以作者查詢圖書館館藏 、以作者查詢臺灣博碩士 、以作者查詢全國書目 、勘誤回報 、線上人數:31 、訪客IP:18.218.13.111
姓名 吳晟豪(Chen-Hao Wu) 查詢紙本館藏 畢業系所 電機工程學系 論文名稱 1200V 加強型矽基板氮化鎵高電子遷移率電晶體開發
(Development of 1200V E-mode AlGaN/GaN HEMTs on Si Substrate)相關論文 檔案 [Endnote RIS 格式] [Bibtex 格式] [相關文章] [文章引用] [完整記錄] [館藏目錄] 至系統瀏覽論文 ( 永不開放) 摘要(中) 1200 V 元件所使用之磊晶片為成長於低阻值矽基板上並具有 p 型氮化鎵層之氮
化鋁鎵/氮化鎵異質結構,為了使元件得以承受 1200 V 的崩潰電壓,並且降低來自氮
化鎵與矽基板晶格不匹配之問題,磊晶層中使用的緩衝層厚度達 6.5 μm 並且在該層
中進行碳元素的摻雜,藉此來提升垂直方向的絕緣性。在此磊晶結構上製作加強型氮
化鎵高電子遷移率電晶體並進行討論,除了傳統的 p 型氮化鎵閘極結構之外,同時
製作具源極場板的 p 型氮化鎵閘極結構進行量測。此外也利用 Silvaco TCAD 特性模
擬有無源極場板之元件電場分析。
基板接地之元件崩潰電壓測試中,傳統的 p-GaN gate HEMT (LGD = 20 μm)在汲
極漏電流達 1 mA/mm 時之崩潰電壓為 1755 V、具源極場板之元件為 1759 V,而特徵
導通電阻(RON,sp)則分別為 7.57 mΩ·cm2 以及 7.89 mΩ·cm2。透過對不同電極漏電流的
分析了解崩潰電壓限制主要來自於垂直方向之基板(Isub)漏電流所導致,由於是 Isub 所
主導的崩潰電壓,所以閘極邊緣電場分散的場板結構並無對崩潰達到改善。但進一步
採用基板浮接之崩潰電壓測試中,傳統 p-GaN gate HEMT 在汲極漏電流定達 1
mA/mm 時崩潰電壓可承受 1622 V,而具源極場板之元件則可達 1962 V。透過對漏電
流的分析則可以知道主導崩潰量測的路徑是由閘極(IG)漏電流所主導,且元件具有源
極場板可以得到崩潰電壓改善,了解到閘極漏電流是此研究製作之元件的主要缺失。
最後進行特徵導通電阻組成的分析,利用目前的製程技術和漏電流為基礎估算歐
姆接觸電阻、片電阻以及閘極與汲極距離調整對特徵導通電阻的改善。計算出閘極與
汲極距離縮短之狀況下,以閘極漏電流主導之元件,在元件尺寸 LG = 2 μm、Lp-GaN =
4 μm、LGS = 3 μm、LGD = 11 μm 時,漏電流定義達 1 μA/mm 下,RON,sp 則降為 1.35
mΩ·cm2,預期 1200 V 元件可以達到世界水準。摘要(英) The epitaxial layer used in the 1200 V device was grown on a low-resistivity silicon substrate
with a p-GaN layer on top of the AlGaN/GaN heterostructure. To achieve a 1200 V blocking
voltage and mitigate the lattice mismatch issue between GaN and silicon, a 6.5 μm thick
buffer layer with carbon doping was used in the epitaxial structure to enhance vertical
insulation. Enhancement-mode AlGaN/GaN high-electron-mobility transistors (HEMTs)
were fabricated on this epitaxial structure, including both conventional p-GaN gate HEMTs
and p-GaN gate HEMTs with a source field plate (SFP). Electric field analysis of devices
with and without SFP was performed using Silvaco TCAD simulation.
In the grounded substrate off-state blocking voltage measurement, the conventional p-GaN
gate HEMT (LGD = 20 μm) exhibited a blocking voltage of 1755 V at a drain leakage current
of 1 mA/mm, while the device with SFP showed a blocking voltage of 1759 V with RON,sp
values of 7.57 mΩ·cm2
and 7.89 mΩ·cm2
, respectively. Analysis of different leakage
currents revealed that the primary limitation on blocking voltage came from the vertical
substrate (Isub) leakage current. Thus, the source field plate structure, designed to disperse
the gate edge electric field, did not improve the blocking voltage. However, in the floating
substrate off-state blocking voltage measurement, the conventional p-GaN gate HEMT
achieved a blocking voltage of 1622 V at a drain leakage current of 1 mA/mm, while the
device with SFP reached 1962 V. Leakage current analysis indicated that blocking was
predominantly influenced by the gate (IG) leakage current, and the device with the source
field plate exhibited improved blocking voltage. The analysis identified gate leakage current
as the main drawback in the fabricated devices.
Finally, an analysis of the constituent components of specific on-resistance was conducted,
considering current leakage, Ohmic contact resistance, sheet resistance, and gate-to-drain
distance adjustments based on current process technology. By shortening the gate-to-drain
distance in devices dominated by gate leakage current (LG = 2 μm, Lp-GaN = 4 μm, LGS = 3
μm, LGD = 11 μm, and leakage current defining 1 μA/mm), the specific on-resistance (RON,sp)
decreased to 1.35 mΩ·cm2
. This suggests that the 1200 V device can achieve world-class
performance.關鍵字(中) ★ 氮化鎵高電子遷移率電晶體 關鍵字(英) ★ GaN HEMT 論文目次 中文摘要................................................................................................................................I
Abstract................................................................................................................................. II
致謝.....................................................................................................................................III
圖目錄.................................................................................................................................. V
表目錄.................................................................................................................................. X
第一章 緒論................................................................................................................... 1
1.1 前言........................................................................................................................ 1
1.2 氮化鎵材料特性.................................................................................................... 3
1.3 實現加強型操作以及改善崩潰特性之文獻回顧................................................ 4
1.3.1 實現加強型操作方式及其挑戰................................................................. 4
1.3.2 改善崩潰特性之方式................................................................................. 9
1.4 研究動機與目的.................................................................................................. 19
1.5 論文架構.............................................................................................................. 19
第二章 氮化鎵電晶體之磊晶結構及元件佈局與模擬............................................. 20
2.1 AlGaN/GaN 於矽基板之磊晶結構與特性........................................................ 20
2.2 p-GaN gate HEMT with source field plate 之佈局與製程流程........................... 32
2.2.1 元件佈局................................................................................................... 32
2.2.2 p-GaN gate HEMT 與 p-GaN gate HEMT with source field plate 之製程流
程......................................................................................................................... 35
2.3 p-GaN gate HEMTs 元件模擬.............................................................................. 38
2.4 結論....................................................................................................................... 43
第三章 有無源極場板之 p-GaN gate HEMT 元件量測和分析 ................................ 44
3.1 p 型氮化鎵閘極元件直流量測特性.................................................................... 44
3.2 元件崩潰電壓量測............................................................................................... 48
3.2.1 基板接地之崩潰電壓量測....................................................................... 49
3.2.2 基板浮接之崩潰電壓量測....................................................................... 52
3.3 導通電阻之分析與討論...................................................................................... 53
3.3.1 導通電阻對各項參數調整之變化........................................................... 57
3.3.2 閘極/汲極間距下降對元件承受能力之預測.......................................... 60
3.4 p 型氮化鎵閘極元件動態量測特性.................................................................... 63
3.5 結論...................................................................................................................... 67
第四章 結論................................................................................................................. 69
參考文獻............................................................................................................................. 70
附錄 I 詳細製程流程........................................................................................................ 73
Acknowledgement............................................................................................................... 76參考文獻 參考文獻
[1] SemiconductorTODAY, “GaN to grow at 9% CAGR to over 18% of RF device
market by 2020,” SemiconductorTODAY, vol. 9, no. 4, 2014.
[2] R. Brown, “A novel AlGaNGaN based enhancement-mode high electron mobility
transistor with sub-critical barrier thickness,” Phd Thesis, University of Glasgow,
2015.
[3] F. Roccaforte, G. Greco, P. Fiorenza, and F. Iucolano, “An Overview of NormallyOff GaN-Based High Electron Mobility Transistors,” Materials (Basel), vol. 12, no.
10, May 15, 2019.
[4] K. Benson, “GaN Breaks Barriers—RF Power Amplifiers Go Wide and High,”
Analog Dialogue, 2017.
[5] D. Balaz, “Current collapse and device degradation in AlGaN GaN heterostructure
field effect transistors,” Phd Thesis, University of Glasgow, 2010.
[6] N. K. Subramani, “Physics-based TCAD device simulations and measurements of
GaN HEMT technology for RF power amplifier applications,” Université de
Limoges, 2017.
[7] J.-I. Chyi, H. Fujioka, H. Morkoç, D. Marcon, M. Van Hove, B. De Jaeger, N.
Posthuma, D. Wellekens, S. You, X. Kang, T.-L. Wu, M. Willems, S. Stoffels, and
S. Decoutere, “Direct comparison of GaN-based e-mode architectures (recessed
MISHEMT and p-GaN HEMTs) processed on 200mm GaN-on-Si with Au-free
technology,” Proc. of SPIE, vol. 9363, pp. 936311-1–936311-12, 2015.
[8] X. Liu, H.-C. Chiu, C.-H. Liu, H.-L. Kao, C.-W. Chiu, H.-C. Wang, J. Ben, W. He,
and C.-R. Huang, “Normally-off p-GaN Gated AlGaN/GaN HEMTs Using Plasma
Oxidation Technique in Access Region,” IEEE Journal of the Electron Devices
Society, vol. 8, pp. 229-234, 2020.
[9] C.-H. Liu, H.-C. Chiu, H.-C. Wang, H.-L. Kao, and C.-R. Huang, “Improved Gate
Reliability Normally-Off p-GaN/AlN/AlGaN/GaN HEMT With AlGaN CapLayer,” IEEE Electron Device Letters, vol. 42, no. 10, pp. 1432-1435, 2021.
[10] J. He, W. C. Cheng, Q. Wang, K. Cheng, H. Yu, and Y. Chai, “Recent Advances in
GaN‐Based Power HEMT Devices,” Advanced Electronic Materials, vol. 7, no. 4,
2021.
[11] Y. Shi, S. Huang, Q. Bao, X. Wang, K. Wei, H. Jiang, J. Li, C. Zhao, S. Li, Y. Zhou,
H. Gao, Q. Sun, H. Yang, J. Zhang, W. Chen, Q. Zhou, B. Zhang, and X. Liu,
“Normally OFF GaN-on-Si MIS-HEMTs Fabricated With LPCVD-SiNx
Passivation and High-Temperature Gate Recess,” IEEE Transactions on Electron
Devices, vol. 63, no. 2, pp. 614-619, 2016.
71
[12] M. Xiao, W. Zhang, Y. Zhang, H. Zhou, K. Dang, J. Zhang, and Y. Hao, “Novel
2000 V Normally-off_MOS-HEMTs using AlN GaN Superlattice Channel,”
International Symposium on Power Semiconductor Devices and ICs (ISPSD), 2019.
[13] M. Ishida, T. Ueda, T. Tanaka, and D. Ueda, “GaN on Si Technologies for Power
Switching Devices,” IEEE Transactions on Electron Devices, vol. 60, no. 10, pp.
3053-3059, 2013.
[14] J.-H. Lee, S. B. Lisesivdin, J.-H. Lee, J.-M. Ju, G. Atmaca, J.-G. Kim, S.-H. Kang,
Y. S. Lee, S.-H. Lee, J.-W. Lim, and H.-S. Kwon, “High Figure-of-Merit ( V2BR /
RON ) AlGaN/GaN Power HEMT With Periodically C-Doped GaN Buffer and
AlGaN Back Barrier,” IEEE Journal of the Electron Devices Society, vol. 6, pp.
1179-1186, 2018.
[15] J.-G. Kim, C. Cho, E. Kim, J. S. Hwang, K.-H. Park, and J.-H. Lee, “High
Breakdown Voltage and Low-Current Dispersion in AlGaN/GaN HEMTs With
High-Quality AlN Buffer Layer,” IEEE Transactions on Electron Devices, vol. 68,
no. 4, pp. 1513-1517, 2021.
[16] Q. Jiang, C. Liu, Y. Lu, and K. J. Chen, “1.4-kV AlGaN/GaN HEMTs on a GaN-onSOI Platform,” IEEE Electron Device Letters, vol. 34, no. 3, pp. 357-359, 2013.
[17] B. Hult, M. Thorsell, J.-T. Chen, and N. Rorsman, “High Voltage and Low Leakage
GaN-on-SiC MISHEMTs on a “Buffer-Free” Heterostructure,” IEEE Electron
Device Letters, vol. 43, no. 5, pp. 781-784, 2022.
[18] H. Jiang, Q. Lyu, R. Zhu, P. Xiang, K. Cheng, and K. M. Lau, “1300 V NormallyOFF p-GaN Gate HEMTs on Si With High ON-State Drain Current,” IEEE
Transactions on Electron Devices, vol. 68, no. 2, pp. 653-657, 2021.
[19] R. Hao, W. Li, K. Fu, G. Yu, L. Song, J. Yuan, J. Li, X. Deng, X. Zhang, Q. Zhou,
Y. Fan, W. Shi, Y. Cai, X. Zhang, and B. Zhang, “Breakdown Enhancement and
Current Collapse Suppression by High-Resistivity GaN Cap Layer in Normally-Off
AlGaN/GaN HEMTs,” IEEE Electron Device Letters, vol. 38, no. 11, pp. 1567-
1570, 2017.
[20] J. Gao, Y. Jin, Y. Hao, B. Xie, C. P. Wen, B. Shen, and M. Wang, “Gate-Recessed
Normally OFF GaN MOSHEMT With High-Temperature Oxidation Wet Etching
Using LPCVD Si3N4 as the Mask,” IEEE Transactions on Electron Devices, 2018.
[21] X. Wei, X. Zhang, C. Sun, W. Tang, C. Zeng, F. Chen, T. He, G. Yu, L. Song, W.
Lin, X. Zhang, D. Zhao, W. Huang, Y. Cai, and B. Zhang, “Improvement of
Breakdown Voltage and ON-Resistance in Normally-OFF AlGaN/GaN HEMTs
Using Etching-Free p-GaN Stripe Array Gate,” IEEE Transactions on Electron
Devices, vol. 68, no. 10, pp. 5041-5047, 2021.
[22] F. Sacconi, A. D. Carlo, P. Lugli, and Hadis Morkoç, “Spontaneous and
piezoelectric polarization effects on the output characteristics of AlGaN GaN
72
heterojunction modulation doped FETs,” IEEE Transactions on Electron Devices,
2001.
[23] O. Ambacher, J. Smart, J. R. Shealy, N. G. Weimann, K. Chu, M. Murphy, W. J.
Schaff, L. F. Eastman, R. Dimitrov, L. Wittmer, M. Stutzmann, W. Rieger, and J.
Hilsenbeck, “Two-dimensional electron gases induced by spontaneous and
piezoelectric polarization charges in N- and Ga-face AlGaN/GaN heterostructures,”
Journal of Applied Physics, vol. 85, no. 6, pp. 3222-3233, 1999.
[24] D. Visalli, M. V. Hovea, P. Srivastava, D. Marcona, Karen, Geens, X. Kanga, E.
Vandenplasa, J. Viaenea, M. Leysa, K. Chenga, B. Sijmusa, S. Decouterea, and G.
Borghs, “GaN-on-Si For High-Voltage Applications,” ECS Transactions, vol. 41,
pp. 101-112, 2011.
[25] I. B. Rowena, S. L. Selvaraj, and T. Egawa, “Buffer Thickness Contribution to
Suppress Vertical Leakage Current With High Breakdown Field (2.3 MV/cm) for
GaN on Si,” IEEE Electron Device Letters, vol. 32, no. 11, pp. 1534-1536, 2011.
[26] N. Remesh, N. Mohan, S. Raghavan, R. Muralidharan, and D. N. Nath, “Optimum
Carbon Concentration in GaN-on-Silicon for Breakdown Enhancement in
AlGaN/GaN HEMTs,” IEEE Transactions on Electron Devices, vol. 67, no. 6, pp.
2311-2317, 2020.
[27] Y. Chen, K. Zhang, M. Cao, S. Zhao, J. Zhang, X. Ma, and Y. Hao, “Study of
surface leakage current of AlGaN/GaN high electron mobility transistors,” Applied
Physics Letters, vol. 104, no. 15, 2014.指導教授 辛裕明(Yue-Ming Hsin) 審核日期 2023-8-16 推文 facebook plurk twitter funp google live udn HD myshare reddit netvibes friend youpush delicious baidu 網路書籤 Google bookmarks del.icio.us hemidemi myshare