參考文獻 |
[1] M. Ahn, B. S. Kim, C.-H. Lee, and J. Laskar, A high power
CMOS switch using substrate body switching in multistack structure, IEEE Microw. Wireless Compon. Lett., vol. 17, no. 9, pp.
682684, Sep. 2007.
[2] K.-Y. Lin, W.-H. Tu, P.-Y. Chen, H.-Y. Chang, H. Wang, and
R.-B. Wu, Millimeter-wave MMIC passive HEMT switches using traveling-wave concept, IEEE Trans. Microw. Theory Techn.,
vol. 52, no. 8, pp. 17981808, Aug. 2004.
[3] X. J. Li and Y. P. Zhang, Flipping the CMOS switch, IEEE Microw. Mag., vol. 11, no. 1, pp. 8696, Feb. 2010.
[4] R. Dilli, Analysis of 5G wireless systems in FR1 and FR2 frequency
bands, 2nd Int. Conf. Innov. Mech. Ind. Appl. (ICIMIA), pp. 767
772, Mar. 2020.
[5] A. Mamane, M. Fattah, M. El Ghazi, and M. El Bekkali, 5G enhanced mobile broadband (eMBB): Evaluation of scheduling algorithms performances for Time-Division Duplex mode, Int. J. Interact. Mob. Technol, vol. 16, p. 121, Mar. 2022.
[6] F.-J. Huang and K. O, A 0.5 µm CMOS T/R switch for 900-MHz
wireless applications, IEEE J. Solid-State Circuits, vol. 36, no. 3,
pp. 486492, Mar. 2001.
81
[7] B.-W. Min and G. M. Rebeiz, Ka-band low-loss and high-isolation
0.13 µm CMOS SPST/SPDT switches using high substrate resistance, IEEE Radio Freq. Integr. Circuits Symp, pp. 569572, Jun.
2007.
[8] C.-Y. Ou, C.-Y. Hsu, H.-R. Lin, and H.-R. Chuang, A highisolation high-linearity 24-GHz CMOS T/R switch in the 0.18-µm
CMOS process, Eur. Microw. Integr. Circuits Conf, pp. 250253,
Sep. 2009.
[9] S.-C. Chang, S.-F. Chang, T.-Y. Chih, and J.-A. Tao, An
internally-matched high-isolation CMOS SPDT switch using leakage cancellation technique, IEEE Microw. Wireless Compon. Lett.,
vol. 17, no. 7, pp. 525527, Jul. 2007.
[10] Y.-P. Zhang, Q. Li, W. Fan, C. H. Ang, and H. Li, A dierential
CMOS T/R switch for multistandard applications, IEEE Trans.
Circuits Syst. II, vol. 53, no. 8, pp. 782786, Aug. 2006.
[11] A. Dyskin, N. Peleg, S. Wagner, D. Ritter, and I. Kallfass, An
asymmetrical 6090 GHz single-pole double throw switch MMIC,
Proc. Eur. Microw. Integr. Circuits Conf, pp. 145148, Oct. 2013.
[12] K.-H. Lee, S. Choi, and C.-Y. Kim, A 2530 GHz asymmetric
SPDT switch for 5G applications in 65-nm triple-well CMOS, IEEE
Microw. Wireless Compon. Lett., vol. 29, no. 6, pp. 391393, Jun.
2019.
82
[13] W. Lee and S. Hong, Low-loss and small-size 28 GHz CMOS SPDT
switches using switched inductor, IEEE Radio Freq. Integr. Circuits Symp, pp. 148151, Jun. 2018.
[14] B. Razavi, Design of Analog CMOS Integrated Circuits. McGrawHill, 2001.
[15] M.-C. Yeh, Z.-M. Tsai, R.-C. Liu, K.-Y. Lin, Y.-T. Chang, and
H. Wang, Design and analysis for a miniature CMOS SPDT
switch using body-oating technique to improve power performance, IEEE Trans. Microw. Theory Techn., vol. 54, no. 1, pp.
3139, Jan. 2006.
[16] M. J. Schindler and A. Morris, DC-40 GHz and 20-40 GHz MMIC
SPDT switches, IEEE Trans. Microw. Theory Techn., vol. 35,
no. 12, pp. 14861493, 1987.
[17] J. Kim, W. Ko, S.-H. Kim, J. Jeong, and Y. Kwon, A highperformance 40-85 GHz MMIC SPDT switch using FET-integrated
transmission line structure, IEEE Microw. Wireless Compon.
Lett., vol. 13, no. 12, pp. 505507, Dec. 2003.
[18] K.-T. Ho, A 3.5-GHz GaN and Ka-bnad GaAs power ampliers
using wilkinson power combiner, Master′s thesis, National Central
University, 2022.
[19] K. T. Trinh, H.-L. Kao, H.-C. Chiu, and N. C. Karmakar, A Kaband GaAs MMIC traveling-wave switch with absorptive charac83
teristic, IEEE Microw. Wireless Compon. Lett., vol. 29, no. 6, pp.
394396, Jun. 2019.
[20] Z.-M. Tsai, M.-C. Yeh, M.-F. Lei, H.-Y. Chang, C.-S. Lin, and
H. Wang, DC-to-135 GHz and 15-to-135 GHz SPDT traveling wave
switches using FET-integrated CPW line structure, IEEE MTT-S
Int. Microw. Symp, pp. 13931396, Jun. 2005.
[21] H.-Y. Chang and C.-Y. Chan, A low loss high isolation DC-60 GHz
SPDT traveling-wave switch with a body bias technique in 90 nm
CMOS process, IEEE Microw. Wireless Compon. Lett., vol. 20,
no. 2, pp. 8284, Feb. 2010.
[22] M.-C. Yeh, Z.-M. Tsai, and H. Wang, A miniature DC-to-50 GHz
CMOS SPDT distributed switch, Eur. Microw. Conf, vol. 3, p. 4,
Oct. 2005.
[23] B.-W. Min and G. M. Rebeiz, A compact DC-30 GHz 0.13-µm
CMOS SP4T switch, IEEE Topical Meeting on Silicon Monolithic
Integrated Circuits in RF Systems (SiRF), pp. 14, Jan. 2009.
[24] B. W. Min and G. M. Rebeiz, Ka-band low-loss and high-isolation
switch design in 0.13-µm CMOS, IEEE Trans. Microw. Theory
Techn., vol. 56, no. 6, pp. 13641371, Jun. 2008.
[25] C. Liu, Q. Li, and Y.-Z. Xiong, A compact Ka-band SPDT switch
with high isolation, IEEE Int. Symp. Integr. Circuits. (ISIC), pp.
304307, Dec. 2014.
84
[26] T. Despoisse, N. Deltimple, A. Ghiotto, M. De Matos, J. Forest, and
P. Busson, An integrated 65-nm CMOS SOI Ka-band asymmetrical
single-pole double-throw switch based on hybrid couplers, IEEE
Microw. Wireless Compon. Lett., vol. 30, no. 12, pp. 11571160,
Dec. 2020.
[27] J. Park, W. Lee, and S. Hong, A small-size K-band SPDT switch
using alternate CMOS structure with resonating inductor matching, IEEE Microw. Wireless Compon. Lett., vol. 30, no. 11, pp.
10931096, Nov. 2020.
[28] J.-S. Fu, A novel X-band CMOS asymmetric T/R switch with highpass TX arm and low-pass RX arm, accepted by Electron. Lett.,
2023.
[29] M. Uzunkol and G. Rebeiz, A low-loss 5070 GHz SPDT switch in
90 nm CMOS, IEEE J. Solid-State Circuits, vol. 45, no. 10, pp.
20032007, Sep. 2010.
[30] S.-F. Chao, H. Wang, C.-Y. Su, and J. G. Chern, A 50 to 94-GHz
CMOS SPDT switch using traveling-wave concept, IEEE Microw.
Wireless Compon. Lett., vol. 17, no. 2, pp. 130132, Feb. 2007.
[31] X. Meng and C. P. Yue, Compact millimeter-wave SPDT switches
and wilkinson power combiners implemented by LC-based spiral
transmission lines, IEEE Trans. Microw. Theory Techn., vol. 69,
no. 2, pp. 13051315, Feb. 2020.
85
[32] X. Fu, Y. Wang, Z. Li, A. Shirane, and K. Okada, A 68-dB isolation
1.0-dB loss compact CMOS SPDT RF switch utilizing switched
resonance network, IEEE MTT-S Int. Microw. Symp, pp. 1315
1318, Aug. 2020.
[33] J. Zhang, T. Wu, L. Nie, S. Ma, Y. Chen, and J. Ren, A 120150
GHz power amplier in 28-nm CMOS achieving 21.9-dB gain and
11.8-dBm Psat for sub-THz imaging system, IEEE Access, vol. 9,
pp. 74 75274 762, May 2021.
[34] A. F. Tong, W. M. Lim, C. B. Sia, K. S. Yeo, Z. L. Teng, and P. F.
Ng, RF CMOS unit width optimization technique, IEEE Trans.
Microw. Theory Techn., vol. 55, no. 9, pp. 18441853, 2007.
[35] W. L. Chan, J. R. Long, M. Spirito, and J. J. Pekarik, A 60 GHzband 1V 11.5 dBm power amplier with 11% PAE in 65nm CMOS,
IEEE Int. Solid-State Circuits Conf. Tech. Dig., pp. 380381,381a,
2009.
[36] W.-C. Sun and C.-N. Kuo, A 19.1% PAE, 22.4-dBm 53-GHz parallel power combining power amplier with stacked-FET techniques
in 90-nm CMOS, IEEE MTT-S Int. Microw. Symp, pp. 327330,
Jun. 2019.
[37] H. Asada, K. Matsushita, K. Bunsen, K. Okada, and A. Matsuzawa,
A 60 GHz CMOS power amplier using capacitive cross-coupling
neutralization with 16 % PAE, Eur. Microw. Conf, pp. 11151118,
Oct. 2011.
86
[38] M. L. Edwards and J. H. Sinsky, A new criterion for linear 2-
port stability using a single geometrically derived parameter, IEEE
Trans. Microw. Theory Techn., vol. 40, no. 12, pp. 23032311, Dec.
1992.
[39] Abidi, General relations between IP2, IP3, and osets in dierential
circuits and the eects of feedback, IEEE Trans. Microw. Theory
Techn., vol. 51, no. 5, pp. 16101612, May 2003.
[40] T. LaRocca and M.-C. F. Chang, 60 GHz CMOS dierential and
transformer-coupled power amplier for compact design, IEEE Radio Freq. Integr. Circuits Symp, pp. 6568, Jun. 2008.
[41] D. Chowdhury, P. Reynaert, and A. M. Niknejad, Design considerations for 60 GHz transformer-coupled CMOS power ampliers,
IEEE J. Solid-State Circuits, vol. 44, no. 10, pp. 27332744, Oct.
2009.
[42] H. Shigematsu, T. Hirose, F. Brewer, and M. Rodwell, Millimeterwave CMOS circuit design, IEEE Trans. Microw. Theory Techn.,
vol. 53, no. 2, pp. 472477, Feb. 2005.
[43] J. Jia, X. Wang, and J. Wen, A 40-GHz power amplier with output power of 15.2 dBm in 65-nm CMOS, IEEE MTT-S Int. Wireless Symp, pp. 13, May 2021.
[44] M. A. Masud, H. Zirath, M. Ferndahl, and H.-O. Vickes, 90 nm
CMOS MMIC amplier, pp. 201204, Jun. 2004.
87
[45] Y. Jin, M. A. Sanduleanu, E. A. Rivero, and J. R. Long, A
millimeter-wave power amplier with 25dB power gain and+ 8dBm
saturated output power, Eur. Solid State Circuits Conf. (ESSCIRC), pp. 276279, Sep. 2007.
[46] S. N. Ali, P. Agarwal, L. Renaud, R. Molavi, S. Mirabbasi, P. P.
Pande, and D. Heo, A 40% PAE frequency-recongurable CMOS
power amplier with tunable gatedrain neutralization for 28-GHz
5G radios, IEEE Trans. Microw. Theory Techn., vol. 66, no. 5, pp.
22312245, May 2018.
[47] S. Shakib, H.-C. Park, J. Dunworth, V. Aparin, and K. Entesari,
A highly ecient and linear power amplier for 28-GHz 5G phased
array radios in 28-nm CMOS, IEEE J. Solid-State Circuits, vol. 51,
no. 12, pp. 30203036, Dec. 2016.
[48] Y.-C. Lee, T.-Y. Chen, and J. Y.-C. Liu, An adaptively biased
stacked power amplier without output matching network in 90-
nm CMOS, IEEE MTT-S Int. Microw. Symp, pp. 16671690, Jun.
2017.
[49] H.-T. Dabag, B. Hana, F. Golcuk, A. Agah, J. F. Buckwalter, and
P. M. Asbeck, Analysis and design of stacked-FET millimeter-wave
power ampliers, IEEE Trans. Microw. Theory Techn., vol. 61,
no. 4, pp. 15431556, Apr. 2013.
[50] P. Yan, J. Chen, W. Hong, and X. Jiang, A 42 to 56 GHz wide band
CMOS power amplier, Millim. Waves THz Technol. Workshop
88
(UCMMT), pp. 12, Sep. 2013.
[51] M. Bassi, J. Zhao, A. Bevilacqua, A. Ghilioni, A. Mazzanti, and
F. Svelto, A 4067 GHz power amplier with 13 dbm psat and 16%
pae in 28 nm CMOS LP, IEEE J. Solid-State Circuits, vol. 50,
no. 7, pp. 16181628, Mar. 2015.
[52] C.-W. Wu, Y.-H. Lin, Y.-H. Hsiao, C.-F. Chou, Y.-C. Wu, and
H. Wang, Design of a 60-GHz high-output power stacked-FET
power amplier using transformer-based voltage-type power combining in 65-nm CMOS, IEEE Trans. Microw. Theory Techn.,
vol. 66, no. 10, pp. 45954607, Oct. 2018. |