參考文獻 |
[1] Ikeda, N., & Watanabe, S. Stochastic differential equations and diffusion processes. 2nd ed. North-Holland , 1989.
[2] Revuz, D., & Yor, M. Continuous martingales and Brownian Motion. Vol 293, 3rd ed. Springer Science & Business Media, 1999.
[3] Karatzas, Ioannis, et al. Brownian motion and stochastic calculus. Vol 113, 2nd ed. Springer Science & Business Media, 1991.
[4] Ethier, Stewart N, & Kurtz, Thomas G. Markov processes: characterization and convergence. John Wiley & Sons, 1986.
[5] Khoshnevisan, D. Multiparameter resources: An introduction to random fields. Springer, 2002.
[6] Gall, Jean-François Le. Brownian motion, martingales, and stochastic calculus. Springer, 2016.
[7] Durrett,R. Stochastic calculus: a practical introduction. CRC press, 1996.
[8] Stratonovich, R.L. " A new representation for stochastic integrals and equations." SIAM Journal on Control, Vol 4, no 2, SIAM, 1966, pp. 362-371.
[9] Decreusefond, Laurent, et al. "Stochastic Analysis of the Fractional Brownian Motion."Potential Analysis, Vol 10, 1999, pp. 177-214
[10] Nualart, David. The Malliavin calculus and related topics. Vol 1995. Springer, 2006.
[11] Biagini, Francesca, et al. Stochastic calculus for fractional Brownian motion and applications. Springer Science & Business Media, 2008.
[12] Samko, Stefan G, et al. Fractional integrals and derivatives. Vol 1. Gordon and breach science publishers, Yverdon Yverdon-les-Bains, Switzerland, 1993.
[13] Billingsley, Patrick. Probability and measure. 3rd ed. John Wiley & Sons, 1995.
[14] Nualart, David. & Ouknine, Youssef. "Stochastic differential equations with additive fractional noise and locally unbounded drift." Stochastic inequalities and applications, Vol 56, Birkhäuser Verlag, Basel, 2003, pp. 353-365.
[15] Russo, F., & Vallois, P. "Forward, backward and symmetric stochastic integration." Probability theory and related fields", Vol 77, no 3, Springer, 1993, pp. 403-421.
[16] Nourdin, Ivan. "Calcul stochastique généralisé et applications au mouvement brownien fractionnaire; Estimation non-paramétrique de la volatilité et test d’adéquation." Ph.D.Dissertation, Université Henri Poincaré-Nancy 1, 2004.
[17] Gradinaru, Mihai, et al. "m-order integrals and generalized Itô’s formula; the case of a fractional Brownian motion with any Hurst index." Annales de l’IHP Probabilités et statistiques, Vol 41, no 4, 2005, pp. 781-806.
[18] Russo, Francesco and Vallois, Pierre. " Itô formula for C 1-functions of semimartingales."Probability theory and related fields, Vol 104, Springer, 1996, pp. 27-41.
[19] Russo, Francesco and Vallois, Pierre. " Stochastic calculus with respect to continuous finite quadratic variation processes." Stochastics: An International Journal of Probability and Stochastic Processes, Vol 70, no 1-2, Taylor & Francis, 2000, pp. 1-40.
[20] Russo, Francesco and Vallois, Pierre. Stochastic Calculus Via Regularizations. Springer,2022
[21] Nourdin, Ivan. "Calcul stochastique généralisé et applications au mouvement brownien fractionnaire; Estimation non-paramétrique de la volatilité et test d’adéquation." Ph.D. Dissertation, Université Henri Poincaré-Nancy 1, 2004.
[22] Meyn, Sean P, & Tweedie, Richard L. " Stability of Markovian processes II: Continuoustime processes and sampled chains." Advances in Applied Probability, Vol 25, no 3, Cambridge University Press, 1993, pp. 487-517.
[23] Meyn, Sean P, & Tweedie, Richard L. " Stability of Markovian processes III: Foster–Lyapunov criteria for continuous-time processes." Advances in Applied Probability, Vol 25, no 3, Cambridge University Press, 1993, pp. 518-548.
[24] Azema, J., Kaplan-Duflo, M., & Revuz, D. " Mesure invariante sur les classes récurrentes des processus de Markov." Zeitschrift für Wahrscheinlichkeitstheorie und Verwandte Gebiete, Vol 8, no 3, Springer, 1967, pp. 157-181.
[25] Getoor, Ronald K. " Transience and recurrence of Markov processes." Séminaire de probabilités de Strasbourg, Vol 14, 1980, pp. 397-409.
[26] Khasminskii, Rafail. Stochastic stability of differential equations. Vol 66, 2nd ed. Springer
Science & Business Media, 2011.
[27] Kushner, Harold J. Stochastic stability and control. Vol 33. Brown Univ Providence RI, 1967.
[28] Meyn, Sean P, & Tweedie, Richard L. " Stability of Markovian processes I: Criteria for discrete-time chains." Advances in Applied Probability, Vol 24, no 3, Cambridge University Press, 1992, pp. 542-574.
[29] Oksendal, Bernt. Stochastic differential equations: an introduction with applications. 6th ed. Springer Science & Business Media, 2013.
[30] Skorohod, A.V. Studies in the theory of random processes. Reading, Mass: Addison-Wistey
[31] Baudoin, Fabrice. Diffusion processes and stochastic calculus. European Mathematical Society, 2014.
[32] Koralov, Leonid, & Sinai, Yakov G. Theory of probability and random processes. Springer Science & Business Media, 2007.
[33] Nourdin, Ivan. "A simple theory for the study of SDEs driven by a fractional Brownian motion, in dimension one." Séminaire de probabilités XLI, Vol 56, Springer, 2008, pp.
181-197.
[34] Doss, Halim. "Liens entre équations différentielles stochastiques et ordinaires." Annales de l′IHP Probabilités et statistiques, Vol 13, no 2, 1977, pp. 99-125.
[35] Sussmann, Héctor J. "An interpretation of stochastic differential equations as ordinary differential equations which depend on the sample point." Bulletin of the American Mathematical Society, Vol 83, no 2, American Mathematical Society, 1977, pp. 296-298.
[36] Carlen, Eric, & Kree, Paul. " Lp estimates on iterated stochastic integrals." The Annals of Probability, Vol 19, no 1, JSTOR, 1991, pp. 354-368.
[37] Khoshnevisan, Davar. Stochastic Calculus Math 7880-1; Spring 2008.
[38] Da Prato, Giuseppe, & Zabczyk, Jerzy. Ergodicity for infinite dimensional systems. Vol 229. Cambridge University Press., 1996.
[39] Pavliotis, Grigorios A. Stochastic processes and applications: diffusion processes, the Fokker-Planck and Langevin equations. Vol 60. Springer., 2014.
[40] Klebaner, Fima C. Introduction to stochastic calculus with applications. World Scientific Publishing Company, 2012.
[41] Woess, W. Random walks on infinite graphs and groups. Vol 138. Cambridge university press, 2000.
[42] Stein, E. M., & Shakarchi, R. Complex analysis. Vol 2. Princeton University Press, 2010.
[43] Khoshnevisan, Davar, et al. " Phase Analysis for a family of Stochastic Reaction-Diffusion Equations." arXiv preprint arXiv:2012.12512, 2020.
[44] Evans, Lawrence C. An introduction to stochastic differential equations. Vol 82. American Mathematical Soc., 2012 |