參考文獻 |
[1] X. Yan, P. Yu, J. Zhang, S.-P. Gao, and Y. Guo, “A broadband 10-43 GHz high-gain LNA MMIC using coupled-line feedback in 0.15-μm GaAs pHEMT technology,” IEEE Microw. Wireless Compon. Lett., vol. 32, no. 12, pp. 1459–1462, Dec. 2022.
[2] H. Chen, H. Zhu, L. Wu, W. Che, and Q. Xue, “A wideband CMOS LNA using transformer-based input matching and pole-tuning technique” IEEE Trans. Microw. Theory Techn., vol. 69, no. 7, pp. 3335-3347, Jul. 2021.
[3] Y-C Wu, C-C Chiong, J-H Tsai, H. Wang, “A novel 30-90 GHz singly balanced mixer with broadband LO/IF,” IEEE Trans. Microw. Theory Techn., vol. 64, no 12, pp. 4611-4623, Dec. 2016.
[4] Y. Zhang, J. Pang, Z. Li, M. Tang, Y. Liao, A.-A. Fadila, A. Shirane, and K. Okada, “A power-efficient CMOS multi-band phased-array receiver covering 24-71 GHz utilizing harmonic-selection technique with 36 dB inter-band blocker tolerance for 5G NR,” IEEE J. Solid-State Circuits, vol. 57, no. 12, pp. 3617-3630, Dec. 2022.
[5] R. Hu, Y. Chen, K.-H. Hsieh, “Wide-IF-Band 90-nm CMOS image-rejection subharmonic radio -astronomical array receiver design in 75-110 GHz,” IEEE Trans. THz Sci. Technol., vol. 12, no. 5, pp.1-7, Sep. 2022.
[6] H. Li, J. Chen, D. Hou, Z. Li, R. Zhou, Z. Chen, P. Yan, and W. Hong, “W-band scalable 2 × 2 phased-array transmitter and receiver chipsets in SiGe BiCMOS for high data-rate communication,” IEEE J. Solid-State Circuits, vol. 57, no. 9, pp. 2685-2701, Sep. 2022.
[7] X. Yang, Y.-S. Huang, L. Zhou, Z. Zhao, D.-X. Ni, C.-R. Zhang, J.-F. Mao, J.-A. Han, X. Cheng, and X.-J. Deng, “Low-loss heterogeneous integrations with high output power radar applications at W-band,” IEEE J. Solid-State Circuits, vol.57, no. 6, pp.1563-1577, Jun. 2022.
[8] D. Reiter, H. Li, B. Sene, and N. Pohl, “A low-noise W-band receiver in a 28-nm CMOS technology,” IEEE Microw. Wireless Compon. Lett., vol. 32, no. 5, pp. 406-409, May. 2022.
[9] Y. Hu, and T. Chi, “A 27-46 GHz low-noise amplifier with dual-resonant input matching and a transformer-based broadband output network,” IEEE Microw. Wireless Compon. Lett., vol. 31, no. 6, pp. 725-728, Jun. 2021.
[10] X. Meng, and R. Zhou, “A K-band ultra-compact gm-boost LNA using one multi-coupled transformer in 65-nm CMOS,” IEEE Microw. Wireless Compon. Lett., vol. 32, no. 8, pp. 976–978, Aug. 2022.
[11] Y. Wang, T.-Y. Chiu, C.-C. Chien, W.-H Tsai, and H. Wang, “An E-Band high-performance variable gain low noise amplifier for wireless communications in 90-nm CMOS process,” IEEE Microw. Wireless Compon. Lett., vol. 32, no. 9, pp. 1095–1098, Sep. 2022.
[12] J. Zhang, D. Zhao, and X. You, “A 20 GHz 1.9 mW LNA using gm-boost and current-reuse techniques in 65-nm CMOS for satellite communications,” IEEE J. Solid-State Circuits, vol. 55, no. 10, pp. 2714-2723, Oct. 2020.
[13] J.-F. Chang, and Y.-S. Lin, “3-9 GHz CMOS LNA using body floating and self-bias technique for Sub-6-GHz 5G communications,” IEEE Microw. Wireless Compon. Lett., vol. 31, no. 6, pp. 608–611, Jun. 2021.
[14] F. Thome, S. Wagner, and A. Leuther, “A 1–170-GHz distributed down -converter MMIC in 35-nm gate-length InGaAs mHEMT technology,” IEEE Microw. Wireless Compon. Lett., vol. 32, no. 6, pp. 748-751, Jun. 2022.
[15] Y. Chen, R. Hu, J.-H. Yu, Y. Ye, Y. Zhu, X. Liu, S. Qiu, J. Chen, X. Liu, C. Domier, and N.-C. Luhmann, “110–140 GHz wide-IF-band 65 nm CMOS receiver design for fusion plasma diagnostics ,” IEEE Microw. Wireless Compon. Lett., vol. 32, no. 6, pp. 631-634, Jun. 2022.
[16] Y.-C. Wu, and H. Wang, “An E-band double-balanced subharmonic mixer with high conversion gain and low power in 90-nm CMOS process,” IEEE Microw. Wireless Compon. Lett., vol. 32, no. 1, pp. 70-72, Jan. 2018.
[17] J.-J. Zeng, X.-Q. Lin, Y.-H. Su, Y.-M. Yang, P. Mei, and Z.-B. Zhu, “Low-cost third-harmonic mixer for W-band retrodirective system applications,” IEEE Microw. Wireless Compon. Lett., vol. 28, no. 11, pp. 1323-1326, Nov. 2022.
[18] B. Bae, E. Kim, S. Kim, and J. Han, “Dual-band CMOS Low-noise amplifier employing transformer-based band-switchable load for 5G NR FR2 applications,” IEEE Microw. Wireless Technol. Lett., vol. 33, no. 3, pp. 319-322, Mar. 2023.
[19] M. K. Hedayati et al., “A 33 GHz LNA for 5G Wireless Systems in 28-nm Bulk CMOS,” IEEE Trans. Circuits Syst. II, Exp. Briefs, vol. 65, no. 10, pp. 1460–1464, Oct. 2018.
[20] H. Hsieh, and L. Lu, “A 40 GHz low noise amplifier with a positive-feedback network in 0.18 μm CMOS,” IEEE Trans. Microw. Theory Techn., vol. 57, no. 8, pp. 1895–1902, Aug. 2009.
[21] S.-C. Shin, M.-D. Tsai, R.-C.Liu, K.-Y. Lin, and H. Wang,” A 24 GHz 3.9 dB NF low noise amplifier using 0.18 μm CMOS technology,” IEEE Microw. Wireless Compon. Lett., vol. 15, no. 7, pp. 448–450, Jun. 2005.
[22] K.-W. Yu, Y.-L. Lu, D.-C. Chang, V. Liang, and M.-F. Chang, “K-Band low-noise amplifiers using 0.18 μm CMOS technology,” IEEE Microw. Wireless Compon. Lett., vol. 14, no. 3, pp. 106–108, Mar. 2004.
[23] A. Alizadeh, M. Meghdadi, M. Yaghoobi, and A. Medi, “Design of a 2–12-GHz bidirectional distributed amplifier in a 0.18-μm CMOS technology,” IEEE Trans. Microw. Theory Techn., vol. 67, no. 2, pp. 754–764, Feb. 2019.
[24] R. Wang, C. Li, J. Zhang, S. Yin, W. Zhu, and Y. Wang, “A 18 - 44 GHz low noise amplifier with input matching and bandwidth extension techniques,” IEEE Microw. Wireless Compon. Lett., vol. 32, no. 9, pp. 1083–1086, Sep. 2022.
[25] Y. Hu, and T. Chi, “A 27-46 GHz low-noise amplifier with dual-resonant input matching and a transformer-based broadband output network,” IEEE Microw. Wireless Compon. Lett., vol. 31, no. 6, pp. 725-728, Jun. 2021.
[26] X. Meng, and R. Zhou, “A 21-41 GHz common-gate LNA with TLT matching networks in 28-nm FDSOI CMOS,” IEEE Microw. Wireless Compon. Lett., vol. 32, no. 9, pp. 1051–1054, Sep. 2022.
[27] Z. Deng, J. Zhou, H.-J. Qian, and X. Luo, “A 22.9–38.2 GHz dual-path noise-canceling LNA with 2.65–4.62 dB NF in 28 nm CMOS,” IEEE J. Solid-State Circuits, vol. 56, no. 11, pp. 3348-3359, Nov. 2021.
[28] 蔡智斌,「Ka頻段輻射計接收機暨Ku頻段氮化鎵功率放大器之研製」,國立中央大學,碩士論文,民國 109 年。
[29] B. Bae, and J. Han, “24-40 GHz gain-boosted wideband CMOS down-conversion mixer employing body-effect control for 5G NR applications,” IEEE Trans. Circuits Syst. II, Exp. Briefs, vol. 65, no. 10, pp. 1460–1464, Oct. 2018.
[30] Y.-S. Lin, W.-C. Wen, and C.-C. Wang, “13.6 mW 79 GHz CMOS up-conversion mixer with 2.1 dB gain and 35.9 dB LO-RF isolation,” IEEE Microw. Wireless Compon. Lett., vol. 24, no. 2, pp. 126-128, Feb. 2014.
[31] J.-C. Kao, K.-Y. Lin, C.-C. Chiong, C.-Y. Peng, and H. Wang, “A W-band high LO-to-RF isolation triple cascode mixer with wide IF bandwidth,” IEEE Trans. Microw. Theory Techn., vol. 62, no. 7, pp. 1506–1514, Jul. 2014.
[32] H.-Y. Yang, J.-H. Tsai, T.-W. Huang, and H. Wang, “Analysis of a new 33–58-GHz doubly balanced drain mixer in 90-nm CMOS technology,” IEEE Trans. Microw. Theory Techn., vol. 60, no. 4, pp. 1057–1068, Apr. 2012.
[33] C.-C. Su, C.-M. Lin, S.-H. Hung, C.-C Huang, and Y.-H. Wang, “Analysis of three-conductor coupled-line 180 ° hybrid for single-balanced subharmonic mixer design in 0.15- m pHEMT technology,” IEEE Trans. Microw. Theory Techn., vol. 62, no. 10, pp. 2405-2414, Oct. 2014.
[34] K.-C. Lin et al., “A 4.2 mW 6 dB gain 5–65 GHz gate-pumped down-conversion mixer using Darlington cell for 60-GHz CMOS receiver,” IEEE Trans. Microw. Theory Techn., vol. 61, no. 4, pp. 1516–1522, Apr. 2013.
[35] Y.-C. Liu, Y.-W. Chang, Y.-C. Yeh, S.-H. Weng, J.-H. Tsai, and H.-Y. Chang, “A 2-to-67 GHz 0 dBm LO power broadband distributed NMOS-HBT Darlington mixer in 0.18 μm SiGe process,” IEEE MTT-S Int. Microw. Symp. Dig., pp. 1–4, May. 2016.
[36] 吳依靜,「毫米波寬頻混頻器及高增益低功耗之次諧波混頻器研究」國立台灣大學,博士論文,民國107年。
[37] W.-T. Li et al., “A 453 μW 53-70 GHz ultra low power double balanced source driven mixer using 90 nm CMOS technology,” IEEE Trans. Microw. Theory Techn., vol. 61, no. 5, pp. 1903-1912, May. 2013.
[38] J.-W. Lee and K.-J Webb, “Analysis and Design of Low-Loss Planar Microwave Baluns Having Three Symmetric Coupled Lines,” IEEE MTT-S Int. Microw. Symp. Dig., pp. 117-120, June. 2002.
[39] P. Tsai, Y. Lin, J. Kuo, Z. Tsai and H. Wang, "Broadband balanced frequency doublers with fundamental rejection enhancement using a novel compensated Marchand Balun," IEEE Trans. Microw. Theory Techn., vol. 61, no. 5, pp. 1913-1923, May 2013.
[40] Y.-S. Lin et al., “6.3 mW 94 GHz CMOS down-conversion mixer with 11.6 dB gain and 54 dB LO-RF isolation,” IEEE Microw. Wireless Compon. Lett., vol. 26, no. 8, pp. 604-606, Aug. 2016.
[41] C. Choi, J.-H. Son, O. Lee, and I. Nam, “A +12 dBm OIP3 60 GHz RF downconversion mixer with an output matching, noise and distortion-canceling active balun for 5G applications,” IEEE Microw. Wireless Compon. Lett., vol. 27, no. 3, pp. 284-286, Mar. 2017.
[42] Y.-S. Lin, C.-L. Lu, and Y.-H. Wang, “A 5 to 45 GHz distributed mixer with cascoded complementary switching pairs,” IEEE Microw. Wireless Compon. Lett, vol. 23, no. 9, pp. 495–497, Sep. 2013.
[43] H.-H Lin, Y.-H Lin, and H. Wang “A high linearity 24 GHz down-conversion mixer using distributed derivative superposition technique in 0.18 μm CMOS process,” IEEE Microw. Wireless Compon. Lett., vol. 28, no. 1, pp. 49–51, Jan. 2018.
[44] C.-M. Lin, H.-K. Lin, Y.-A. Lai, C.-P. Chang, and Y.-H. Wang, “A 10–40 GHz broadband subharmonic monolithic mixer in 0.18 um CMOS technology,” IEEE Microw. Wireless Compon. Lett, vol. 19, no. 2, pp. 95–97, Fed. 2009.
[45] H.-Y. Yang, J.-H. Tsai, T.-W. Huang, and H. Wang, “Analysis of a new 33–58-GHz double-balanced drain mixer in 90-nm CMOS technology,” IEEE Tran. Microw. Theory Techn., vol. 60, no. 4, pp. 1057–1068, Apr. 2012.
[46] S.-H. Hung, K.-W. Chang, and Y.-H. Wang, “An ultra-broadband subharmonic mixer with distributed amplifier using 90-nm CMOS technology,” IEEE Tran. Microw. Theory Techn., vol. 61, no. 10, pp. 3650–3657, Oct. 2013.
[47] J.-H. Tsai, Y.-Y Hsieh, and W.-H. Liu, “A 27–44 GHz CMOS dual-ring subharmonic up-conversion mixer with linearization technique,” IEEE Microw. Wireless Compon. Lett, vol. 32, no. 4, pp. 347–350, Apr. 2022.
[48] C.-H. Li, C.-L Ko, M.-C. Kuo, and D.-C. Chang, “A 7.1-mW K/Ka-band mixer with configurable bondwire resonators in 65-nm CMOS,” IEEE Trans. Very Large Scale Integr. (VLSI) Syst., vol. 25, no. 9, pp. 2635–2648, Sep. 2017.
[49] A. Navarrini et al., “Feasibility study of a W-band multibeam heterodyne receiver for the gregorian focus of the sardinia radio telescope,” IEEE Access, vol. 10, pp. 26369-26403, 2022.
[50] C. Hannachi, and K. Wu, “Dual-mode RF mixer for low-power direct-conversion receiver,” IEEE Microw. Wireless Compon. Lett, vol. 32, no. 6, pp. 583-586, Jun. 2022.
[51] 賴仕豪,「砷化鎵異質整合及矽基毫米波輻射計接收機暨氮化鎵功率放大器之研製」,國立中央大學,碩士論文,民國 110 年。
[52] M.-H. Li, Y. Wang, and H. Wang, “A 50–67 GHz ultralow-power LNA using double-transformer-coupling technique and self-resonant matching in 90 nm CMOS,” IEEE Microw. Wireless Compon. Lett, vol. 32, no. 1, pp. 68-71, Jan. 2022.
[53] Y. Yu, H. Liu, Y. Wu, and K. Kang, “A 54.4–90 GHz low-noise amplifier in 65-nm CMOS,” IEEE J. Solid-State Circuits, vol. 52, no. 11, pp.2892-2904, Nov. 2017.
[54] D. Pan et al., “A 60–90 GHz CMOS double-neutralized LNA technology with 6.3 dB NF and -10 dBm P1dB,” IEEE Microw. Wireless Compon. Lett, vol. 29, no. 7, pp. 489-491, Jul. 2019.
[55] S. Li, T. Chi, and H. Wang, “Multi-feed antenna and electronics co-design: an E-band antenna-LNA front end with on-antenna noise-canceling and gm-boosting,” IEEE J. Solid-State Circuits, vol. 55, no. 12, pp. 3362-3375, Dec. 2020.
[56] C.-J. Liang et al., “A 0.6 V VDD W-band neutralized differential low noise amplifier in 28 nm bulk CMOS,” IEEE Microw. Wireless Compon. Lett, vol. 31, no. 5, pp. 481-484, May. 2021.
[57] M. Vigilante, and P. Reynaert, “A coupled-RTWO-based subharmonic receiver front end for 5G E-band backhaul links in 28 nm bulk CMOS,” IEEE J. Solid-State Circuits, vol. 53, no. 10, pp. 2927-2938, Oct. 2018.
[58] D. Karaca et al., “A 53–117 GHz LNA in 28-nm FDSOI CMOS,” IEEE Microw. Wireless Compon. Lett, vol. 27, no. 2, pp. 171-173, Feb. 2017.
[59] G. Li, E. Wagner, and G.-M. Rebeiz,” Design of E-/W-band low-noise amplifiers in 22 nm CMOS FD-SOI,” IEEE Tran. Microw. Theory Techn., vol. 68, no. 1, pp. 1628–1639, Jan. 2020.
[60] V. Eren, P. Sakalas, and S. Michael, “A 5.9 mW E-/W-Band SiGe-HBT LNA with 48 GHz 3-dB bandwidth and 4.5 dB Noise Figure,” IEEE Microw. Wireless Compon. Lett, vol. 32, no. 12, pp. 1451-1454, Dec. 2022.
[61] C.-H. LI, W.-T. Hsieh, and T.-Y. Chiu, “A flip-chip-assembled W-band receiver in 90-nm CMOS and IPD technologies,” IEEE Tran. Microw. Theory Techn., vol. 67, no. 4, pp. 1628–1639, Apr. 2019.
[62] T. N. Huang et al., “A CMOS W-band quasi-subharmonic mixer,” IEEE Microw. Wireless Compon. Lett, vol. 25, no. 6, pp. 385–387, Jun. 2015.
[63] Y. Zhang et al., “12-mW 97-GHz low-power downconversion mixer with 0.7 V supply voltage,” IEEE Microw. Wireless Compon. Lett, vol. 29, no. 4, pp. 279–281, Apr. 2019.
[64] A. Ahmed, M.-Y Huang, D. Munzer, and H. Wang, “A 43–97 GHz mixer-first front-end with quadrature input matching and on-chip image rejection,” IEEE J. Solid-State Circuits, vol. 56, no. 3, pp. 279-281, Mar. 2021. |