參考文獻 |
[1] Jiwoong Choi, Dayoung Chun, Hyun Kim, and Hyuk-Jae Lee. Gaussian yolov3: An accurate and fast object detector using localization uncertainty for autonomous driving. In Proceedings of the IEEE/CVF International Conference on Computer Vision, pages 502–511, 2019.
[2] Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. Deep residual learning for image recognition. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pages 770–778, 2016.
[3] James B Allison and John WC Bird. Elimination of nitrogen from the body. In Mammalian Protein Metabolism, pages 483–512. Elsevier, 1964.
[4] John C Atherton. Regulation of fluid and electrolyte balance by the kidney. Anaesthesia & Intensive Care Medicine, 7(7):227–233, 2006.
[5] Robert F Pitts. Acid-base regulation by the kidneys. The American Journal of Medicine, 9(3):356–372, 1950.
[6] Delmar R Finco. Kidney function. In Clinical Kiochemistry of Domestic Animals, pages 441–484. Elsevier, 1997.
[7] Eric AJ Hoste, John A Kellum, Nicholas M Selby, Alexander Zarbock, Paul M Palevsky, Sean M Bagshaw, Stuart L Goldstein, Jorge Cerdá, and Lakhmir S Chawla. Global epidemiology and outcomes of acute kidney injury. Nature Reviews Nephrology, 14(10):607–625, 2018.
[8] Denise A Elliott. Hemodialysis. Clinical Techniques in Small Animal Practice, 15(3):136–148, 2000.
[9] Isaac Teitelbaum and John Burkart. Peritoneal dialysis. American Journal of Kidney Diseases, 42(5):1082–1096, 2003.
[10] Maria Claudia Cruz Andreoli and Claudia Totoli. Peritoneal dialysis. Revista da Associação Médica Brasileira, 66:s37–s44, 2020.
[11] Ziyad Al-Aly, Angelique Zeringue, John Fu, Michael I Rauchman, Jay R McDonald, Tarek M El-Achkar, Sumitra Balasubramanian, Diana Nurutdinova, Hong Xian, 42 Kevin Stroupe, Kevin C Abbott, and Seth Eisen. Rate of kidney function decline associates with mortality. Journal of the American Society of Nephrology: JASN, 21(11):1961, 2010.
[12] Xiaobin Liu, Xiran Zhang, Xiaoyi Guo, Yijie Ding, Weiwei Shan, Liang Wang, Wei Zhou, and Hua Shi. A self representation-based fuzzy svm model for predicting vascular calcification of hemodialysis patients. Computational and Mathematical Methods in Medicine, 2021:1–10, 2021.
[13] Qingyu Niu, Huiping Zhao, Bei Wu, Shihming Tsai, Jian Wu, Meng Zhang, Lixia Lu, Jie Qiao, Chuncui Men, Li Zuo, and Mei Wang. Study on the prevalence of vascular calcification in different types of arteries and influencing factors in maintenance peritoneal dialysis patients. Blood Purification, 47(1):8–16, 2019.
[14] Majid Jadidi, William Poulson, Paul Aylward, Jason MacTaggart, Christian Sanderfer, Blake Marmie, Margarita Pipinos, and Alexey Kamenskiy. Calcification prevalence in different vascular zones and its association with demographics, risk factors, and morphometry. American Journal of Physiology-Heart and Circulatory Physiology, 320(6):H2313–H2323, 2021.
[15] Liang Zhao, Brendan Odigwe, Susan Lessner, Daniel Clair, Firas Mussa, and Homayoun Valafar. Automated analysis of femoral artery calcification using machine learning techniques. In 2019 International Conference on Computational Science and Computational Intelligence (CSCI), pages 584–589. IEEE, 2019.
[16] Eero Honkanen, Leena Kauppila, Björn Wikström, Pieter L Rensma, Jean-Marie Krzesinski, Knut Aasarod, Francis Verbeke, Per Bruno Jensen, Pierre Mattelaer, Birgitte Volck, et al. Abdominal aortic calcification in dialysis patients: Results of the cord study. Nephrology Dialysis Transplantation, 23(12):4009–4015, 2008.
[17] Francesca Martino, Pierluigi Di Loreto, Dario Giacomini, Manish Kaushik, Maria Pia Rodighiero, Carlo Crepaldi, and Claudio Ronco. Abdominal aortic calcification is an independent predictor of cardiovascular events in peritoneal dialysis patients. Therapeutic Apheresis and Dialysis, 17(4):448–453, 2013.
[18] Hung-Chih Chen, Wei-Ting Wang, Chieh-Ning Hsi, Che-Yi Chou, Hsuan-Jen Lin, Chiu-Ching Huang, and Chiz-Tzung Chang. Abdominal aortic calcification score can 43 predict future coronary artery disease in hemodialysis patients: a 5-year prospective cohort study. BMC Nephrology, 19(1):1–7, 2018.
[19] Ida Maria Hjelm Sørensen, Sasha Asbøll Kepler Saurbrey, Henrik Øder Hjortkjær, Philip Brainin, Nicholas Carlson, Ellen Linnea Freese Ballegaard, Anne-Lise Kamper, Christina Christoffersen, Bo Feldt-Rasmussen, Klaus Fuglsang Kofoed, and Susanne Bro. Regional distribution and severity of arterial calcification in patients with chronic kidney disease stages 1–5: a cross-sectional study of the copenhagen chronic kidney disease cohort. BMC Nephrology, 21(1):1–11, 2020.
[20] Andrea Cina, Tito Bassani, Matteo Panico, Andrea Luca, Youssef Masharawi, Marco Brayda-Bruno, and Fabio Galbusera. 2-step deep learning model for landmarks localization in spine radiographs. Scientific Reports, 11(1):1–12, 2021.
[21] Michael P LaValley. Logistic regression. Circulation, 117(18):2395–2399, 2008.
[22] Donald W Marquardt and Ronald D Snee. Ridge regression in practice. The American Statistician, 29(1):3–20, 1975.
[23] Marti A. Hearst, Susan T Dumais, Edgar Osuna, John Platt, and Bernhard Scholkopf. Support vector machines. IEEE Intelligent Systems and Their Applications, 13(4):18–28, 1998.
[24] Leonardo Noriega. Multilayer perceptron tutorial. School of Computing. Staffordshire University, 4(5):444, 2005.
[25] Leo Breiman. Random forests. Machine Learning, 45:5–32, 2001.
[26] Joseph Redmon and Ali Farhadi. Yolov3: An incremental improvement. ArXiv Preprint ArXiv:1804.02767, 2018.
[27] Salman Khan, Muzammal Naseer, Munawar Hayat, Syed Waqas Zamir, Fahad Shahbaz Khan, and Mubarak Shah. Transformers in vision: A survey. ACM Computing Surveys (CSUR), 54(10s):1–41, 2022.
[28] Alexey Dosovitskiy, Lucas Beyer, Alexander Kolesnikov, Dirk Weissenborn, Xiaohua Zhai, Thomas Unterthiner, Mostafa Dehghani, Matthias Minderer, Georg Heigold, Sylvain Gelly, Jakob Uszkoreit, and Neil Houlsby. An image is worth 16x16 words: Transformers for image recognition at scale. ArXiv Preprint ArXiv:2010.11929, 2020. 44
[29] Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones, Aidan N Gomez, Łukasz Kaiser, and Illia Polosukhin. Attention is all you need. Advances in Neural Information Processing Systems, 30, 2017.
[30] A Buda and A Jarynowski. Life-time of correlations and its applications vol. 1, wydawnictwo niezalezne: 5-21, 2010.
[31] Jacob Cohen. Statistical power analysis for the behaviors science.(2nd). New Jersey: Laurence Erlbaum Associates, Publishers, Hillsdale, pages 20–27, 1988.
[32] Luzia Gonçalves, Ana Subtil, M Rosário Oliveira, and Patricia de Zea Bermudez. ROC curve estimation: An overview. REVSTAT-Statistical Journal, 12(1):1–20, 2014.
[33] Seong Ho Park, Jin Mo Goo, and Chan-Hee Jo. Receiver operating characteristic (ROC) curve: practical review for radiologists. Korean Journal of Radiology, 5(1):11– 18, 2004.
[34] Jesse Davis and Mark Goadrich. The relationship between precision-recall and roc curves. In Proceedings of the 23rd International Conference on Machine Learning, pages 233–240, 2006.
[35] Kendrick Boyd, Kevin H Eng, and C David Page. Area under the precision-recall curve point estimates and confidence intervals. In Machine Learning and Knowledge Discovery in Databases European Conference, ECML PKDD 2013, Prague, Czech Republic, September 23-27, 2013, Proceedings, Part III 13, pages 451–466. Springer, 2013.
[36] Michelle Carney, Barron Webster, Irene Alvarado, Kyle Phillips, Noura Howell, Jordan Griffith, Jonas Jongejan, Amit Pitaru, and Alexander Chen. Teachable machine: Approachable web-based tool for exploring machine learning classification. In Extended Abstracts of the 2020 CHI Conference on Human Factors in Computing Systems, pages 1–8, 2020. |