參考文獻 |
[1] C. Bachoc and F. Vallentin. New upper bounds for kissing numbers from semidefinite program- ming. Journal of the American Mathematical Society, 21(3):909–924, 2008.
[2] C. Bachoc and F. Vallentin. Optimality and uniqueness of the (4,10,1/6) spherical code. Journal of Combinatorial Theory, Series A, 116(1):195–204, 2009.
[3] E. Bannai and N. J. Sloane. Uniqueness of certain spherical codes. Canadian Journal of Mathematics, 33(2):437–449, 1981.
[4] A. Barg and W.-H. Yu. New bounds for equiangular lines. Discrete geometry and algebraic combinatorics, 625:111–121, 2013.
[5] M.-Y. Cao, J. H. Koolen, Y.-C. R. Lin, and W.-H. Yu. The lemmens-seidel conjecture and forbidden subgraphs. Journal of Combinatorial Theory, Series A, 185:105538, 2022.
[6] H. Cohn, A. Kumar, S. Miller, D. Radchenko, and M. Viazovska. The sphere packing problem in dimension 24. Annals of Mathematics, 185(3):1017–1033, 2017. [7] H. Cohn and J. Woo. Three-point bounds for energy minimization. Journal of the American Mathematical Society, 25(4):929–958, 2012.
[8] S. J. Einhorn and I. J. Schoenberg. On euclidean sets having only two distances between points ii. Indag. Math, 28:489–504, 1966.
[9] A. Glazyrin and W.-H. Yu. Upper bounds for s-distance sets and equiangular lines. Advances in Mathematics, 330:810–833, 2018.
[10] M. Grant and S. Boyd. CVX: Matlab software for disciplined convex programming, version 2.2. http://cvxr.com/cvx, mar 2020.
[11] P. W. H. Lemmens and J. J. Seidel. Equiangular lines. Journal of Algebra, 24(3):494–512, 1973.
[12] P. Lisonk. New maximal two-distance sets. Journal of combinatorial theory, Series A, 77(2):318–338, 1997.
[13] O. R. Musin. The kissing number in four dimensions. Annals of Mathematics, pages 1–32, 2008.
[14] O. R. Musin. Spherical two-distance sets. Journal of Combinatorial Theory, Series A, 116(4):988–995, 2009.
[15] A. Numaier. Graph representations, two-distance sets, and equiangular lines. Linear Algebra and its Applications, 114:141–156, 1989.
[16] A. M. Odlyzko and N. J. Sloane. New bounds on the number of unit spheres that can touch a unit sphere in n dimensions. Journal of Combinatorial Theory, Series A, 26(2):210–214, 1979.
[17] J.-M. G. Philippe Delsarte and J. J. Seidel. Spherical codes and designs. Geometriae Dedicata, 6(3):363–388, 1977.
[18] A. J. Scott and M. Grassl. Symmetric informationally complete positive-operator-valued measures: A new computer study. Journal of Mathematical Physics, 51(4), 2010.
[19] A. Schrijver. New code upper bounds from the terwilliger algebra and semidefinite program- ming. IEEE Transactions on Information Theory, 51(8):2859–2866, 2005.
[20] M. S. Viazovska. The sphere packing problem in dimension 8. Annals of mathematics, 185(3):991–1015, 2017.
[21] N. I. Vilenkin. Special functions and the theory of group representations (Vol. 22). American Mathematical Soc., 1978.
[22] S. F. Waldron. An introduction to finite tight frames. Basel: Birkhäuser, 2018.
[23] W.-H. Yu. New bounds for equiangular lines and spherical two-distance sets. SIAM Journal on Discrete Mathematics, 31(2):908–917, 2017. |