電平台快速與精確定位★ 基於深度座標卷積與自動編碼器給予行人實時路徑及終點位置精確預測
★ 以粒子群最佳化-倒傳遞類神經網路-比例積分微分控制器和影像金字塔轉換融合方法實現三維光學顯微影像系統★ 以局部熵亂度分布與模板匹配方法結合自適應ORB特徵提取達成多影像精確拼接
★ 低扭矩機械手臂機構開發與脈寬調變進階控制器設計★ 使用時域門控與梅森增益公式構建四埠夾具的散射參數表徵
★ 通過強化學習與積分滑模動量觀測器實現機器手臂的強健近佳PD控制策略★ 基於類代理注意力特徵融合模型的聯合 實體關係抽取方法
★ 新型修正式柵欄軌跡結合擴增狀態估測 滑模回授與多自由度Bouc-Wen遲滯前饋補償 控制器給予壓電平台快速精確追蹤★ 結合點雲密度熵計算方法和運動回復結構在虛幻引擎中進行影像三維點雲模型及渲染重建
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   至系統瀏覽論文 (2028-7-1以後開放)
摘要(中) 一般精密量測系統為了達成微/奈米尺度的三維結構掃描,在掃描器的XY軸會給予一個預先決定追蹤的掃描軌跡,並輔以所量測到的高度資訊來建構出樣本三維尺寸與形貌。然而,傳統精密量測系統的掃描路徑使用柵欄式軌跡,使用此掃描軌跡在高速追蹤時容易造成機械共振問題,導致高速掃描結果大幅失真。另外,壓電平台由於其本身材質的特性,會有遲滯與蠕變等非線性現象,間接造成軌跡輸出的位移不符預期,此錯誤的位移也會導致掃描結果失真,對於三維樣本表面精確的建構,會產生很大的負面影響。
從上述兩點問題切入,本論文將提出一個修正式雙紐線掃描軌跡,它不需要搭配步階函數即能夠達成路徑的連續掃描。該軌跡具有平滑特性,所以能夠改善傳統掃描方式容易造成機械共振的問題,同時也保留柵欄式掃描軌跡的直線路徑,因此相較於目前存在的平滑式軌跡,我們能獲得更小的映射誤差,以達到提高掃描影像精確度之要求。其次,為了消除非線性現象並達成軌跡精確追蹤控制,本論文結合逆模型前饋遲滯補償與自適應積分終端滑模控制,它的使用可以大幅地減緩壓電平台非線性問題,使其達成軌跡精確追蹤之要求。最後,我們藉由一系列模擬與實驗來驗證所提出的軌跡與控制器之效能。
摘要(英) In general, in order to achieve micro-/nanoscale three-dimensional scanning in high-precision measurement systems, the XY-axis scanner is used to track a pre-determined trajectory and then combine the measured height information to construct a 3D topography of the scanned sample. However, traditional raster scanning easily leads to mechanical resonance of the scanner, resulting in image distortion. Additionally, the piezoelectric stage used in measurement is subjected to nonlinear phenomena such as hysteresis and creep, leading to unexpected output displacement. Incorrect displacement will distort the scanning result, greatly and negatively affecting sample topography interpretation.
In order to effectively address the abovementioned issues, this thesis proposes a modified lemniscate trajectory that can achieve sequential scanning without needing a step function. The proposed trajectory can mitigate mechanical resonance and incorporate its smooth characteristics while retaining the linear portion of the raster trajectory to reduce unwanted mapping error. To eliminate nonlinearities and achieve high-precision tracking control, we combine inversion-based feedforward hysteresis compensation with adaptive integral terminal sliding mode control as the control system to significantly alleviate the piezoelectric stage’s nonlinear impact. Finally, the tracking performance of the proposed controller is verified through a series of simulations and experiments.
關鍵字(中) ★ 精密量測系統
★ 壓電平台
★ 修正式雙紐線軌跡
★ 滑動模態控制
★ 逆遲滯模型
關鍵字(英) ★ High-precision measurement system
★ piezoelectric stage
★ modified lemniscate trajectory
★ sliding mode control
★ inversion-based hysteresis model
論文目次 摘要 i
ABSTRACT iii
誌謝 v
Table of Content vi
List of Figures viii
List of Tables xi
Explanation of Symbols xii
Chapter 1 Introduction 1
1.1 Motivation 1
1.2 Literature Review 3
1.2.1 Selection of Scanning Trajectory 3
1.2.2 Control Methods of Piezoelectric Scanner 11
1.3 Contribution 18
1.4 Thesis Organization 19
Chapter 2 Preliminaries 21
2.1 Characteristics of Piezoelectric Actuation 21
2.1.1 Piezoelectric Effect 21
2.1.2 Hysteresis Phenomenon 22
2.1.3 Creep Effect 24
2.2 Feedforward Control 25
2.3 Sliding Mode Control (SMC) 26
Chapter 3 Modified Lemniscate Scanning Trajectory 29
3.1 Lemniscate Algorithm 29
3.1.1 Conventional Raster Scan Trajectory 29
3.1.2 Sequential Lemniscate Scan Trajectory 31
3.2 Comparison of Mapping Methods 44
Chapter 4 Controller Design 47
4.1 Scanning Trajectory of XY-axis Scanner 47
4.2 AITSMC with Inversion-Based Hysteresis Compensation 48
4.2.1 Problem Formulation 48
4.2.2 Control Algorithm 53
4.2.3 Stability Analysis 56
Chapter 5 Simulation Results 60
5.1 Simulation Setting 60
5.2 Simulation Result of Hysteresis Compensation 63
5.3 Lemniscate Trajectory Tracking Results 68
5.4 Spiral Trajectory Tracking Result 92
5.5 Triangular Wave Tracking Result 99
Chapter 6 Experimental Results 106
6.1 Experimental Setup 106
6.2 Lemniscate Trajectory Tracking Results 108
Chapter 7 Conclusions 111
Reference 112
參考文獻 [1] W. Luo, X. Liu, X. Tang, D. Liu, M. Kojima, Q. Huang, and T. Arai, “A pzt-driven 6-dof high-speed micromanipulator for circular vibration simulation and whirling flow generation,” IEEE Robotics and Automation Letters, vol. 7, no. 4, pp. 9842-9848, 2022.
[2] M. Coraggio, M. Homer, O. D. Payton, and M. d. Bernado, “Improved control strategies for atomic force microscopes in intermittent contact mode,” IEEE Transactions on Control Systems Technology, vol. 26, no. 5, pp. 1673-1684, 2018.
[3] K. Mori, T. Munemoto, H. Otsuki, Y. Yamaguchi, and K. magi, “A dual-stage magnetic disk drive actuator using a piezoelectric device for a high track density,” IEEE Transactions on Magnetics, vol. 27, no. 6, pp. 5298-5300, 1991.
[4] A. J. Fleming, B. J. Kenton, and K. K. Leang, “Bridging the gap between conventional and video-speed scanning probe microscopes,” Ultramicroscopy, vol. 110, pp. 1205-1214, 2010.
[5] Y. Wu, Y. Fang, C. Wang, Z. Fan, and C. Liu, “An optimized scanning based afm fast imaging method,” IEEE/ASME Transactions on Mechatronic, vol. 25, no. 2, pp. 535-546, 2020.
[6] L. Li, J. Huang, S. S. Aphale, and L. Zhu, “A smoothed raster scanning trajectory based on acceleration continuous b-spline transition for high-speed atomic force microscopy,” IEEE/ASME Transactions on Mechatronics, vol. 26, no. 1, pp. 24-32, 2021.
[7] N. Nikooienejad, M. Maroufi, and S. O. R. Moheimani, “Rosette-scan video-rate atomic force microscopy: trajectory patterning and control design,” Review of Scientific Instruments, Jul. 2019.
[8] A. Bazaei, Y. K. Yong, and S. O. R. Moheimani, “High-speed Lissajous-scan atomic force microscopy: scan pattern planning and control design issues,” Review of Scientific Instruments, 2012.
[9] I. A. Mahmood, S. O. R. Moheimani, and B. Bhikkaji, “A new scanning method for fast atomic force microscopy,” IEEE Transactions on Nanotechnology, vol. 10, no. 2, pp. 203-216, 2011.
[10] N. Nikooienejad, A. Alipour, M. Maroufi, and S. O. R. Moheimani, “Video-rate non-raster afm imaging with cycloid trajectory,” IEEE Transactions on Control Systems Technology, vol. 28, no. 2, pp. 436-447, 2020.
[11] J. L. Worthey and S. B. Andersson, “Local circular scanning for autonomous feature tracking in afm,” American Control Conference, Chicago, USA, Jul. 1-3, 2015.
[12] A. Ulc ̌inas and S ̌. Vaitekonis, “Rotational scanning atomic force microscopy,” Nanotechnology, vol. 28, no. 10, 2017.
[13] W. T. Ang, P. K. Khosla, and C. N. Riviere, “Feedforward controller with inverse rate-dependent model for piezoelectric actuators in trajectory-tracking applications,” IEEE/ASME Transactions on Mechatronics, vol. 12, no. 2, pp. 134-142, 2007.
[14] A. Bazaei, M. Maroufi, A. G. Fowler, and S. O. R. Moheimani, “Internal model control for spiral trajectory tracking with mems afm scanners,” IEEE Transactions on Control Systems Technology, vol. 24, no. 5, pp. 1717-1728, 2016.
[15] N. Nikooienejad, M. Maroufi, and S. O. R. Moheimani, “Iterative learning control for video-rate atomic force microscopy,” IEEE/ASME Transactions on Mechatronics, vol. 26, no. 4, pp. 2127-2138, 2021.
[16] D. Guo, W. S. Nagel, G. M. Clayton, and K. K. Leang, “Spatial-temporal trajectory redesign for dual-stage nanopositioning systems with application in afm,” IEEE/ASME Transactions on Mechatronics, vol. 25, no. 2, pp. 558-569, 2020.
[17] Y. Tao, Z. Zhu, Q. Xu, H. Li, and L. Zhu, “Tracking control of nanopositioning stages using parallel resonant controllers for high-speed nonraster sequential scanning,” IEEE Transactions on Automation Science and Engineering, vol. 18, no. 3, pp. 1218-1228, 2021.
[18] Z. Wen, Y. Ding, P. Liu, and H. Ding, “An efficient identification method for dynamic systems with coupled hysteresis and linear dynamics: application to piezoelectric-actuated nanopositioning stages,” IEEE/ASME Transactions on Mechatronics, vol. 24, no. 1, pp. 326-337, 2019.
[19] S. Bashash and N. Jalili, “Robust multiple frequency trajectory tracking control of piezoelectrically driven micro/nanopositioning systems,” IEEE Transactions on Control Systems Technology, vol. 15, no. 5, pp. 867-878, 2007.
[20] Y. Fan and U. Tan, “Design of a feedforward-feedback controller for a piezoelectric-driven mechanism to achieve high-frequency nonperiodic motion tracking,” IEEE/ASME Transactions on Mechatronics, vol. 24, no. 2, pp. 853-862, 2019.
[21] J. Gan and X. Zhang, “A review of nonlinear hysteresis modeling and control of piezoelectric actuators,” AIP Advances, 2019.
[22] H. Hu and R. B. Mrad, “On the classical preisach model for hysteresis in piezoceramic actuators,” Mechatronics, vol. 13, no. 2, pp. 85-94, 2003.
[23] T.-J. Yeh, S.-W. Lu, and T.-Y. Wu, “Modeling and identification of hysteresis in piezoelectric actuators,” Proc. of ASME International Mechanical Engineering Congress and Exposition, California, USA, Nov. 13-20, 2004.
[24] M. Goldfarb and N. Celanovic, “Modeling piezoelectric stack actuators for control of micromanipulation,” IEEE Control Systems, vol. 17, no. 3, pp. 69-79, 1997.
[25] J. Oh and D. S. Bernstein, “Semilinear duhem model for rate-independent and rate-dependent hysteresis,” IEEE Transactions on Automatic Control, vol. 50, no. 5, pp. 631-645, 2005.
[26] H. Jung and D.-G. Gweon, “Creep characteristics of piezoelectric actuators,” Review of scientific instruments, vol. 71, no. 4, pp. 1896-1900, 2000.
[27] F. Harashima and J.-X. Hashimoto, “Tracking control of robot manipulators using sliding mode,” IEEE Transactions on Power Electronics, vol. PE-2, no. 2, pp. 169-176, 1987.
[28] H.-J. Shieh and P.-K. Huang, “Trajectory tracking of piezoelectric positioning stages using a dynamic sliding-mode control,” IEEE Transactions on Ultrasonics, Ferroelectrics, and Frequency Control, vol. 53, no. 10, pp. 1872-1882, 2006.
[29] X. Zhang, L. Sun, K. Zhao, and L. Sun, “Nonlinear speed control for pmsm system using sliding-mode control and disturbance compensation techniques,” IEEE Transactions on Power Electronics, vol. 28, no. 3, pp. 1358-1365, 2013.
[30] H. Li, L. Dou, and Z. Su, “Adaptive nonsingular fast terminal sliding mode control for electromechanical actuator,” International Journal of Systems Science, vol. 44, no. 3, pp. 401–415, 2011.
[31] Y. Feng, X. Yu, and Z. Man, “Non-singular terminal sliding mode control of rigid manipulators,” Automatica, vol. 38, no. 12, pp. 2159-2167, 2002.
[32] K. Furuta and Y. Pan, “Variable structure control with sliding sector,” Automatica, vol. 36, no. 2, pp. 211-228, 2000.
[33] G. Bartolini, A. Ferrara, and E. Usai, “Chattering avoidance by second-order sliding mode control,” IEEE Transactions on Automatic Control, vol. 43, no. 2, pp. 241-246, 1998.
[34] W. Xu, Y. Jiang, and C. Mu, “Novel composite sliding mode control for pmsm drive system based on disturbance observer,” IEEE Transactions on Applied Superconductivity, vol. 26, no. 7, pp. 1-5, 2016.
[35] X. Wu, K. Xu, M. Lei, and X. He, “Disturbance-compensation-based continuous sliding mode control for overhead cranes with disturbances,” IEEE Transactions on Automation Science and Engineering, vol. 17, no. 4, pp. 2182-2189, 2020.
[36] C.-L. Hwang, Y.-M. Chen, and C. Jan, “Trajectory tracking of large-displacement piezoelectric actuators using a nonlinear observer-based variable structure control,” IEEE Transactions on Control Systems Technology, vol. 13, no. 1, pp. 56-66, 2005.
[37] S. Bashash and N. Jalili, “Real-time identification of piezoelectric actuator nonlinearities with application to precision trajectory control,” American Control Conference, Minneapolis, USA, Jun. 14-16, 2006.
[38] M. A. Janaideh, M. Rakotondrabe, and O. Aljanaideh, “Further results on hysteresis compensation of smart micropositioning systems with the inverse prandtl-ishlinskii compensator,” IEEE Transactions on Control Systems Technology, vol. 24, no. 2, pp. 428-439, 2016.
[39] K. Kuhnen, “Modeling, identification and compensation of complex hysteretic nonlinearities: a modified prandtl-ishlinskii approach,” European Journal of Control, vol. 9, no. 4, pp. 407-418, 2003.
[40] W. T. Ang, P. K. Khosla, and C. N. Riviere, “Feedforward controller with inverse rate-dependent model for piezoelectric actuators in trajectory-tracking applications,” IEEE/ASME Transactions on Mechatronics, vol. 12, no. 2, pp. 134-142, 2007.
[41] K. Kuhnen and H. Janocha, “Complex hysteresis modeling of a broad class of hysteretic actuator nonlinearities,” Proc. of 8th International Conference on New Actuators, Bremen, pp. 688-691, Jun. 10-12, 2002.
[42] H. Elmali and N. Olgac, “Implementation of sliding mode control with perturbation estimation (smcpe),” IEEE Transactions on Control Systems Technology, vol. 4, no. 1, pp. 79-85, 1996.
[43] S. P. Bhat and D. S. Bernstein, “Finite-time stability of continuous autonomous systems,” SIAM J. Control Optim., vol. 38, no. 3, pp. 751–766, 2000.
指導教授 吳俊緯(Jim-Wei Wu) 審核日期 2023-8-14
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明