參考文獻 |
[1] L. van Dorp, M. Acman, D. Richard, et al., “Emergence of genomic diversity
and recurrent mutations in sars-cov-2,” Infection, Genetics and Evolution, vol. 83,
p. 104 351, 2020.
[2] S. Duffy, L. A. Shackelton, and E. C. Holmes, “Rates of evolutionary change
in viruses: Patterns and determinants,” Nature Reviews Genetics, vol. 9, no. 4,
pp. 267–276, 2008.
[3] J. Shaman and M. Galanti, “Will sars-cov-2 become endemic?” Science, vol. 370,
no. 6516, pp. 527–529, 2020.
[4] A. Kumar, “Model evolution in sars-cov-2 spike protein sequences using a generative
neural network,” bioRxiv, 2022.
[5] Y. Li, C. Huang, L. Ding, Z. Li, Y. Pan, and X. Gao, “Deep learning in bioinformatics: Introduction, application, and perspective in the big data era,” Methods,
vol. 166, pp. 4–21, 2019.
[6] S. Min, B. Lee, and S. Yoon, “Deep learning in bioinformatics,” Briefings in bioinformatics, vol. 18, no. 5, pp. 851–869, 2017.
[7] R. F. Mansour, J. Escorcia-Gutierrez, M. Gamarra, D. Gupta, O. Castillo, and
S. Kumar, “Unsupervised deep learning based variational autoencoder model for
covid-19 diagnosis and classification,” Pattern Recognition Letters, vol. 151, pp. 267–
274, 2021.
[8] S. Sinai, E. Kelsic, G. M. Church, and M. A. Nowak, “Variational auto-encoding
of protein sequences,” arXiv preprint arXiv:1712.03346, 2017.
[9] C. Doersch, “Tutorial on variational autoencoders,” arXiv preprint arXiv:1606.05908,
2016.
[10] S. N. Dean and S. A. Walper, “Variational autoencoder for generation of antimicrobial peptides,” ACS omega, vol. 5, no. 33, pp. 20 746–20 754, 2020.
[11] R. R. Eguchi, C. A. Choe, and P.-S. Huang, “Ig-vae: Generative modeling of protein
structure by direct 3d coordinate generation,” PLoS computational biology, vol. 18,
no. 6, e1010271, 2022.
[12] K. Gregor, I. Danihelka, A. Graves, D. Rezende, and D. Wierstra, “Draw: A recurrent neural network for image generation,” in International conference on machine
learning, PMLR, 2015, pp. 1462–1471.
[13] D. P. Kingma and M. Welling, “Auto-encoding variational bayes,” arXiv preprint
arXiv:1312.6114, 2013.
[14] T. Salimans, D. Kingma, and M. Welling, “Markov chain monte carlo and variational inference: Bridging the gap,” in International conference on machine learning, PMLR, 2015, pp. 1218–1226.
[15] J. Walker, C. Doersch, A. Gupta, and M. Hebert, “An uncertain future: Forecasting
from static images using variational autoencoders,” in European Conference on
Computer Vision, Springer, 2016, pp. 835–851.
[16] G. P. Way and C. S. Greene, “Extracting a biologically relevant latent space from
cancer transcriptomes with variational autoencoders,” in PACIFIC SYMPOSIUM
ON BIOCOMPUTING 2018: Proceedings of the Pacific Symposium, World Scientific, 2018, pp. 80–91.
[17] X. Ding, Z. Zou, and C. L. Brooks III, “Deciphering protein evolution and fitness
landscapes with latent space models,” Nature communications, vol. 10, no. 1, pp. 1–
13, 2019.
[18] A. Hawkins-Hooker, F. Depardieu, S. Baur, G. Couairon, A. Chen, and D. Bikard,
“Generating functional protein variants with variational autoencoders,” PLoS computational biology, vol. 17, no. 2, e1008736, 2021.
[19] E. Schulz, M. Speekenbrink, and A. Krause, “A tutorial on gaussian process regression: Modelling, exploring, and exploiting functions,” Journal of Mathematical
Psychology, vol. 85, pp. 1–16, 2018.
[20] M. Seeger, “Gaussian processes for machine learning,” International journal of neural systems, vol. 14, no. 02, pp. 69–106, 2004.
[21] C. K. Williams and C. E. Rasmussen, Gaussian processes for machine learning.
MIT press Cambridge, MA, 2006.
[22] L. Cheng, S. Ramchandran, T. Vatanen, et al., “An additive gaussian process regression model for interpretable non-parametric analysis of longitudinal data,” Nature
communications, vol. 10, no. 1, pp. 1–11, 2019.
[23] S. Roberts, M. Osborne, M. Ebden, S. Reece, N. Gibson, and S. Aigrain, “Gaussian processes for time-series modelling,” Philosophical Transactions of the Royal
Society A: Mathematical, Physical and Engineering Sciences, vol. 371, no. 1984,
p. 20 110 550, 2013.
[24] P. A. Romero, A. Krause, and F. H. Arnold, “Navigating the protein fitness landscape with gaussian processes,” Proceedings of the National Academy of Sciences,
vol. 110, no. 3, E193–E201, 2013.
[25] S. King, X. E. Chen, S. W. Ng, et al., “Modeling the trajectory of sars-cov-2 spike
protein evolution in continuous latent space using a neural network and gaussian
process,” bioRxiv, 2021.
[26] Á. O’Toole, E. Scher, A. Underwood, et al., “Assignment of epidemiological lineages
in an emerging pandemic using the pangolin tool,” Virus evolution, vol. 7, no. 2,
veab064, 2021.
[27] J. Salvatier, T. V. Wiecki, and C. Fonnesbeck, “Probabilistic programming in
python using pymc3,” PeerJ Computer Science, vol. 2, e55, 2016.
[28] A. B. Abdessalem, N. Dervilis, D. J. Wagg, and K. Worden, “Automatic kernel
selection for gaussian processes regression with approximate bayesian computation
and sequential monte carlo,” Frontiers in Built Environment, vol. 3, p. 52, 2017.
[29] K. P. Murphy, Probabilistic machine learning: an introduction. MIT press, 2022. |