博碩士論文 106281601 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:67 、訪客IP:18.227.209.89
姓名 黎懷仁(Le Hoai Nhan)  查詢紙本館藏   畢業系所 數學系
論文名稱 一維和二維的标准以及條件隨機遊走的性質
(Properties of One and Two Dimensional Random Walks: Simple and Conditioned)
相關論文
★ A Primer on BMO★ Markov Processes And Brownian Motion
★ Convergence rates of harmonic measures and extremal lengths of sets in the upper half plane★ 曼德博集合、朱利亞集合與演算法
★ Mixing Time for Ising Model (On Two Special Graphs: the Line and the Circle)★ Some Properties of Dipolar SLE
★ 分數積分算子的一種雙線性形式
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   [檢視]  [下載]
  1. 本電子論文使用權限為同意立即開放。
  2. 已達開放權限電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。
  3. 請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。

摘要(中) 我們考慮在 $Z^d$、$d=1,2$ 上的簡單隨機遊走 $S_n$,並考慮其限制在未到達原點,稱作 $hat{S}_n$。 從點 $x in Z^d$ 開始的簡單隨機遊走定義為
egin{equation*}
S_n = x + X_1 + X_2+ cdots + X_n,
end{equation*}
而 $hat{S}_n$ 是
egin{equation*}
hat{S}_n = x + hat{X}_1 + hat{X}_2+ cdots + hat{X}_n.
end{equation*}
它們都是具有轉移機率的馬爾可夫鏈
egin{equation*}
PP[S_n=y|S_{n-1}=x] = frac{1}{2d} qquad ext{if } ||y-x||=1,
end{equation*}

egin{equation*}
PP[hat{S}_n = y|hat{S}_{n-1}=x] = left{
egin{array}{ll}
displaystyle dfrac{1}{2d}frac{a(y)}{a(x)} & ext{if } x e 0 ext{ and } ||y-x||=1\
0& ext{otherwise.}
end{array}

ight.
end{equation*}
這裡 $a(x)$ 是 $S_n$ 的勢能核函數。
設 $ au$ 和 $hat{ au}$ 為 $Z^d$ 的連通有限子集相對於 $S$ 和 $hat{S}$ 的存活時間。 $ au$ 和 $hat{ au}$ 幾乎必然是有限的。 我們將根據 $D$ 上限制的轉移矩陣和 $D$ 上的格林函數給出它們的分佈和期望值的表達式。 $S_n$ 是鞅,但 $hat{S}_n$ 是嚴格的下鞅。 我們還給出充要條件,使得 $hat{S}_n$ 和 $n$ 的函數是鞅。
摘要(英) We consider random walks on $Z^d$, $d=1,2$ in case simple and conditioned on never hit the origin. The simple random walk starting at a point $x in Z^d$ is defined as
egin{equation*}
S_n = x + X_1 + X_2+ cdots + X_n
end{equation*}
whereas the conditioned one is
egin{equation*}
hat{S}_n = x + hat{X}_1 + hat{X}_2+ cdots + hat{X}_n.
end{equation*}
They are both Markov chains with transition probabilities
egin{equation*}
PP[S_n=y|S_{n-1}=x] = frac{1}{2d} qquad ext{if } ||y-x||=1,
end{equation*}
and
egin{equation*}
PP[hat{S}_n = y|hat{S}_{n-1}=x] = left{
egin{array}{ll}
displaystyle dfrac{1}{2d}frac{a(y)}{a(x)} & ext{if } x e 0 ext{ and } ||y-x||=1\
0& ext{otherwise}
end{array}

ight.
end{equation*}
here $a(x)$ is the potential kernel of $S_n$.
Let $ au$ and $hat{ au}$ be the exiting time of a connected finite subset of $Z^d$ with respect to $S$ and $hat{S}$. $ au$ and $hat{ au}$ are finite almost surely. We will give an expression of their distribution and expectation in terms of transition matrix restricted on $D$ and the Green function on $D$. The simple random walk are martingale but the conditioned is a strictly submartingale. We also give necessary and sufficiency condition such that a function of $hat{S}_n$ and $n$ is a martingale.
關鍵字(中) ★ 隨機遊走
★ 條件隨機遊走
關鍵字(英) ★ Random walks
★ Conditional Random walks
論文目次 摘要v
Abstract vii
Acknowledgement ix
Contents xi
Explanation of Symbols xiii
1 The Life Time of One Dimensional Conditional Random
Walk 1
1.1 Introduction . . . . . . . . . . . . . . . . . . . . . . 1
1.2 The Life Time of One Dimensional Conditional Ran-
dom Walks . . . . . . . . . . . . . . . . . . . . . . . 3
1.3 Some martingales as a function of ˆ Sn . . . . . . . . . 8
2 Two Dimensional Simple Random Walks and Life Time
In A Finite Set 17
2.1 Introduction . . . . . . . . . . . . . . . . . . . . . . 17
2.2 Potential Kernel of Two Dimensional Simple Ran-
dom Walk . . . . . . . . . . . . . . . . . . . . . . . 19
2.3 Green Function in a Finite Set D . . . . . . . . . . . 47
2.4 Exiting Time to a Finite Set . . . . . . . . . . . . . 49
2.4.1 The Matrix Norm . . . . . . . . . . . . . . . . . . . 49
2.4.2 Statement of the problem . . . . . . . . . . . . . . . 50
2.4.3 Matrix representation . . . . . . . . . . . . . . . . . 51
2.4.4 An estimation of Ex[τD] with D is a ball . . . . . . . 77
xi
3 Two Dimensional Conditional Random Walks 79
3.1 Introduction . . . . . . . . . . . . . . . . . . . . . . 79
3.2 Why ˆ Sn is called conditional simple random walk . . 79
3.3 Some martingales as a function of ˆ Sn . . . . . . . . . 83
References 89
參考文獻 [1] Apostol, Tom M. 1998. Introduction to analytic number theory.
Springer Science & Business Media.
[2] Azimzadeh, Parsiad. A fast and stable test to check if a weakly di-
agonally dominant matrix is a nonsingular M-matrix. Mathematics
of Computation 88.316 (2019): 783-800.
[3] Bertoin, J., & Doney, R. A. On conditioning a random walk to stay
nonnegative. The Annals of Probability (1994), 22(4), 2152-2167.
[4] Cinlar, E. Probability and stochastics (Vol. 261, pp. 2013-12). New
York: Springer (2011).
[5] Cinlar, E. Introduction to stochastic processes. Courier Corporation
(2013).
[6] Doney, R. A. A note on conditioned random walk. Journal of Ap-
plied Probability (1983), 20(2), 409-412.
[7] Durrett, R. Probability: theory and examples (Vol. 49). Cambridge
university press (2019).
[8] Fukai, Y., & Uchiyama, K. Potential kernel for two-dimensional
random walk. The Annals of Probability (1996), 24(4), 1979-1992.
[9] Gine, E., Grimmett, G. R., Salo-Coste, L., & Salo-Coste, L. Lec-
tures on nite Markov chains. Lectures on probability theory and
statistics: Ecole d′ete de Probabilites de Saint-Flour XXVI-1996,
(1997), 301-413.
[10] Grimmett, G., & Stirzaker, D. Probability and random processes.
Oxford university press.(2020)
87
[11] Harry, K. Hitting probabilities of random walks on Zd. Stochastic
Processes and their Applications (1987), 25, 165-184.
[12] Lawler, G. F., and Limic, V. Random walk: a modern introduction.
Cambridge Studies in Advanced Mathematics, vol. 123. Cambridge
University Press (2010), Cambridge.
[13] Lawler, G. F. Random walk and the heat equation (Vol. 55). Amer-
ican Mathematical Soc. (2010).
[14] Lawler, Gregory F. Intersections of random walks. Springer Science
& Business Media (2013).
[15] Comets, F., Popov, S., & Vachkovskaia, M. Two-dimensional ran-
dom interlacements and late points for random walks. Communica-
tions in Mathematical Physics (2016), 343, 129-164.
[16] Gantert, N., Popov, S., & Vachkovskaia, M. On the range of a
two-dimensional conditioned simple random walk. Annales Henri
Lebesgue (2019), 2, 349-368.
[17] Popov, S.. Two-Dimensional Random Walk: From Path Counting
to Random Interlacements (Vol. 13). Cambridge University Press
(2021).
[18] Popov, Serguei. Two-Dimensional Random Walk (2021).
[19] Seneta, E. Non-negative matrices and Markov chains. Springer Sci-
ence & Business Media. (2006)
[20] Smith, Gordon D., Gordon D. Smith, and Gordon Dennis Smith
Smith. Numerical solution of partial dierential equations: nite
dierence methods. Oxford university press (1985).
[21] Spitzer, F. Principles of random walk. Second edn. Springer-Verlag,
New York. Graduate Texts in Mathematics (1976), Vol. 34.
[22] Uchiyama, K. Green′s functions for random walks on ZN. Proceed-
ings of the London Mathematical Society (1998), 77(1), 215-240.
指導教授 方向(Fang Xiang) 審核日期 2023-7-17
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明