博碩士論文 109521101 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:28 、訪客IP:52.15.187.41
姓名 黃柔尹(Rou-Yin Huang)  查詢紙本館藏   畢業系所 電機工程學系
論文名稱 應用 CMOS 製程之 Q 頻段低雜訊放大 器與寬頻混波器暨 W 頻段降頻器研製
(Design of Q-Band Low-Noise Amplifier, Wideband Mixer, and W-Band Downconverter Using CMOS Process.)
相關論文
★ 微波及毫米波切換器及四相位壓控振盪器整合除三 除頻器之研製★ 微波低相位雜訊壓控振盪器之研製
★ 高線性度低功率金氧半場效電晶體射頻混波器應用於無線通訊系統★ 砷化鎵高速電子遷移率之電晶體微波/毫米波放大器設計
★ 微波及毫米波行進波切換器之研製★ 寬頻低功耗金氧半場效電晶體 射頻環狀電阻性混頻器
★ 微波與毫米波相位陣列收發積體電路之研製★ 24 GHz汽車防撞雷達收發積體電路之研製
★ 低功耗低相位雜訊差動及四相位單晶微波積體電路壓控振盪器之研究★ 高功率高效率放大器與振盪器研製
★ 微波與毫米波寬頻主動式降頻器★ 微波及毫米波注入式除頻器與振盪器暨射頻前端應用
★ 寬頻主動式半循環器與平衡器研製★ 雙閘極元件模型與微波及毫米波分佈式寬頻放大器之研製
★ 銻化物異質接面場效電晶體之研製及其微波切換器應用★ 微波毫米波寬頻振盪器與鎖相迴路之研製
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   至系統瀏覽論文 (2028-8-11以後開放)
摘要(中) 本論文研究目標為應用CMOS製程設計Q頻段低雜訊放大器、寬頻混波器以及W頻段低雜訊放大器與降頻器。第二章提出使用台積電0.18 μm CMOS製程設計操作於Q頻段低雜訊放大器,作為降頻器之前端放大器,為達到低雜訊與高增益特性,採用五級架構實現。此電路可達到16.4 dB之最大增益與7.3 dB之最小雜訊指數,頻寬為35.7至41.7 GHz,電路線性度之1 dB增益壓縮點輸出功率為3 dBm與-3 dBm的三階交調輸入功率,電路總功耗為73 mW,總晶片面積為0.8 × 0.7 mm2。
第三章提出使用台積電0.18 μm CMOS製程操作於Q頻段混波器,採用達靈頓混頻單元與本地振盪源閘極饋入之電路架構,對於不同的混頻核心電路架構與電晶體尺寸進行分析,達到最佳轉換增益。並於降頻器之輸入端設計馬相平衡不平衡轉換器,針對耦合線長度差以及補償線長度分析,提升本地振盪埠至射頻埠之隔離度。當降頻器給定本地振盪功率為5 dBm時轉換增益為-15 dB,射頻埠頻寬為35至45 GHz,本地振盪埠之射頻埠隔離度在30 GHz為38 dB,1 dB增益壓縮點輸入功率為2 dBm,電路功耗為1 mW,整體晶片面積為0.88×0.77 mm2。
第四章提出使用台積電90 nm CMOS製程設計之W頻段降頻器。首先設計位於電路前端的W頻段低雜訊放大器,但在W頻段時單顆電晶體能提供之增益僅有2 dB,而疊接架構雜訊指數過大,故採用六級共源極架構增加電路增益並降低雜訊指數。此電路可達到13 dB之最大增益與8 dB之最小雜訊指數,且電路總功耗僅為10 mW,低雜訊放大器晶片面積為0.73 × 0.81 mm2。接著,將低雜訊放大器與混波器整合為低雜訊W頻段降頻器,將轉換增益提升至3.3 dB,並降低最小雜訊指數至11 dB以及提高本地振盪埠至射頻埠隔離度,電路總功耗僅有15 mW,整體晶片面積為1.4×0.84 mm2。
摘要(英) In this thesis, a Q-band low-noise amplifiers (LNAs), wideband mixers, and W-band LNA with downconverters using CMOS process technology. In Chapter 2, a Q-band LNA using TSMC 0.18 μm CMOS process is presented as a pre-amplifier for radiometer receiver to achieve low noise and high gain characteristics, a five-stage architecture is used. The measured small signal gain is 16.4 dB with 3-dB bandwidth from 35.7 to 41.7 GHz, and minimum noise figure of 7.3 dB at 39 GHz. An output 1-dB compression power of 3 dBm and an IIP3 of -3 dBm. The total dc power consumption of 73 mW. The chip size of the LNA is 0.8 × 0.7 mm2.
In Chapter 3, a Q-band mixer is realized TSMC 0.18 μm CMOS process. The circuit adopts a Darlington mixing cell with LO source-pumped architecture to achieve optimal conversion gain. Different mixer core circuit architectures and transistor sizes are analyzed for performance optimization. a Marchand Balun is designed at the input of the RF port to enhance isolation from LO port to RF port, the length of the compensated line and couple line in Marchand Balun are further analyzed and discussed in this chapter. While the LO power is 5 dBm, the mixer achieves a conversion gain of -12.5 dB. The RF port frequency bandwidth is from 35 to 45 GHz. The isolation from LO port to RF port is 38 dB at 30 GHz. The input 1-dB compression power of 2 dBm with a total dc power consumption of 1 mW, and the chip size is 0.88 × 0.77 mm2.
In Chapter 4, a W-band downconverter using TSMC 90 nm CMOS process. Initially, a W-band low-noise amplifier (LNA) is designed for the front-end of the circuit. However, a single transistor can only provide a gain of 2 dB in the W-band, and the cascade architecture results in excessive noise figure. Therefore, a six-stage common-source architecture is employed to increase the circuit gain and reduce the noise figure. The measured small signal gain is 13 dB and the minimum noise figure of 8 dB at 89 GHz. The total dc power consumption of the circuit is only 10 mW and the chip area of the LNA is 0.73 × 0.81 mm2. Next, the low-noise amplifier is integrated with the mixer to form a low-noise W-band downconverter. While the LO power is 5 dBm, the mixer achieves a conversion gain of 3.3 dB, the minimum noise figure is reduced to 11 dB, and the isolation from LO port to RF port is improved. The total dc power consumption of the circuit is only 15 mW, and the overall chip size is 1.4 × 0.84 mm2.
關鍵字(中) ★ 低雜訊放大器
★ 混波器
關鍵字(英) ★ LNA
★ Mixer
論文目次 摘要 i
Abstract ii
誌謝 iv
目錄 v
圖目錄 vii
表目錄 xiv
第一章 緒論 1
1.1研究動機與背景 1
1.2相關研究發展 1
1.3論文貢獻 3
1.4論文架構 3
第二章 Q頻段低雜訊放大器 4
2.1簡介 4
2.1.1低雜訊放大器介紹 4
2.1.2重要參數介紹 5
2.2 台積電0.18 μm CMOS製程簡介 7
2.3 電路設計與分析 7
2.4電路模擬與量測 22
2.5總結 29
第三章、 Q頻段混波器 31
3.1 簡介 31
3.1.1 混波器介紹 31
3.1.2 重要參數介紹 32
3.2 電路設計與分析 33
3.3 電路模擬與量測 61
3.4 電路除錯分析 68
3.6 總結 77
第四章 W頻段降頻器 79
4.1 簡介 79
4.2 台積電 90 nm CMOS製程簡介 80
4.3 電路設計與分析 80
4.3.1 W頻段低雜訊放大器 80
4.3.2 W頻段降頻器 88
4.4 電路模擬與量測 93
4.4.1 W頻段低雜訊放大器 93
4.4.2W頻段降頻器 98
4.5總結 107
第五章 結論 110
參考文獻 111
參考文獻 [1] X. Yan, P. Yu, J. Zhang, S.-P. Gao, and Y. Guo, “A broadband 10-43 GHz high-gain LNA MMIC using coupled-line feedback in 0.15-μm GaAs pHEMT technology,” IEEE Microw. Wireless Compon. Lett., vol. 32, no. 12, pp. 1459–1462, Dec. 2022.
[2] H. Chen, H. Zhu, L. Wu, W. Che, and Q. Xue, “A wideband CMOS LNA using transformer-based input matching and pole-tuning technique” IEEE Trans. Microw. Theory Techn., vol. 69, no. 7, pp. 3335-3347, Jul. 2021.
[3] Y-C Wu, C-C Chiong, J-H Tsai, H. Wang, “A novel 30-90 GHz singly balanced mixer with broadband LO/IF,” IEEE Trans. Microw. Theory Techn., vol. 64, no 12, pp. 4611-4623, Dec. 2016.
[4] Y. Zhang, J. Pang, Z. Li, M. Tang, Y. Liao, A.-A. Fadila, A. Shirane, and K. Okada, “A power-efficient CMOS multi-band phased-array receiver covering 24-71 GHz utilizing harmonic-selection technique with 36 dB inter-band blocker tolerance for 5G NR,” IEEE J. Solid-State Circuits, vol. 57, no. 12, pp. 3617-3630, Dec. 2022.
[5] R. Hu, Y. Chen, K.-H. Hsieh, “Wide-IF-Band 90-nm CMOS image-rejection subharmonic radio -astronomical array receiver design in 75-110 GHz,” IEEE Trans. THz Sci. Technol., vol. 12, no. 5, pp.1-7, Sep. 2022.
[6] H. Li, J. Chen, D. Hou, Z. Li, R. Zhou, Z. Chen, P. Yan, and W. Hong, “W-band scalable 2 × 2 phased-array transmitter and receiver chipsets in SiGe BiCMOS for high data-rate communication,” IEEE J. Solid-State Circuits, vol. 57, no. 9, pp. 2685-2701, Sep. 2022.
[7] X. Yang, Y.-S. Huang, L. Zhou, Z. Zhao, D.-X. Ni, C.-R. Zhang, J.-F. Mao, J.-A. Han, X. Cheng, and X.-J. Deng, “Low-loss heterogeneous integrations with high output power radar applications at W-band,” IEEE J. Solid-State Circuits, vol.57, no. 6, pp.1563-1577, Jun. 2022.
[8] D. Reiter, H. Li, B. Sene, and N. Pohl, “A low-noise W-band receiver in a 28-nm CMOS technology,” IEEE Microw. Wireless Compon. Lett., vol. 32, no. 5, pp. 406-409, May. 2022.
[9] Y. Hu, and T. Chi, “A 27-46 GHz low-noise amplifier with dual-resonant input matching and a transformer-based broadband output network,” IEEE Microw. Wireless Compon. Lett., vol. 31, no. 6, pp. 725-728, Jun. 2021.
[10] X. Meng, and R. Zhou, “A K-band ultra-compact gm-boost LNA using one multi-coupled transformer in 65-nm CMOS,” IEEE Microw. Wireless Compon. Lett., vol. 32, no. 8, pp. 976–978, Aug. 2022.
[11] Y. Wang, T.-Y. Chiu, C.-C. Chien, W.-H Tsai, and H. Wang, “An E-Band high-performance variable gain low noise amplifier for wireless communications in 90-nm CMOS process,” IEEE Microw. Wireless Compon. Lett., vol. 32, no. 9, pp. 1095–1098, Sep. 2022.
[12] J. Zhang, D. Zhao, and X. You, “A 20 GHz 1.9 mW LNA using gm-boost and current-reuse techniques in 65-nm CMOS for satellite communications,” IEEE J. Solid-State Circuits, vol. 55, no. 10, pp. 2714-2723, Oct. 2020.
[13] J.-F. Chang, and Y.-S. Lin, “3-9 GHz CMOS LNA using body floating and self-bias technique for Sub-6-GHz 5G communications,” IEEE Microw. Wireless Compon. Lett., vol. 31, no. 6, pp. 608–611, Jun. 2021.
[14] F. Thome, S. Wagner, and A. Leuther, “A 1–170-GHz distributed down -converter MMIC in 35-nm gate-length InGaAs mHEMT technology,” IEEE Microw. Wireless Compon. Lett., vol. 32, no. 6, pp. 748-751, Jun. 2022.
[15] Y. Chen, R. Hu, J.-H. Yu, Y. Ye, Y. Zhu, X. Liu, S. Qiu, J. Chen, X. Liu, C. Domier, and N.-C. Luhmann, “110–140 GHz wide-IF-band 65 nm CMOS receiver design for fusion plasma diagnostics ,” IEEE Microw. Wireless Compon. Lett., vol. 32, no. 6, pp. 631-634, Jun. 2022.
[16] Y.-C. Wu, and H. Wang, “An E-band double-balanced subharmonic mixer with high conversion gain and low power in 90-nm CMOS process,” IEEE Microw. Wireless Compon. Lett., vol. 32, no. 1, pp. 70-72, Jan. 2018.
[17] J.-J. Zeng, X.-Q. Lin, Y.-H. Su, Y.-M. Yang, P. Mei, and Z.-B. Zhu, “Low-cost third-harmonic mixer for W-band retrodirective system applications,” IEEE Microw. Wireless Compon. Lett., vol. 28, no. 11, pp. 1323-1326, Nov. 2022.
[18] B. Bae, E. Kim, S. Kim, and J. Han, “Dual-band CMOS Low-noise amplifier employing transformer-based band-switchable load for 5G NR FR2 applications,” IEEE Microw. Wireless Technol. Lett., vol. 33, no. 3, pp. 319-322, Mar. 2023.
[19] M. K. Hedayati et al., “A 33 GHz LNA for 5G Wireless Systems in 28-nm Bulk CMOS,” IEEE Trans. Circuits Syst. II, Exp. Briefs, vol. 65, no. 10, pp. 1460–1464, Oct. 2018.
[20] H. Hsieh, and L. Lu, “A 40 GHz low noise amplifier with a positive-feedback network in 0.18 μm CMOS,” IEEE Trans. Microw. Theory Techn., vol. 57, no. 8, pp. 1895–1902, Aug. 2009.
[21] S.-C. Shin, M.-D. Tsai, R.-C.Liu, K.-Y. Lin, and H. Wang,” A 24 GHz 3.9 dB NF low noise amplifier using 0.18 μm CMOS technology,” IEEE Microw. Wireless Compon. Lett., vol. 15, no. 7, pp. 448–450, Jun. 2005.
[22] K.-W. Yu, Y.-L. Lu, D.-C. Chang, V. Liang, and M.-F. Chang, “K-Band low-noise amplifiers using 0.18 μm CMOS technology,” IEEE Microw. Wireless Compon. Lett., vol. 14, no. 3, pp. 106–108, Mar. 2004.
[23] A. Alizadeh, M. Meghdadi, M. Yaghoobi, and A. Medi, “Design of a 2–12-GHz bidirectional distributed amplifier in a 0.18-μm CMOS technology,” IEEE Trans. Microw. Theory Techn., vol. 67, no. 2, pp. 754–764, Feb. 2019.
[24] R. Wang, C. Li, J. Zhang, S. Yin, W. Zhu, and Y. Wang, “A 18 - 44 GHz low noise amplifier with input matching and bandwidth extension techniques,” IEEE Microw. Wireless Compon. Lett., vol. 32, no. 9, pp. 1083–1086, Sep. 2022.
[25] Y. Hu, and T. Chi, “A 27-46 GHz low-noise amplifier with dual-resonant input matching and a transformer-based broadband output network,” IEEE Microw. Wireless Compon. Lett., vol. 31, no. 6, pp. 725-728, Jun. 2021.
[26] X. Meng, and R. Zhou, “A 21-41 GHz common-gate LNA with TLT matching networks in 28-nm FDSOI CMOS,” IEEE Microw. Wireless Compon. Lett., vol. 32, no. 9, pp. 1051–1054, Sep. 2022.
[27] Z. Deng, J. Zhou, H.-J. Qian, and X. Luo, “A 22.9–38.2 GHz dual-path noise-canceling LNA with 2.65–4.62 dB NF in 28 nm CMOS,” IEEE J. Solid-State Circuits, vol. 56, no. 11, pp. 3348-3359, Nov. 2021.
[28] 蔡智斌,「Ka頻段輻射計接收機暨Ku頻段氮化鎵功率放大器之研製」,國立中央大學,碩士論文,民國 109 年。
[29] B. Bae, and J. Han, “24-40 GHz gain-boosted wideband CMOS down-conversion mixer employing body-effect control for 5G NR applications,” IEEE Trans. Circuits Syst. II, Exp. Briefs, vol. 65, no. 10, pp. 1460–1464, Oct. 2018.
[30] Y.-S. Lin, W.-C. Wen, and C.-C. Wang, “13.6 mW 79 GHz CMOS up-conversion mixer with 2.1 dB gain and 35.9 dB LO-RF isolation,” IEEE Microw. Wireless Compon. Lett., vol. 24, no. 2, pp. 126-128, Feb. 2014.
[31] J.-C. Kao, K.-Y. Lin, C.-C. Chiong, C.-Y. Peng, and H. Wang, “A W-band high LO-to-RF isolation triple cascode mixer with wide IF bandwidth,” IEEE Trans. Microw. Theory Techn., vol. 62, no. 7, pp. 1506–1514, Jul. 2014.
[32] H.-Y. Yang, J.-H. Tsai, T.-W. Huang, and H. Wang, “Analysis of a new 33–58-GHz doubly balanced drain mixer in 90-nm CMOS technology,” IEEE Trans. Microw. Theory Techn., vol. 60, no. 4, pp. 1057–1068, Apr. 2012.
[33] C.-C. Su, C.-M. Lin, S.-H. Hung, C.-C Huang, and Y.-H. Wang, “Analysis of three-conductor coupled-line 180 ° hybrid for single-balanced subharmonic mixer design in 0.15- m pHEMT technology,” IEEE Trans. Microw. Theory Techn., vol. 62, no. 10, pp. 2405-2414, Oct. 2014.
[34] K.-C. Lin et al., “A 4.2 mW 6 dB gain 5–65 GHz gate-pumped down-conversion mixer using Darlington cell for 60-GHz CMOS receiver,” IEEE Trans. Microw. Theory Techn., vol. 61, no. 4, pp. 1516–1522, Apr. 2013.
[35] Y.-C. Liu, Y.-W. Chang, Y.-C. Yeh, S.-H. Weng, J.-H. Tsai, and H.-Y. Chang, “A 2-to-67 GHz 0 dBm LO power broadband distributed NMOS-HBT Darlington mixer in 0.18 μm SiGe process,” IEEE MTT-S Int. Microw. Symp. Dig., pp. 1–4, May. 2016.
[36] 吳依靜,「毫米波寬頻混頻器及高增益低功耗之次諧波混頻器研究」國立台灣大學,博士論文,民國107年。
[37] W.-T. Li et al., “A 453 μW 53-70 GHz ultra low power double balanced source driven mixer using 90 nm CMOS technology,” IEEE Trans. Microw. Theory Techn., vol. 61, no. 5, pp. 1903-1912, May. 2013.
[38] J.-W. Lee and K.-J Webb, “Analysis and Design of Low-Loss Planar Microwave Baluns Having Three Symmetric Coupled Lines,” IEEE MTT-S Int. Microw. Symp. Dig., pp. 117-120, June. 2002.
[39] P. Tsai, Y. Lin, J. Kuo, Z. Tsai and H. Wang, "Broadband balanced frequency doublers with fundamental rejection enhancement using a novel compensated Marchand Balun," IEEE Trans. Microw. Theory Techn., vol. 61, no. 5, pp. 1913-1923, May 2013.
[40] Y.-S. Lin et al., “6.3 mW 94 GHz CMOS down-conversion mixer with 11.6 dB gain and 54 dB LO-RF isolation,” IEEE Microw. Wireless Compon. Lett., vol. 26, no. 8, pp. 604-606, Aug. 2016.
[41] C. Choi, J.-H. Son, O. Lee, and I. Nam, “A +12 dBm OIP3 60 GHz RF downconversion mixer with an output matching, noise and distortion-canceling active balun for 5G applications,” IEEE Microw. Wireless Compon. Lett., vol. 27, no. 3, pp. 284-286, Mar. 2017.
[42] Y.-S. Lin, C.-L. Lu, and Y.-H. Wang, “A 5 to 45 GHz distributed mixer with cascoded complementary switching pairs,” IEEE Microw. Wireless Compon. Lett, vol. 23, no. 9, pp. 495–497, Sep. 2013.
[43] H.-H Lin, Y.-H Lin, and H. Wang “A high linearity 24 GHz down-conversion mixer using distributed derivative superposition technique in 0.18 μm CMOS process,” IEEE Microw. Wireless Compon. Lett., vol. 28, no. 1, pp. 49–51, Jan. 2018.
[44] C.-M. Lin, H.-K. Lin, Y.-A. Lai, C.-P. Chang, and Y.-H. Wang, “A 10–40 GHz broadband subharmonic monolithic mixer in 0.18 um CMOS technology,” IEEE Microw. Wireless Compon. Lett, vol. 19, no. 2, pp. 95–97, Fed. 2009.
[45] H.-Y. Yang, J.-H. Tsai, T.-W. Huang, and H. Wang, “Analysis of a new 33–58-GHz double-balanced drain mixer in 90-nm CMOS technology,” IEEE Tran. Microw. Theory Techn., vol. 60, no. 4, pp. 1057–1068, Apr. 2012.
[46] S.-H. Hung, K.-W. Chang, and Y.-H. Wang, “An ultra-broadband subharmonic mixer with distributed amplifier using 90-nm CMOS technology,” IEEE Tran. Microw. Theory Techn., vol. 61, no. 10, pp. 3650–3657, Oct. 2013.
[47] J.-H. Tsai, Y.-Y Hsieh, and W.-H. Liu, “A 27–44 GHz CMOS dual-ring subharmonic up-conversion mixer with linearization technique,” IEEE Microw. Wireless Compon. Lett, vol. 32, no. 4, pp. 347–350, Apr. 2022.
[48] C.-H. Li, C.-L Ko, M.-C. Kuo, and D.-C. Chang, “A 7.1-mW K/Ka-band mixer with configurable bondwire resonators in 65-nm CMOS,” IEEE Trans. Very Large Scale Integr. (VLSI) Syst., vol. 25, no. 9, pp. 2635–2648, Sep. 2017.
[49] A. Navarrini et al., “Feasibility study of a W-band multibeam heterodyne receiver for the gregorian focus of the sardinia radio telescope,” IEEE Access, vol. 10, pp. 26369-26403, 2022.
[50] C. Hannachi, and K. Wu, “Dual-mode RF mixer for low-power direct-conversion receiver,” IEEE Microw. Wireless Compon. Lett, vol. 32, no. 6, pp. 583-586, Jun. 2022.
[51] 賴仕豪,「砷化鎵異質整合及矽基毫米波輻射計接收機暨氮化鎵功率放大器之研製」,國立中央大學,碩士論文,民國 110 年。
[52] M.-H. Li, Y. Wang, and H. Wang, “A 50–67 GHz ultralow-power LNA using double-transformer-coupling technique and self-resonant matching in 90 nm CMOS,” IEEE Microw. Wireless Compon. Lett, vol. 32, no. 1, pp. 68-71, Jan. 2022.
[53] Y. Yu, H. Liu, Y. Wu, and K. Kang, “A 54.4–90 GHz low-noise amplifier in 65-nm CMOS,” IEEE J. Solid-State Circuits, vol. 52, no. 11, pp.2892-2904, Nov. 2017.
[54] D. Pan et al., “A 60–90 GHz CMOS double-neutralized LNA technology with 6.3 dB NF and -10 dBm P1dB,” IEEE Microw. Wireless Compon. Lett, vol. 29, no. 7, pp. 489-491, Jul. 2019.
[55] S. Li, T. Chi, and H. Wang, “Multi-feed antenna and electronics co-design: an E-band antenna-LNA front end with on-antenna noise-canceling and gm-boosting,” IEEE J. Solid-State Circuits, vol. 55, no. 12, pp. 3362-3375, Dec. 2020.
[56] C.-J. Liang et al., “A 0.6 V VDD W-band neutralized differential low noise amplifier in 28 nm bulk CMOS,” IEEE Microw. Wireless Compon. Lett, vol. 31, no. 5, pp. 481-484, May. 2021.
[57] M. Vigilante, and P. Reynaert, “A coupled-RTWO-based subharmonic receiver front end for 5G E-band backhaul links in 28 nm bulk CMOS,” IEEE J. Solid-State Circuits, vol. 53, no. 10, pp. 2927-2938, Oct. 2018.
[58] D. Karaca et al., “A 53–117 GHz LNA in 28-nm FDSOI CMOS,” IEEE Microw. Wireless Compon. Lett, vol. 27, no. 2, pp. 171-173, Feb. 2017.
[59] G. Li, E. Wagner, and G.-M. Rebeiz,” Design of E-/W-band low-noise amplifiers in 22 nm CMOS FD-SOI,” IEEE Tran. Microw. Theory Techn., vol. 68, no. 1, pp. 1628–1639, Jan. 2020.
[60] V. Eren, P. Sakalas, and S. Michael, “A 5.9 mW E-/W-Band SiGe-HBT LNA with 48 GHz 3-dB bandwidth and 4.5 dB Noise Figure,” IEEE Microw. Wireless Compon. Lett, vol. 32, no. 12, pp. 1451-1454, Dec. 2022.
[61] C.-H. LI, W.-T. Hsieh, and T.-Y. Chiu, “A flip-chip-assembled W-band receiver in 90-nm CMOS and IPD technologies,” IEEE Tran. Microw. Theory Techn., vol. 67, no. 4, pp. 1628–1639, Apr. 2019.
[62] T. N. Huang et al., “A CMOS W-band quasi-subharmonic mixer,” IEEE Microw. Wireless Compon. Lett, vol. 25, no. 6, pp. 385–387, Jun. 2015.
[63] Y. Zhang et al., “12-mW 97-GHz low-power downconversion mixer with 0.7 V supply voltage,” IEEE Microw. Wireless Compon. Lett, vol. 29, no. 4, pp. 279–281, Apr. 2019.
[64] A. Ahmed, M.-Y Huang, D. Munzer, and H. Wang, “A 43–97 GHz mixer-first front-end with quadrature input matching and on-chip image rejection,” IEEE J. Solid-State Circuits, vol. 56, no. 3, pp. 279-281, Mar. 2021.
指導教授 張鴻埜(Hong-Yeh Chang) 審核日期 2023-8-15
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明