參考文獻 |
[1] W. Luo, X. Liu, X. Tang, D. Liu, M. Kojima, Q. Huang, and T. Arai, “A pzt-driven 6-dof high-speed micromanipulator for circular vibration simulation and whirling flow generation,” IEEE Robotics and Automation Letters, vol. 7, no. 4, pp. 9842-9848, 2022.
[2] M. Coraggio, M. Homer, O. D. Payton, and M. d. Bernado, “Improved control strategies for atomic force microscopes in intermittent contact mode,” IEEE Transactions on Control Systems Technology, vol. 26, no. 5, pp. 1673-1684, 2018.
[3] K. Mori, T. Munemoto, H. Otsuki, Y. Yamaguchi, and K. magi, “A dual-stage magnetic disk drive actuator using a piezoelectric device for a high track density,” IEEE Transactions on Magnetics, vol. 27, no. 6, pp. 5298-5300, 1991.
[4] A. J. Fleming, B. J. Kenton, and K. K. Leang, “Bridging the gap between conventional and video-speed scanning probe microscopes,” Ultramicroscopy, vol. 110, pp. 1205-1214, 2010.
[5] Y. Wu, Y. Fang, C. Wang, Z. Fan, and C. Liu, “An optimized scanning based afm fast imaging method,” IEEE/ASME Transactions on Mechatronic, vol. 25, no. 2, pp. 535-546, 2020.
[6] L. Li, J. Huang, S. S. Aphale, and L. Zhu, “A smoothed raster scanning trajectory based on acceleration continuous b-spline transition for high-speed atomic force microscopy,” IEEE/ASME Transactions on Mechatronics, vol. 26, no. 1, pp. 24-32, 2021.
[7] N. Nikooienejad, M. Maroufi, and S. O. R. Moheimani, “Rosette-scan video-rate atomic force microscopy: trajectory patterning and control design,” Review of Scientific Instruments, Jul. 2019.
[8] A. Bazaei, Y. K. Yong, and S. O. R. Moheimani, “High-speed Lissajous-scan atomic force microscopy: scan pattern planning and control design issues,” Review of Scientific Instruments, 2012.
[9] I. A. Mahmood, S. O. R. Moheimani, and B. Bhikkaji, “A new scanning method for fast atomic force microscopy,” IEEE Transactions on Nanotechnology, vol. 10, no. 2, pp. 203-216, 2011.
[10] N. Nikooienejad, A. Alipour, M. Maroufi, and S. O. R. Moheimani, “Video-rate non-raster afm imaging with cycloid trajectory,” IEEE Transactions on Control Systems Technology, vol. 28, no. 2, pp. 436-447, 2020.
[11] J. L. Worthey and S. B. Andersson, “Local circular scanning for autonomous feature tracking in afm,” American Control Conference, Chicago, USA, Jul. 1-3, 2015.
[12] A. Ulc ̌inas and S ̌. Vaitekonis, “Rotational scanning atomic force microscopy,” Nanotechnology, vol. 28, no. 10, 2017.
[13] W. T. Ang, P. K. Khosla, and C. N. Riviere, “Feedforward controller with inverse rate-dependent model for piezoelectric actuators in trajectory-tracking applications,” IEEE/ASME Transactions on Mechatronics, vol. 12, no. 2, pp. 134-142, 2007.
[14] A. Bazaei, M. Maroufi, A. G. Fowler, and S. O. R. Moheimani, “Internal model control for spiral trajectory tracking with mems afm scanners,” IEEE Transactions on Control Systems Technology, vol. 24, no. 5, pp. 1717-1728, 2016.
[15] N. Nikooienejad, M. Maroufi, and S. O. R. Moheimani, “Iterative learning control for video-rate atomic force microscopy,” IEEE/ASME Transactions on Mechatronics, vol. 26, no. 4, pp. 2127-2138, 2021.
[16] D. Guo, W. S. Nagel, G. M. Clayton, and K. K. Leang, “Spatial-temporal trajectory redesign for dual-stage nanopositioning systems with application in afm,” IEEE/ASME Transactions on Mechatronics, vol. 25, no. 2, pp. 558-569, 2020.
[17] Y. Tao, Z. Zhu, Q. Xu, H. Li, and L. Zhu, “Tracking control of nanopositioning stages using parallel resonant controllers for high-speed nonraster sequential scanning,” IEEE Transactions on Automation Science and Engineering, vol. 18, no. 3, pp. 1218-1228, 2021.
[18] Z. Wen, Y. Ding, P. Liu, and H. Ding, “An efficient identification method for dynamic systems with coupled hysteresis and linear dynamics: application to piezoelectric-actuated nanopositioning stages,” IEEE/ASME Transactions on Mechatronics, vol. 24, no. 1, pp. 326-337, 2019.
[19] S. Bashash and N. Jalili, “Robust multiple frequency trajectory tracking control of piezoelectrically driven micro/nanopositioning systems,” IEEE Transactions on Control Systems Technology, vol. 15, no. 5, pp. 867-878, 2007.
[20] Y. Fan and U. Tan, “Design of a feedforward-feedback controller for a piezoelectric-driven mechanism to achieve high-frequency nonperiodic motion tracking,” IEEE/ASME Transactions on Mechatronics, vol. 24, no. 2, pp. 853-862, 2019.
[21] J. Gan and X. Zhang, “A review of nonlinear hysteresis modeling and control of piezoelectric actuators,” AIP Advances, 2019.
[22] H. Hu and R. B. Mrad, “On the classical preisach model for hysteresis in piezoceramic actuators,” Mechatronics, vol. 13, no. 2, pp. 85-94, 2003.
[23] T.-J. Yeh, S.-W. Lu, and T.-Y. Wu, “Modeling and identification of hysteresis in piezoelectric actuators,” Proc. of ASME International Mechanical Engineering Congress and Exposition, California, USA, Nov. 13-20, 2004.
[24] M. Goldfarb and N. Celanovic, “Modeling piezoelectric stack actuators for control of micromanipulation,” IEEE Control Systems, vol. 17, no. 3, pp. 69-79, 1997.
[25] J. Oh and D. S. Bernstein, “Semilinear duhem model for rate-independent and rate-dependent hysteresis,” IEEE Transactions on Automatic Control, vol. 50, no. 5, pp. 631-645, 2005.
[26] H. Jung and D.-G. Gweon, “Creep characteristics of piezoelectric actuators,” Review of scientific instruments, vol. 71, no. 4, pp. 1896-1900, 2000.
[27] F. Harashima and J.-X. Hashimoto, “Tracking control of robot manipulators using sliding mode,” IEEE Transactions on Power Electronics, vol. PE-2, no. 2, pp. 169-176, 1987.
[28] H.-J. Shieh and P.-K. Huang, “Trajectory tracking of piezoelectric positioning stages using a dynamic sliding-mode control,” IEEE Transactions on Ultrasonics, Ferroelectrics, and Frequency Control, vol. 53, no. 10, pp. 1872-1882, 2006.
[29] X. Zhang, L. Sun, K. Zhao, and L. Sun, “Nonlinear speed control for pmsm system using sliding-mode control and disturbance compensation techniques,” IEEE Transactions on Power Electronics, vol. 28, no. 3, pp. 1358-1365, 2013.
[30] H. Li, L. Dou, and Z. Su, “Adaptive nonsingular fast terminal sliding mode control for electromechanical actuator,” International Journal of Systems Science, vol. 44, no. 3, pp. 401–415, 2011.
[31] Y. Feng, X. Yu, and Z. Man, “Non-singular terminal sliding mode control of rigid manipulators,” Automatica, vol. 38, no. 12, pp. 2159-2167, 2002.
[32] K. Furuta and Y. Pan, “Variable structure control with sliding sector,” Automatica, vol. 36, no. 2, pp. 211-228, 2000.
[33] G. Bartolini, A. Ferrara, and E. Usai, “Chattering avoidance by second-order sliding mode control,” IEEE Transactions on Automatic Control, vol. 43, no. 2, pp. 241-246, 1998.
[34] W. Xu, Y. Jiang, and C. Mu, “Novel composite sliding mode control for pmsm drive system based on disturbance observer,” IEEE Transactions on Applied Superconductivity, vol. 26, no. 7, pp. 1-5, 2016.
[35] X. Wu, K. Xu, M. Lei, and X. He, “Disturbance-compensation-based continuous sliding mode control for overhead cranes with disturbances,” IEEE Transactions on Automation Science and Engineering, vol. 17, no. 4, pp. 2182-2189, 2020.
[36] C.-L. Hwang, Y.-M. Chen, and C. Jan, “Trajectory tracking of large-displacement piezoelectric actuators using a nonlinear observer-based variable structure control,” IEEE Transactions on Control Systems Technology, vol. 13, no. 1, pp. 56-66, 2005.
[37] S. Bashash and N. Jalili, “Real-time identification of piezoelectric actuator nonlinearities with application to precision trajectory control,” American Control Conference, Minneapolis, USA, Jun. 14-16, 2006.
[38] M. A. Janaideh, M. Rakotondrabe, and O. Aljanaideh, “Further results on hysteresis compensation of smart micropositioning systems with the inverse prandtl-ishlinskii compensator,” IEEE Transactions on Control Systems Technology, vol. 24, no. 2, pp. 428-439, 2016.
[39] K. Kuhnen, “Modeling, identification and compensation of complex hysteretic nonlinearities: a modified prandtl-ishlinskii approach,” European Journal of Control, vol. 9, no. 4, pp. 407-418, 2003.
[40] W. T. Ang, P. K. Khosla, and C. N. Riviere, “Feedforward controller with inverse rate-dependent model for piezoelectric actuators in trajectory-tracking applications,” IEEE/ASME Transactions on Mechatronics, vol. 12, no. 2, pp. 134-142, 2007.
[41] K. Kuhnen and H. Janocha, “Complex hysteresis modeling of a broad class of hysteretic actuator nonlinearities,” Proc. of 8th International Conference on New Actuators, Bremen, pp. 688-691, Jun. 10-12, 2002.
[42] H. Elmali and N. Olgac, “Implementation of sliding mode control with perturbation estimation (smcpe),” IEEE Transactions on Control Systems Technology, vol. 4, no. 1, pp. 79-85, 1996.
[43] S. P. Bhat and D. S. Bernstein, “Finite-time stability of continuous autonomous systems,” SIAM J. Control Optim., vol. 38, no. 3, pp. 751–766, 2000. |