博碩士論文 110521114 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:35 、訪客IP:18.119.106.114
姓名 范仕深(Shih-Shen Fan)  查詢紙本館藏   畢業系所 電機工程學系
論文名稱 使用傳輸線基準全通網路之 Q 頻段 CMOS 被動式相位偏移器
(Q-Band CMOS Passive Phase Shifters Using Transmission-Line-Based Quasi-All-Pass Networks)
相關論文
★ 分佈式類比相位偏移器之設計與製作★ 以可變電容與開關為基礎之可調式匹配網路應用於功率放大器效率之提升
★ 全通網路相位偏移器之設計與製作★ 使用可調式負載及面積縮放技巧提升功率放大器之效率
★ 應用於無線個人區域網路系統之低雜訊放大器設計與實現★ 應用於極座標發射機之高效率波包放大器與功率放大器
★ 數位家庭無線資料傳輸系統之壓控振盪器設計與實現★ 鐵電可變電容之設計與製作
★ 用於功率放大器效率提升之鐵電基可調式匹配網路★ 基於全通網路之類比式及數位式相位偏移器
★ 使用鐵電可變電容及PIN二極體之頻率可調天線★ 具鐵電可變電容之積體被動元件製程及其應用於微波相位偏移器之製作
★ 使用磁耦合全通網路之寬頻四位元 CMOS相位偏移器★ 具矽基板貫孔之鐵電可變電容的製作與量測
★ 矽基板貫孔的製作和量測★ 使用鐵電可變電容之頻率可調微帶貼片天線
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   至系統瀏覽論文 (2026-8-10以後開放)
摘要(中) 毫米波頻段中的 Q 頻段(33—50.5 GHz),因其有較大的頻寬、
更快的傳輸速率以及更短的延遲,在近年來被廣泛應用。Q 頻段的應
用包括氣象雷達、第五代行動通訊以及新興的衛星網際網路。不管在
以上任何應用,相位陣列在收發機架構中都是不可或缺的。而相位偏
移器在相位陣列中扮演著最重要的角色,藉由提供可調變的相位差給
相位陣列中的天線,來改變相位陣列發射與接收的方向。
在第二章中,我們使用 TSMC 90-nm CMOS 製程來設計,電路
的中心頻為 35 GHz。以五級的數位式相移級組合成一 Ka 頻段五位元
被動式相位偏移器。其中 11.25°、22.5°、45° 及 90° 相位偏移器都是
使用傳輸線基準全通網路架構。180° 相位偏移器則是使用一對單刀雙
擲開關(single-pole double-throw, SPDT)實現。由量測結果來看,
均方根相位誤差在 4° 以內對應到的頻率範圍是 32—42.7 GHz,頻寬可
達 28.64%;在頻寬內返回損耗大於 10.8 dB,植入損耗小於 15 dB;
振幅誤差為 ±0.7 dB 以內。
在第三章中,我們使用 TSMC 90-nm CMOS 製程來設計,電路
的中心頻為 35 GHz。以五級的數位式相移級組合成一 Ka 頻段五位元
被動式寬頻相位偏移器。11.25°、22.5°、45° 及 90° 相位偏移器都是使
用傳輸線基準全通網路架構。其中為了增加頻寬,90° 相位偏移器是
以兩個中心頻錯開的傳輸線基準全通網路合成一級相移級。180° 相位
偏移器則是使用一對 SPDT 實現。由量測結果來看,均方根相位誤差
在 4° 下所對應到的頻寬為 29—45.1 GHz,頻寬可達 43.45%;在頻寬
內返回損耗大於 10.4 dB,植入損耗小於 17.9 dB;振幅誤差為 ±0.55 dB 以內。
在第四章中,我們使用 TSMC 90-nm CMOS 製程來設計,電路
的中心頻為 38 GHz。為了降低電路的損耗,我們以一級的類比式
相移器取代三級的數位式相移器,再接上 90°、45° 數位式相移器來
組合成一 Q 頻段五位元 180° 被動式相位偏移器。其中為了增加頻
寬,90°、45° 相位偏移器分別是以兩個中心頻錯開的傳輸線基準全
通網路合成一級相移級。類比式相移級我們使用 MOS varactor 來
實現可變電容,再搭配 3-bit 的數位電位器(digital potentialmeter,
DPOT)來讓類比式相移級可以用數位的方式來控制,進而取代原
本的 5.625°、11.25°、22.5° 數位式相位偏移器。由量測結果來看,均
方根相位誤差比模擬結果來的大,在均方根相位誤差 4° 以下所對應
到的頻寬為 36—48.5 GHz,頻寬可達 29.58%,在頻寬內返回損耗大於
13.5 dB,植入損耗小於 18.3 dB;振幅誤差為 ±0.75 dB 以內。而均
方根相位誤差在 5° 以下所對應到的頻寬為 27.2—51.3 GHz,頻寬可達 61.4%;在頻寬內返回損耗大於 13.5 dB,植入損耗小於 18.3 dB;振
幅誤差為 ±1.1 dB 以內。
在本論文中,我們成功實現了使用傳輸線基準全通網路之 Q 頻段
的 CMOS 180° 相位偏移器。透過以兩個中心頻錯開的傳輸線基準全
通網路合成一級相移級的方式,成功提升了電路的頻寬;又透過以一
級的類比式相移器取代三級的數位式相移器,來降低了電路的損耗,
成功達到 180° 相位偏移量以及六位元(5.625°)的相位解析度。
摘要(英) The Q band in the millimeter-wave frequency range (33--50.5 GHz) has been widely applied in recent years due to its larger bandwidth, higher transmission speed, and shorter latency. Q band finds applications in meteorological radar, 5G mobile communications, and emerging satellite internet. Regardless of these applications, phased arrays play an indispensable role in the transmitter-receiver architecture, and phase shifters are crucial components within phased arrays. By providing adjustable phase differences to the antennas in the phased array, phase shifters enable the manipulation of the direction of transmission and reception.

In Chapter 2, we designed the circuit using the TSMC 90-nm CMOS process, with a center frequency of 35 GHz. A five-stage digital phase shifter was implemented to achieve a five-bit passive phase shifter in the Ka band. The phase shifters 11.25°、22.5°、45° and 90° , were all implemented using a transmission line-based quasi-all-pass network structure. The 180° phase shifter was realized using a single-pole, double-throw (SPDT) switch pair. Based on the measurement results, the root mean square phase error is within 4° with a bandwidth of 32 to 42.7 GHz, which corresponds to a bandwidth of 28.64\% ; the return loss is greater than 10.8 dB within the bandwidth, and the insertion loss is less than 15 dB. The amplitude error is within ±0.7 dB.

In Chapter 3, we designed the circuit using the TSMC 90-nm CMOS process, with a center frequency of 35 GHz. A five-stage digital phase shifter was combined to form a wideband five-bit passive phase shifter in the Ka band. The phase shifters, 11.25°, 22.5°, 45°, and 90°, were all implemented using a transmission line-based quasi-all-pass network structure. To increase the bandwidth, the 90° phase shifter was realized by combining two transmission line-based quasi-all-pass networks with center frequencies offset. The 180° phase shifter was implemented using an SPDT switch pair. Based on the measurement results, the root mean square phase error is within 4° with a bandwidth of 29 to 45.1 GHz, which corresponds to a bandwidth of 43.45\% ; the return loss is greater than 10.4 dB within the bandwidth, and the insertion loss is less than 17.9 dB. The amplitude error is within ±0.55 dB.

In Chapter 4, we designed the circuit using the TSMC 90-nm CMOS process, with a center frequency of 38 GHz. To reduce the circuit loss, we replaced the three-stage digital phase shifter with a single-stage analog phase shifter and combined it with the 45° and 90° digital phase shifters to form a five-bit passive phase shifter in the Q band. To increase the bandwidth, the 45° and 90° phase shifters were implemented by combining two transmission line-based quasi-all-pass networks with center frequencies offset. The analog phase shifter was implemented using MOS varactor to achieve variable capacitance and combined with a digital potentiometer (DPOT) controlled digitally, replacing the 5.625°, 11.25°, and 22.5° digital phase shifters. The measurement results showed that the root-mean-square phase error was larger than the simulation results. The root mean square phase error is within 4° with a bandwidth of 36 to 48.5 GHz, which corresponds to a bandwidth of 29.58\% ; the return loss is greater than 13.5 dB within the bandwidth, and the insertion loss is less than 18.3 dB. The amplitude error is within ±0.75 dB. The root mean square phase error is within 5° with a bandwidth of 27.2 to 51.3 GHz, which corresponds to a bandwidth of 61.4\% ; the return loss is greater than 13.5 dB within the bandwidth, and the insertion loss is less than 18.3 dB. The amplitude error is within ±1.1 dB.

In this thesis, we successfully implemented a CMOS phase shifter in the Q band using a transmission line-based quasi-all-pass network. By combining two transmission line-based quasi-all-pass networks with offset center frequencies to form a single-stage phase shifter, we achieved improved circuit bandwidth. By replacing the three-stage digital phase shifter with a single-stage analog phase shifter, we reduced circuit loss and achieved 180° phase shift resolution and six bits (5.625°) of phase resolution.
關鍵字(中) ★ 相位偏移器
★ 傳輸線
★ 準全通網路
關鍵字(英) ★ phase shifter
★ transmission line
★ quasi-all-pass network
論文目次 摘要......................................Ⅰ
Abstract ................................Ⅲ
目錄.....................................Ⅵ
圖目錄...................................Ⅷ
表目錄...................................ⅩⅤ
第一章 緒論........................... 1
1.1 研究動機........................ 1
1.2 文獻回顧........................ 2
1.2.1 相位偏移器文獻回顧............... 2
1.2.2 Q 頻段相位偏移器文獻回顧......... 3
1.3 論文架構......................... 4
第二章 傳輸線基準全通網路之全差動式 Ka 頻段五位元 CMOS 相位偏移器..................................... 5
2.1 簡介............................ 5
2.2 基於傳輸線的準全通網路分析........ 6
2.3 電路設計........................ 10
2.3.1 11.25°、22.5°、45° 及 90° 相位偏移量........11
2.3.2 180° 相位偏移器................. 19
2.4 模擬結果........................ 22
2.5 量測結果........................ 31
2.6 重新模擬........................ 37
2.7 重新設計........................ 43
2.7.1 11.25°、22.5°、45° 及 90° 相位偏移量........43
2.7.2 重新設計模擬結果................. 49
2.8 量測結果........................ 55
2.9 結論........................... 61
第三章 使用傳輸線基準全通網路之全差動式 Ka 頻段五位元 CMOS 寬頻相位偏移器..................................... 63
3.1 簡介............................ 63
3.2 電路設計........................ 65
3.2.1 11.25°、22.5°、45° 及 90° 相位偏移量........67
3.2.2 180° 相位偏移器................. 75
3.3 模擬結果........................ 78
3.4 量測結果........................ 87
3.5 重新模擬........................ 93
3.6 重新設計........................ 99
3.6.1 11.25°、22.5°、45° 及 90° 相位偏移量........99
3.6.2 180° 相位偏移器................. 105
3.6.3 重新設計模擬結果................. 107
3.7 量測結果........................ 113
3.8 結論............................ 119
第四章 使用傳輸線基準全通網路之全差動式 Q 頻段五位元 180° 被動式相位偏移器..................................... 121
4.1 簡介............................ 121
4.2 電路設計........................ 123
4.2.1 45° 及 90° 相位偏移器........... 127
4.2.2 類比級相位偏移器................. 133
4.3 模擬結果........................ 136
4.4 量測結果........................ 145
4.5 重新模擬........................ 156
4.6 結論............................ 163
第五章 結論............................ 167
參考文獻................................. 171
參考文獻 [1] S. Kumar, G. Gupta, and K. R. Singh, "5G: Revolution of future
communication technology," in Proc. Int. Conf. Green Comput. Int.
Things, Oct. 2015, pp. 143-147.
[2] F. Ewald, S. GroB, M. Hagen, L. Hirsch, J. Delanoe, and M. Bauer-
Pfundstein, ′Calibration of a 35 GHz airborne cloud radar: lessons
learned and intercomparisons with 94 GHz cloud radars," Atmos
Meas. Tech., vol. 12, no. 3, pp. 1815-1839, Mar. 2019.
[3] 3GPP, "Nr;, user′Equipment (ue) radio transmission and reception;
part 2: Range 2 standalone," 3rd Generation Partnership Project
(3GPP), Technical Specification (TS) 38.101-2, Jun 2022, version
17.6.0.
[4] K. Miyaguchi et al., "An ultra-broad-band reflection-type phase-shifter MMIC with series and parallel LC circuits," in IEEE Transactions on Microwave Theory and Techniques, vol. 49, no. 12, pp. 2446-2452, Dec. 2001.
[5] J.-H. Tsai, Y.-L. Tung and Y.-H. Lin, "A 27–42-GHz Low Phase Error 5-Bit Passive Phase Shifter in 65-nm CMOS Technology," in IEEE Microwave and Wireless Components Letters, vol. 30, no. 9, pp. 900-903, Sept. 2020.
[6] M. Jung and B. Min, "A Compact Ka-Band 4-bit Phase Shifter With Low Group Delay Deviation," in IEEE Microwave and Wireless Components Letters, vol. 30, no. 4, pp. 414-416, April 2020.
[7] G.-S. Shin et al., "Low Insertion Loss, Compact 4-bit Phase Shifter in 65 nm CMOS for 5G Applications," in IEEE Microwave and Wireless Components Letters, vol. 26, no. 1, pp. 37-39, Jan. 2016.
[8] J. G. Yang and K. Yang, "Ka-Band 5-Bit MMIC Phase Shifter Using InGaAs PIN Switching Diodes," in IEEE Microwave and Wireless Components Letters, vol. 21, no. 3, pp. 151-153, March 2011.
[9] P. Gu and D. Zhao, "A Ka-Band CMOS Switched-Type Phase Shifter with Low Gain Error," 2021 IEEE International Conference on Integrated Circuits, Technologies and Applications (ICTA), 2021, pp. 175-176.
[10] C. F. Campbell and S. A. Brown, "A compact 5-bit phase-shifter MMIC for K-band satellite communication systems," in IEEE Transactions on Microwave Theory and Techniques, vol. 48, no. 12, pp. 2652-2656, Dec. 2000.
[11] I. J. Bahl and D. Conway, "L- and S-Band Compact Octave Bandwidth 4-bit MMIC Phase Shifters," in IEEE Transactions on Microwave Theory and Techniques, vol. 56, no. 2, pp. 293-299, Feb. 2008.
[12] M. Hangai, M. Hieda, N. Yunoue, Y. Sasaki and M. Miyazaki, "$S$ - and $C$ -Band Ultra-Compact Phase Shifters Based on All-Pass Networks," in IEEE Transactions on Microwave Theory and Techniques, vol. 58, no. 1, pp. 41-47, Jan. 2010.
[13] D. Adler and R. Popovich, "Broadband switched-bit phase shifter using all-pass networks," 1991 IEEE MTT-S International Microwave Symposium Digest, 1991, pp. 265-268 vol.1.
[14] M. Meghdadi, M. Azizi, M. Kiani, A. Medi and M. Atarodi, "A 6-Bit CMOS Phase Shifter for $S$-Band," in IEEE Transactions on Microwave Theory and Techniques, vol. 58, no. 12, pp. 3519-3526, Dec. 2010.
[15] D.-W Kang, H. D. Lee, C.-H. Kim and S. Hong, "Ku-band MMIC phase shifter using a parallel resonator with 0.18-/spl mu/m CMOS technology," in IEEE Transactions on Microwave Theory and Techniques, vol. 54, no. 1, pp. 294-301, Jan. 2006.
[16] Q. Xiao, "A compact L-band broadband 4-bit MMIC phase shifter with low phase error," Asia-Pacific Microwave Conference 2011, 2011, pp. 291-294.
[17] D. Kramer, "Ka-Band P-I-N Diode Based Digital Phase Shifter," 2018 13th European Microwave Integrated Circuits Conference (EuMIC), 2018, pp. 317-320.
[18] Q. Zheng et al., "Design and Performance of a Wideband Ka-Band 5-b MMIC Phase Shifter," in IEEE Microwave and Wireless Components Letters, vol. 27, no. 5, pp. 482-484, May 2017.
[19] J.-H. Tsai, T.-T. He and W.-H. Lin, "A K/Ka-Band Low RMS Phase Error 5-Bit CMOS Phase Shifter," 2021 IEEE International Symposium on Radio-Frequency Integration Technology (RFIT), 2021, pp. 1-3.
[20] W.-J. Tseng, C.-S. Lin, Z.-M. Tsai and H. Wang, "A miniature switching phase shifter in 0.18-µm CMOS," 2009 Asia Pacific Microwave Conference, 2009, pp. 2132-2135.
[21] Y.-H. Lin and Z.-M. Tsai, "A Wideband Compact 5-Bit Phase Shifter With Low Loss and RMS Errors for 5G Applications," in IEEE Microwave and Wireless Components Letters, vol. 31, no. 10, pp. 1134-1137, Oct. 2021.
[22] T.-D. Huang, "Fully-Differential Ka-Band 5-Bit CMOS Phase Shifters Using Transmission-Line-Based Quasi-All-Pass Networks," Master dissertation, National Central University,2022.
[23] J.-S. Fu, private communication, Aug.2022.
[24] X. Tang and K. Mouthaan, "Design of Large Bandwidth Phase Shifters Using Common Mode All-Pass Networks," in IEEE Microwave and Wireless Components Letters, vol. 22, no. 2, pp. 55-57, Feb. 2012.
[25] C.-E. Hung, "Design of Ka-Band Digital Phase Shifter and Variable Gain Amplifier Chips," Master dissertation, National Central University,2021.
[26] J.-H. Tsai, F.-M. Lin, and H. Xiao, "Low RMS phase error 28 GHz 5-bit switch type phase shifter for 5G application," Electron. Lett., vol. 54, no. 20, pp. 1184–1185, Oct. 2018.
[27] S. Londhe and E. Socher, "28–38-GHz 6-bit Compact Passive Phase Shifter in 130-nm CMOS," in IEEE Microwave and Wireless Components Letters, vol. 31, no. 12, pp. 1311-1314, Dec. 2021.
[28] Y.-H. Lin and Z.-M. Tsai, "Frequency-Reconfigurable Phase Shifter Based on a 65-nm CMOS Process for 5G Applications," in IEEE Transactions on Circuits and Systems II: Express Briefs, vol. 68, no. 8, pp. 2825-2829, Aug. 2021.
[29] B.-W. Min and G. M. Rebeiz, "Single-Ended and Differential Ka-Band BiCMOS Phased Array Front-Ends," in IEEE Journal of Solid-State Circuits, vol. 43, no. 10, pp. 2239-2250, Oct. 2008.
[30] E. V. P. Anjos, D. M. M.-P. Schreurs, G. A. E. Vandenbosch and M. Geurts, "A 14–50-GHz Phase Shifter With All-Pass Networks for 5G Mobile Applications," in IEEE Transactions on Microwave Theory and Techniques, vol. 68, no. 2, pp. 762-774, Feb. 2020.
[31] S. Kwon, M. Jung, and B.-W. Min, “Wideband switchable-capacitor loaded differential phase shifter with lattice structures,” IEEE/MTT-S International Microwave Symposium (IMS), pp. 738–741, Jun. 2022.
[32] D. Patranabis, "Inductor realization with a phase-inverting amplifier", Int. J. Electron., vol. 36, no. 4, pp. 487-493, 1974.
指導教授 傅家相 審核日期 2023-8-15
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明