博碩士論文 107221007 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:63 、訪客IP:3.149.214.28
姓名 王珮如(Pei-Ru Wang)  查詢紙本館藏   畢業系所 數學系
論文名稱 基於機器和深度學習技術對腹主動脈鈣化程度評估系統
(Abdominal Aortic Calcification Evaluation System Based on Machine and Deep Learning Technology)
相關論文
★ 非線性塊狀高斯消去牛頓演算法在噴嘴流體的應用★ 以平行 Newton-Krylov-Schwarz 演算法解 Poisson-Boltzmann 方程式的有限元素解在膠體科學上的應用
★ 最小平方有限元素法求解對流擴散方程以及使用Bubble函數的改良★ Bifurcation Analysis of Incompressible Sudden Expansion Flows Using Parallel Computing
★ Parallel Jacobi-Davidson Algorithms and Software Developments for Polynomial Eigenvalue Problems in Quantum Dot Simulation★ An Inexact Newton Method for Drift-DiffusionModel in Semiconductor Device Simulations
★ Numerical Simulation of Three-dimensional Blood Flows in Arteries Using Domain Decomposition Based Scientific Software Packages in Parallel Computers★ A Parallel Fully Coupled Implicit Domain Decomposition Method for the Stabilized Finite Element Solution of Three-dimensional Unsteady Incompressible Navier-Stokes Equations
★ A Study for Linear Stability Analysis of Incompressible Flows on Parallel Computers★ Parallel Computation of Acoustic Eigenvalue Problems Using a Polynomial Jacobi-Davidson Method
★ Numerical Study of Algebraic Multigrid Methods for Solving Linear/Nonlinear Elliptic Problems on Sequential and Parallel Computers★ A Parallel Multilevel Semi-implicit Scheme of Fluid Modeling for Numerical Low-Temperature Plasma Simulation
★ Performance Comparison of Two PETSc-based Eigensolvers for Quadratic PDE Problems★ A Parallel Two-level Polynomial Jacobi-Davidson Algorithm for Large Sparse Dissipative Acoustic Eigenvalue Problems
★ A Full Space Lagrange-Newton-Krylov Algorithm for Minimum Time Trajectory Optimization★ Parallel Two-level Patient-specific Numerical Simulation of Three-dimensional Rheological Blood Flows in Branching Arteries
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   [檢視]  [下載]
  1. 本電子論文使用權限為同意立即開放。
  2. 已達開放權限電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。
  3. 請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。

摘要(中) 腎臟是人體重要的器官,然而當某些原因造成腎臟功能下降到一個程度時則需要洗腎,但是腎臟功能下降會形成血管鈣化,使血管失去彈性,最後提高死亡率。但是目前腹主動脈鈣化評分由專門的醫生來進行,所產生的問題為評分時醫生帶有主觀意識,導致可能對同一位患者的X光影像,但是不同位醫生評分或是同一位醫生在不同時間點評分,產生出分數不一致的情況,以及偶爾有為錯誤的腹主動脈節段評分的情況。本研究想要找到一個方法可以幫醫生更公正地去幫患者評估血管鈣化的程度。我們針對生理數據使用的模型為Logistic Regression、Ridge、SVM_Linear、K Nearest Neighbor、Random Forest和MLP;針對X光影像使用的模型有未pretrain的Resnet50、有pretrain的Resnet50和Vision Transformer。目前以生理數據訓練效果最好的是用RidgeCV挑選前三重要的因素訓練的Logistic Regression模型,準確率達67.22%;以影像訓練效果最好的是Vision Transformer,準確率達至54.17%,但是以原圖和做背景遮罩後的影像分別訓練的teachable machine模型準確率分別達75%和81.25%,表示將非觀察的區域當作背景遮住之後,可以有效的避免背景對於模型判斷的干擾。
摘要(英) The kidneys are vital organs in the human body. When kidney function declines to a certain level, renal replacement therapy, such as dialysis, becomes necessary. Unfortunately, the decline of kidney function can lead to vascular calcification, causing blood vessels to lose their elasticity and ultimately increasing mortality risk. Currently, the assessment of abdominal aortic calcification is performed by specialized physicians. However, this approach has limitations as the scoring is subjective, resulting in inconsistent ratings between different physicians or even the same physician at different times. Occasionally, there may also be erroneous segment scoring of the abdominal aorta.

This study aims to find a method to help physicians assess the degree of vascular calcification in patients more objectively. We utilized models such as Logistic Regression, Ridge, SVM_Linear, K Nearest Neighbor, Random Forest, and MLP for physiological data. For X-ray images, we employed models including Resnet50 with and without pretraining and Vision Transformer. Currently, the best-performing model for physiological data is the Logistic Regression model trained using RidgeCV to select the top three important factors, achieving an accuracy of 67.22%. Regarding image analysis, the Vision Transformer model achieved the highest accuracy of 54.17%. However, when training the Teachable Machine model using the original images and images with background masking separately, the accuracies reached 75% and 81.25%, respectively. This indicates that masking the unobserved regions as background effectively avoids interference in the model’s judgment caused by the background.
關鍵字(中) ★ 機器學習
★ 深度學習
★ 腹主動脈鈣化評分
關鍵字(英)
論文目次 致謝 vi
Tables ix
Figures x
1 緒論 1
2 方法 6
2.1 機器學習 6
2.1.1 邏輯回歸 6
2.1.2 脊回歸 7
2.1.3 支持向量機 8
2.1.4 多層感知器 8
2.1.5 隨機森林法 9
2.1.6 K 近鄰演算法 9
2.2 深度學習 10
2.2.1 YOLO v3 10
2.2.2 ResNet 13
2.2.3 Vision Transformer (ViT) 15
2.3 統計方法 19
2.3.1 相關係數 19
2.3.2 F-test 20
2.3.3 T-test 20
3 實驗設計 22
3.1 資料來源 22
3.2 超參數 24
3.3 預處理 24
4 結果與討論 25
4.1 統計分析 25
4.2 生理數據 27
4.3 影像資料 30
5 結論與未來展望 41
References 42
參考文獻 [1] Jiwoong Choi, Dayoung Chun, Hyun Kim, and Hyuk-Jae Lee. Gaussian yolov3: An accurate and fast object detector using localization uncertainty for autonomous driving. In Proceedings of the IEEE/CVF International Conference on Computer Vision, pages 502–511, 2019.
[2] Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. Deep residual learning for image recognition. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pages 770–778, 2016.
[3] James B Allison and John WC Bird. Elimination of nitrogen from the body. In Mammalian Protein Metabolism, pages 483–512. Elsevier, 1964.
[4] John C Atherton. Regulation of fluid and electrolyte balance by the kidney. Anaesthesia & Intensive Care Medicine, 7(7):227–233, 2006.
[5] Robert F Pitts. Acid-base regulation by the kidneys. The American Journal of Medicine, 9(3):356–372, 1950.
[6] Delmar R Finco. Kidney function. In Clinical Kiochemistry of Domestic Animals, pages 441–484. Elsevier, 1997.
[7] Eric AJ Hoste, John A Kellum, Nicholas M Selby, Alexander Zarbock, Paul M Palevsky, Sean M Bagshaw, Stuart L Goldstein, Jorge Cerdá, and Lakhmir S Chawla. Global epidemiology and outcomes of acute kidney injury. Nature Reviews Nephrology, 14(10):607–625, 2018.
[8] Denise A Elliott. Hemodialysis. Clinical Techniques in Small Animal Practice, 15(3):136–148, 2000.
[9] Isaac Teitelbaum and John Burkart. Peritoneal dialysis. American Journal of Kidney Diseases, 42(5):1082–1096, 2003.
[10] Maria Claudia Cruz Andreoli and Claudia Totoli. Peritoneal dialysis. Revista da Associação Médica Brasileira, 66:s37–s44, 2020.
[11] Ziyad Al-Aly, Angelique Zeringue, John Fu, Michael I Rauchman, Jay R McDonald, Tarek M El-Achkar, Sumitra Balasubramanian, Diana Nurutdinova, Hong Xian, 42 Kevin Stroupe, Kevin C Abbott, and Seth Eisen. Rate of kidney function decline associates with mortality. Journal of the American Society of Nephrology: JASN, 21(11):1961, 2010.
[12] Xiaobin Liu, Xiran Zhang, Xiaoyi Guo, Yijie Ding, Weiwei Shan, Liang Wang, Wei Zhou, and Hua Shi. A self representation-based fuzzy svm model for predicting vascular calcification of hemodialysis patients. Computational and Mathematical Methods in Medicine, 2021:1–10, 2021.
[13] Qingyu Niu, Huiping Zhao, Bei Wu, Shihming Tsai, Jian Wu, Meng Zhang, Lixia Lu, Jie Qiao, Chuncui Men, Li Zuo, and Mei Wang. Study on the prevalence of vascular calcification in different types of arteries and influencing factors in maintenance peritoneal dialysis patients. Blood Purification, 47(1):8–16, 2019.
[14] Majid Jadidi, William Poulson, Paul Aylward, Jason MacTaggart, Christian Sanderfer, Blake Marmie, Margarita Pipinos, and Alexey Kamenskiy. Calcification prevalence in different vascular zones and its association with demographics, risk factors, and morphometry. American Journal of Physiology-Heart and Circulatory Physiology, 320(6):H2313–H2323, 2021.
[15] Liang Zhao, Brendan Odigwe, Susan Lessner, Daniel Clair, Firas Mussa, and Homayoun Valafar. Automated analysis of femoral artery calcification using machine learning techniques. In 2019 International Conference on Computational Science and Computational Intelligence (CSCI), pages 584–589. IEEE, 2019.
[16] Eero Honkanen, Leena Kauppila, Björn Wikström, Pieter L Rensma, Jean-Marie Krzesinski, Knut Aasarod, Francis Verbeke, Per Bruno Jensen, Pierre Mattelaer, Birgitte Volck, et al. Abdominal aortic calcification in dialysis patients: Results of the cord study. Nephrology Dialysis Transplantation, 23(12):4009–4015, 2008.
[17] Francesca Martino, Pierluigi Di Loreto, Dario Giacomini, Manish Kaushik, Maria Pia Rodighiero, Carlo Crepaldi, and Claudio Ronco. Abdominal aortic calcification is an independent predictor of cardiovascular events in peritoneal dialysis patients. Therapeutic Apheresis and Dialysis, 17(4):448–453, 2013.
[18] Hung-Chih Chen, Wei-Ting Wang, Chieh-Ning Hsi, Che-Yi Chou, Hsuan-Jen Lin, Chiu-Ching Huang, and Chiz-Tzung Chang. Abdominal aortic calcification score can 43 predict future coronary artery disease in hemodialysis patients: a 5-year prospective cohort study. BMC Nephrology, 19(1):1–7, 2018.
[19] Ida Maria Hjelm Sørensen, Sasha Asbøll Kepler Saurbrey, Henrik Øder Hjortkjær, Philip Brainin, Nicholas Carlson, Ellen Linnea Freese Ballegaard, Anne-Lise Kamper, Christina Christoffersen, Bo Feldt-Rasmussen, Klaus Fuglsang Kofoed, and Susanne Bro. Regional distribution and severity of arterial calcification in patients with chronic kidney disease stages 1–5: a cross-sectional study of the copenhagen chronic kidney disease cohort. BMC Nephrology, 21(1):1–11, 2020.
[20] Andrea Cina, Tito Bassani, Matteo Panico, Andrea Luca, Youssef Masharawi, Marco Brayda-Bruno, and Fabio Galbusera. 2-step deep learning model for landmarks localization in spine radiographs. Scientific Reports, 11(1):1–12, 2021.
[21] Michael P LaValley. Logistic regression. Circulation, 117(18):2395–2399, 2008.
[22] Donald W Marquardt and Ronald D Snee. Ridge regression in practice. The American Statistician, 29(1):3–20, 1975.
[23] Marti A. Hearst, Susan T Dumais, Edgar Osuna, John Platt, and Bernhard Scholkopf. Support vector machines. IEEE Intelligent Systems and Their Applications, 13(4):18–28, 1998.
[24] Leonardo Noriega. Multilayer perceptron tutorial. School of Computing. Staffordshire University, 4(5):444, 2005.
[25] Leo Breiman. Random forests. Machine Learning, 45:5–32, 2001.
[26] Joseph Redmon and Ali Farhadi. Yolov3: An incremental improvement. ArXiv Preprint ArXiv:1804.02767, 2018.
[27] Salman Khan, Muzammal Naseer, Munawar Hayat, Syed Waqas Zamir, Fahad Shahbaz Khan, and Mubarak Shah. Transformers in vision: A survey. ACM Computing Surveys (CSUR), 54(10s):1–41, 2022.
[28] Alexey Dosovitskiy, Lucas Beyer, Alexander Kolesnikov, Dirk Weissenborn, Xiaohua Zhai, Thomas Unterthiner, Mostafa Dehghani, Matthias Minderer, Georg Heigold, Sylvain Gelly, Jakob Uszkoreit, and Neil Houlsby. An image is worth 16x16 words: Transformers for image recognition at scale. ArXiv Preprint ArXiv:2010.11929, 2020. 44
[29] Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones, Aidan N Gomez, Łukasz Kaiser, and Illia Polosukhin. Attention is all you need. Advances in Neural Information Processing Systems, 30, 2017.
[30] A Buda and A Jarynowski. Life-time of correlations and its applications vol. 1, wydawnictwo niezalezne: 5-21, 2010.
[31] Jacob Cohen. Statistical power analysis for the behaviors science.(2nd). New Jersey: Laurence Erlbaum Associates, Publishers, Hillsdale, pages 20–27, 1988.
[32] Luzia Gonçalves, Ana Subtil, M Rosário Oliveira, and Patricia de Zea Bermudez. ROC curve estimation: An overview. REVSTAT-Statistical Journal, 12(1):1–20, 2014.
[33] Seong Ho Park, Jin Mo Goo, and Chan-Hee Jo. Receiver operating characteristic (ROC) curve: practical review for radiologists. Korean Journal of Radiology, 5(1):11– 18, 2004.
[34] Jesse Davis and Mark Goadrich. The relationship between precision-recall and roc curves. In Proceedings of the 23rd International Conference on Machine Learning, pages 233–240, 2006.
[35] Kendrick Boyd, Kevin H Eng, and C David Page. Area under the precision-recall curve point estimates and confidence intervals. In Machine Learning and Knowledge Discovery in Databases European Conference, ECML PKDD 2013, Prague, Czech Republic, September 23-27, 2013, Proceedings, Part III 13, pages 451–466. Springer, 2013.
[36] Michelle Carney, Barron Webster, Irene Alvarado, Kyle Phillips, Noura Howell, Jordan Griffith, Jonas Jongejan, Amit Pitaru, and Alexander Chen. Teachable machine: Approachable web-based tool for exploring machine learning classification. In Extended Abstracts of the 2020 CHI Conference on Human Factors in Computing Systems, pages 1–8, 2020.
指導教授 黃楓南(Feng-Nan Hwang) 審核日期 2023-7-21
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明