博碩士論文 110521109 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:34 、訪客IP:3.16.69.52
姓名 曹程富(Cheng-Fu Cao)  查詢紙本館藏   畢業系所 電機工程學系
論文名稱 發展深度學習為基礎之即時腦波人機介面於元宇宙環境下的應用
(Development and application of a real-time brain-computer interface based on deep learning in the metaverse environment)
相關論文
★ 使用梳狀濾波器於相位編碼之穩態視覺誘發電位腦波人機介面★ 應用電激發光元件於穩態視覺誘發電位之腦波人機介面判斷
★ 智慧型手機之即時生理顯示裝置研製★ 多頻相位編碼之閃光視覺誘發電位驅動大腦人機介面
★ 以經驗模態分解法分析穩態視覺誘發電位之大腦人機界面★ 利用經驗模態分解法萃取聽覺誘發腦磁波訊號
★ 明暗閃爍視覺誘發電位於遙控器之應用★ 使用整體經驗模態分解法進行穩態視覺誘發電位腦波遙控車即時控制
★ 使用模糊理論於穩態視覺誘發之腦波人機介面判斷★ 利用正向模型設計空間濾波器應用於視覺誘發電位之大腦人機介面之雜訊消除
★ 智慧型心電圖遠端監控系統★ 使用隱馬可夫模型於穩態視覺誘發之腦波人機介面判斷 與其腦波控制遙控車應用
★ 使用類神經網路於肢體肌電訊號進行人體關節角度預測★ 使用等階集合法與影像不均勻度修正於手指靜脈血管影像切割
★ 應用小波編碼於多通道生理訊號傳輸★ 結合高斯混合模型與最大期望值方法於相位編碼視覺腦波人機介面之目標偵測
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   至系統瀏覽論文 (2025-6-30以後開放)
摘要(中) 想像運動(Motor imagery,MI)是腦機介面(Brain-computer interface,BCI)中常見的控制方式,此領域現已有成熟的研究體系與許多落地的實例。然而基於MI-BCI的系統仍存在幾個挑戰需要解決,例如,受試者需要接受長時間的訓練才能使用系統,大幅增加時間成本,且腦電訊號具有高變異度與非平穩的特性,訊號會因時間和受試者的不同而產生差異。因此本研究提出結合虛擬實境(Virtual reality,VR)的想像運動訓練系統,共四類想像運動(左手、右手、雙腳、休息),系統建立分成線下資料蒐集與即時回饋兩階段。線下階段中,受試者在VR環境內通過觀察虛擬人物動作的方式來輔助MI執行,利用線下資料訓練深度學習網路,作為後續即時回饋MI分類的基礎。受試者將在即時回饋階段以想像運動實時控制虛擬人物在元宇宙中行走,我們引入持續學習(Continual learning)概念,使用回饋資料微調(Fine-tuning)模型參數,持續提升模型性能。實驗共五位受試者參與,結果顯示線下模型的平均準確率達52.8%比相關研究模型(S3T,EEGNet,DeepConvNet以及ShallowConvNet)的性能表現好,即時回饋模型也從47.4%的平均準確度提升到66.2%,進步幅度達18.8%。我們也透過ERD/ERS來分析線下階段與回饋階段資料,結果表明動作觀察有助於MI的執行,模型在即時回饋期間抓取的資料也具合理以及可解釋性。本研究提出之系統在未來可望作為新的MI-BCI訓練方向。
摘要(英) Motor imagery (MI) is a common control method in brain-computer interface (BCI). There is already a mature research system and many practical examples in this field. However, there are still several challenges to be solved in the system based on MI-BCI. For example, the subjects need to receive long-term training to use the system, which greatly increases the time cost, and the EEG signals have high variability and non-stationary characteristics. Will vary with time and subject. Therefore, this study proposes an imaginary exercise training system combined with virtual reality (VR), with a total of four classes of motor imagery (left hand, right hand, both feet, and rest), and the establishment of the system is divided into two stages: offline data collection and real-time feedback. In the offline stage, the subjects observe the actions of virtual characters in the VR environment to assist MI execution. We use the offline data to train the deep learning network as the basis for the subsequent real-time feedback of MI classification. In the real-time feedback stage, the subjects will use MI to control the virtual character to walk in the metaverse in real time, We introduce the concept of continuous learning and use feedback data to fine-tune model parameters to continuously improve model performance. A total of five subjects participated in the experiment, and the results showed that the average accuracy of the offline model reached 52.8%, better than related works (S3T, EEGNet, DeepConvNet and ShallowConvNet), and the average accuracy of the real-time feedback model increased from 47.4% to 66.2%, an improvement of 18.8%. We also use ERD/ERS to analyze offline and feedback data, and the results show that action observation is helpful for the execution of MI, and the data captured by the model during real-time feedback stage is also reasonable and interpretable. The system proposed in this study is expected to serve as a new MI-BCI training direction in the future.
關鍵字(中) ★ 腦機介面
★ 想像運動
★ 虛擬實境
★ 動作觀察
★ 深度學習
★ 持續學習
關鍵字(英) ★ Brain-computer interface
★ Motor imagery
★ Virtual reality
★ Action observation
★ Deep learning
★ Continual learning
論文目次 中文摘要 i
Abstract ii
目錄 iii
圖目錄 v
表目錄 viii
第一章 緒論 1
1-1 研究動機與目標 1
1-2 文獻探討 3
第二章 研究設計與方法 6
2-1 系統架構與設備 6
2-2 實驗流程 8
2-3 線下與即時回饋模型訓練流程 12
2-4 模型架構與訓練策略 14
2-5 線下模型基線評比方法 17
2-6 ERD/ERS分析方法 19
第三章 實驗結果與討論 20
3-1 線下結果 20
3-1-1 線下資料ERD/ERS分析 20
3-1-2 線下模型訓練結果 27
3-2 即時回饋結果 29
3-2-1 即時回饋模型訓練結果 29
3-2-2 小地圖完成時間比較 34
3-2-3 即時回饋資料ERD/ERS分析 36
3-3 實驗討論47
第四章 結論與未來展望 49
第五章 參考文獻 50
參考文獻 〔1〕 S. Saha et al., "Progress in brain computer interface: Challenges and opportunities," Frontiers in Systems Neuroscience, vol. 15, p. 578875, 2021.
〔2〕 F. Turi, M. Clerc, and T. Papadopoulo, "Long multi-stage training for a motor-impaired user in a BCI competition," Frontiers in Human Neuroscience, vol. 15, p. 647908, 2021.
〔3〕 S. Saha and M. Baumert, "Intra-and inter-subject variability in EEG-based sensorimotor brain computer interface: a review," Frontiers in computational neuroscience, vol. 13, p. 87, 2020.
〔4〕 H. Morioka et al., "Learning a common dictionary for subject-transfer decoding with resting calibration," NeuroImage, vol. 111, pp. 167-178, 2015.
〔5〕 M. Tangermann et al., "Review of the BCI competition IV," Frontiers in neuroscience, p. 55, 2012.
〔6〕 Y. Song, Q. Zheng, B. Liu, and X. Gao, "EEG conformer: Convolutional transformer for EEG decoding and visualization," IEEE Transactions on Neural Systems and Rehabilitation Engineering, vol. 31, pp. 710-719, 2022.
〔7〕 H. Adeli and S. Ghosh-Dastidar, Automated EEG-based diagnosis of neurological disorders: Inventing the future of neurology. CRC press, 2010.
〔8〕 S. L. Oh, Y. Hagiwara, U. Raghavendra, R. Yuvaraj, N. Arunkumar, M. Murugappan, and U. R. Acharya, "A deep learning approach for Parkinson’s disease diagnosis from EEG signals," Neural Computing and Applications, vol. 32, pp. 10927-10933, 2020.
〔9〕 S. J. Smith, "EEG in the diagnosis, classification, and management of patients with epilepsy," Journal of Neurology, Neurosurgery & Psychiatry, vol. 76, no. suppl 2, pp. ii2-ii7, 2005.
〔10〕 R. Mane, T. Chouhan, and C. Guan, "BCI for stroke rehabilitation: motor and beyond," Journal of neural engineering, vol. 17, no. 4, p. 041001, 2020.
〔11〕 P. Chowdhury, S. K. Shakim, M. R. Karim, and M. K. Rhaman, "Cognitive efficiency in robot control by Emotiv EPOC," in 2014 International Conference on Informatics, Electronics & Vision (ICIEV), 2014: IEEE, pp. 1-6.
〔12〕 O. Hawsawi and S. K. Semwal, "EEG headset supporting mobility impaired gamers with game accessibility," in 2014 IEEE International Conference on Systems, Man, and Cybernetics (SMC), 2014: IEEE, pp. 837-841.
〔13〕 T. Xu, Y. Zhou, Z. Wang, and Y. Peng, "Learning emotions EEG-based recognition and brain activity: A survey study on BCI for intelligent tutoring system," Procedia computer science, vol. 130, pp. 376-382, 2018.
〔14〕 A. Frisoli, C. Loconsole, D. Leonardis, F. Banno, M. Barsotti, C. Chisari, and M. Bergamasco, "A new gaze-BCI-driven control of an upper limb exoskeleton for rehabilitation in real-world tasks," IEEE Transactions on Systems, Man, and Cybernetics, Part C (Applications and Reviews), vol. 42, no. 6, pp. 1169-1179, 2012.
〔15〕 G. Rizzolatti, L. Fadiga, V. Gallese, and L. Fogassi, "Premotor cortex and the recognition of motor actions," Cognitive brain research, vol. 3, no. 2, pp. 131-141, 1996.
〔16〕 V. Gallese, L. Fadiga, L. Fogassi, and G. Rizzolatti, "Action recognition in the premotor cortex," Brain, vol. 119, no. 2, pp. 593-609, 1996.
〔17〕 G. Di Pellegrino, L. Fadiga, L. Fogassi, V. Gallese, and G. Rizzolatti, "Understanding motor events: a neurophysiological study," Experimental brain research, vol. 91, pp. 176-180, 1992.
〔18〕 M. Franceschini, M. Agosti, A. Cantagallo, P. Sale, M. Mancuso, and G. Buccino, "Mirror neurons: action observation treatment as a tool in stroke rehabilitation," Eur J Phys Rehabil Med, vol. 46, no. 4, pp. 517-523, 2010.
〔19〕 C. F. Berrol, "Neuroscience meets dance/movement therapy: Mirror neurons, the therapeutic process and empathy," The Arts in Psychotherapy, vol. 33, no. 4, pp. 302-315, 2006.
〔20〕 L. Q. Uddin, M. Iacoboni, C. Lange, and J. P. Keenan, "The self and social cognition: the role of cortical midline structures and mirror neurons," Trends in cognitive sciences, vol. 11, no. 4, pp. 153-157, 2007.
〔21〕 F. Filimon, J. D. Nelson, D. J. Hagler, and M. I. Sereno, "Human cortical representations for reaching: mirror neurons for execution, observation, and imagery," Neuroimage, vol. 37, no. 4, pp. 1315-1328, 2007.
〔22〕 S. Vogt, F. Di Rienzo, C. Collet, A. Collins, and A. Guillot, "Multiple roles of motor imagery during action observation," Frontiers in human neuroscience, vol. 7, p. 807, 2013.
〔23〕 J. J. Gonzalez-Rosa et al., "Action observation and motor imagery in performance of complex movements: Evidence from EEG and kinematics analysis," Behavioural Brain Research, vol. 281, pp. 290-300, 2015.
〔24〕 D. L. Eaves, M. Riach, P. S. Holmes, and D. J. Wright, "Motor imagery during action observation: a brief review of evidence, theory and future research opportunities," Frontiers in neuroscience, vol. 10, p. 514, 2016.
〔25〕 P. Holmes and C. Calmels, "A neuroscientific review of imagery and observation use in sport," Journal of motor behavior, vol. 40, no. 5, pp. 433-445, 2008.
〔26〕 D. Wen, B. Liang, Y. Zhou, H. Chen, and T.-P. Jung, "The current research of combining multi-modal brain-computer interfaces with virtual reality," IEEE Journal of Biomedical and Health Informatics, vol. 25, no. 9, pp. 3278-3287, 2020.
〔27〕 Y. Zinchenko et al., "Virtual reality is more efficient in learning human heart anatomy especially for subjects with low baseline knowledge," New Ideas in Psychology, vol. 59, p. 100786, 2020.
〔28〕 J. A. Pineda, D. S. Silverman, A. Vankov, and J. Hestenes, "Learning to control brain rhythms: making a brain-computer interface possible," IEEE transactions on neural systems and rehabilitation engineering, vol. 11, no. 2, pp. 181-184, 2003.
〔29〕 A. Vourvopoulos and S. Bermúdez i Badia, "Motor priming in virtual reality can augment motor-imagery training efficacy in restorative brain-computer interaction: a within-subject analysis," Journal of neuroengineering and rehabilitation, vol. 13, no. 1, pp. 1-14, 2016.
〔30〕 F. Škola and F. Liarokapis, "Embodied VR environment facilitates motor imagery brain–computer interface training," Computers & Graphics, vol. 75, pp. 59-71, 2018.
〔31〕 J. W. Choi, B. H. Kim, S. Huh, and S. Jo, "Observing actions through immersive virtual reality enhances motor imagery training," IEEE Transactions on Neural Systems and Rehabilitation Engineering, vol. 28, no. 7, pp. 1614-1622, 2020.
〔32〕 G. Pfurtscheller, R. Scherer, R. Leeb, C. Keinrath, C. Neuper, F. Lee, and H. Bischof, "Viewing moving objects in virtual reality can change the dynamics of sensorimotor EEG rhythms," Presence, vol. 16, no. 1, pp. 111-118, 2007.
〔33〕 J. W. Choi, S. Huh, and S. Jo, "Improving performance in motor imagery BCI-based control applications via virtually embodied feedback," Computers in Biology and Medicine, vol. 127, p. 104079, 2020.
〔34〕 R. S. Calabrò et al., "The role of virtual reality in improving motor performance as revealed by EEG: a randomized clinical trial," Journal of neuroengineering and rehabilitation, vol. 14, no. 1, pp. 1-16, 2017.
〔35〕 S. Aggarwal and N. Chugh, "Signal processing techniques for motor imagery brain computer interface: A review," Array, vol. 1, p. 100003, 2019.
〔36〕 V. J. Lawhern, A. J. Solon, N. R. Waytowich, S. M. Gordon, C. P. Hung, and B. J. Lance, "EEGNet: a compact convolutional neural network for EEG-based brain–computer interfaces," Journal of neural engineering, vol. 15, no. 5, p. 056013, 2018.
〔37〕 R. Zhang, Q. Zong, L. Dou, and X. Zhao, "A novel hybrid deep learning scheme for four-class motor imagery classification," Journal of neural engineering, vol. 16, no. 6, p. 066004, 2019.
〔38〕 A. Vaswani et al., "Attention is all you need," Advances in neural information processing systems, vol. 30, 2017.
〔39〕 D. Kostas, S. Aroca-Ouellette, and F. Rudzicz, "BENDR: using transformers and a contrastive self-supervised learning task to learn from massive amounts of EEG data," Frontiers in Human Neuroscience, vol. 15, p. 653659, 2021.
〔40〕 Y. Song, X. Jia, L. Yang, and L. Xie, "Transformer-based spatial-temporal feature learning for EEG decoding," arXiv preprint arXiv:2106.11170, 2021.
〔41〕 J. Xie et al., "A transformer-based approach combining deep learning network and spatial-temporal information for raw EEG classification," IEEE Transactions on Neural Systems and Rehabilitation Engineering, vol. 30, pp. 2126-2136, 2022.
〔42〕 G. I. Parisi, R. Kemker, J. L. Part, C. Kanan, and S. Wermter, "Continual lifelong learning with neural networks: A review," Neural networks, vol. 113, pp. 54-71, 2019.
〔43〕 G. M. Van de Ven and A. S. Tolias, "Three scenarios for continual learning," arXiv preprint arXiv:1904.07734, 2019.
〔44〕 A. Buttfield, P. W. Ferrez, and J. R. Millan, "Towards a robust BCI: error potentials and online learning," IEEE Transactions on Neural Systems and Rehabilitation Engineering, vol. 14, no. 2, pp. 164-168, 2006.
〔45〕 M. K. Hazrati and A. Erfanian, "An online EEG-based brain–computer interface for controlling hand grasp using an adaptive probabilistic neural network," Medical engineering & physics, vol. 32, no. 7, pp. 730-739, 2010.
〔46〕 C. Brunner, R. Leeb, G. Müller-Putz, A. Schlögl, and G. Pfurtscheller, "BCI Competition 2008–Graz data set A," Institute for Knowledge Discovery (Laboratory of Brain-Computer Interfaces), Graz University of Technology, vol. 16, pp. 1-6, 2008.
〔47〕 R. T. Schirrmeister et al., "Deep learning with convolutional neural networks for EEG decoding and visualization," Human brain mapping, vol. 38, no. 11, pp. 5391-5420, 2017.
〔48〕 G. Pfurtscheller and F. L. Da Silva, "Event-related EEG/MEG synchronization and desynchronization: basic principles," Clinical neurophysiology, vol. 110, no. 11, pp. 1842-1857, 1999.
〔49〕 L. Van der Maaten and G. Hinton, "Visualizing data using t-SNE," Journal of machine learning research, vol. 9, no. 11, 2008.
〔50〕 Z. K. Agnew, R. J. Wise, and R. Leech, "Dissociating object directed and non-object directed action in the human mirror system; implications for theories of motor simulation," PloS one, vol. 7, no. 4, p. e32517, 2012.
〔51〕 N. Braun, S. Debener, N. Spychala, E. Bongartz, P. Sörös, H. H. Müller, and A. Philipsen, "The senses of agency and ownership: a review," Frontiers in psychology, vol. 9, p. 535, 2018.
〔52〕 H. Nagai and T. Tanaka, "Action observation of own hand movement enhances event-related desynchronization," IEEE transactions on neural systems and rehabilitation engineering, vol. 27, no. 7, pp. 1407-1415, 2019.
〔53〕 M. Song and J. Kim, "A paradigm to enhance motor imagery using rubber hand illusion induced by visuo-tactile stimulus," IEEE Transactions on Neural Systems and Rehabilitation Engineering, vol. 27, no. 3, pp. 477-486, 2019.
〔54〕 J. R. Wolpaw, N. Birbaumer, D. J. McFarland, G. Pfurtscheller, and T. M. Vaughan, "Brain–computer interfaces for communication and control," Clinical neurophysiology, vol. 113, no. 6, pp. 767-791, 2002.
〔55〕 E. Niedermeyer and F. L. da Silva, Electroencephalography: basic principles, clinical applications, and related fields. Lippincott Williams & Wilkins, 2005.
指導教授 李柏磊(Po-Lei Lee) 審核日期 2023-10-2
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明