以作者查詢圖書館館藏 、以作者查詢臺灣博碩士 、以作者查詢全國書目 、勘誤回報 、線上人數:29 、訪客IP:3.15.186.27
姓名 胡喬晏(Joanne Hu) 查詢紙本館藏 畢業系所 數學系 論文名稱
(Effective Hamiltonian Circle Actions with Finite Fixed Points on the Complex Projective Plane)相關論文
★ 一個在T*RP2上的單調拉格朗日環面 ★ Mirror Symmetry and The Quintic Model ★ The isotopy classification of contact structures on S3 檔案 [Endnote RIS 格式] [Bibtex 格式] [相關文章] [文章引用] [完整記錄] [館藏目錄] [檢視] [下載]
- 本電子論文使用權限為同意立即開放。
- 已達開放權限電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。
- 請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。
摘要(中) 我們根據 Y. Karshon 博士在1998年發表的論文《 Periodic Hamiltonian Flows on Four Dimensional Manifolds 》研究對於在複射影平面上具有有限不動點的一維球作用進行分類。我們的結論是:每個這樣的作用都會辛同構到線性作用。 摘要(英) We classify the effective Hamiltonian $S^1$-actions with finite fixed points on the complex projective plane based on the work of Y. Karshon, ``Periodic Hamiltonian Flows on Four Dimensional Manifolds". Our conclusion is that every such action is symplectomorphic to a standard linear case. 關鍵字(中) ★ Symplectic geometry
★ Hamiltonian action
★ Effective Hamiltonian action關鍵字(英) ★ Symplectic geometry
★ Hamiltonian action
★ Effective Hamiltonian action論文目次 中文摘要 i
Abstract ii
Acknowledgements iii
Contents iv
List of Figures v
List of Tables v
List of Figures v
List of Tables vi
Chapter 1: Introduction 1
Chapter 2: Backgrounds 3
2.1 Symplectic vector spaces 3
2.2 Symplectic manifolds 4
2.3 Lie group and group action 5
2.3.1 One-parameter groups of diffeomorphisms 5
2.3.2 Lie groups 6
2.4 Hamiltonian Vector Fields and Hamiltonian actions 9
2.5 Compatible almost complex structures 11
2.5.1 Complex structures on vector spaces 11
2.5.2 Compatible structures 12
2.6 The index of a vector field, Morse index and the Euler number 13
2.6.1 The index of a vector field 13
2.6.2 Morse theory 14
2.6.3 The Euler Number 15
2.7 Gradient flows and stable/unstable submanifolds 15
Chapter 3: Hamiltonian S1-actions on (CP2, ω = ωF S ) 18
3.1 The relation between the S1-action and the moment map h 18
3.2 The moment map and Hamiltonian vector field around a fixed point 18
3.3 The existence of gradient spheres 21
Chapter 4: Linear Hamiltonian S1-actions on CP2 22
4.1 The types of the linear actions 22
4.1.1 Case I: gcd(p, q) = 1 22
4.1.2 Case II: gcd(p, q) = k 6 = 1, say p = ̃pk, q = ̃qk, and gcd( ̃p, ̃q) = 1 23
4.2 The graph of a linear action 23
4.2.1 Case (i) p > q > 0 25
4.2.2 Case (ii) p > 0 > q 25
4.2.3 Case (iii) q > p > 0 26
4.2.4 Case (iv) q > 0 > p 27
4.2.5 Case (v) 0 > p > q 28
4.2.6 Case (vi) 0 > q > p 29
Chapter 5: General Hamiltonian S1 action on CP2 30
5.1 The fixed points of an action under our assumptions 30
5.1.1 The minimum occurs at the point guarantees z1 6 = 0 30
5.1.2 The minimum occurs at the point guarantees z2 6 = 0 31
5.1.3 The minimum occurs at the point guarantees z3 6 = 0 31
5.2 The six cases of such action 32
5.2.1 Case 1: At minimum z3 6 = 0 and at maximum z1 6 = 0 32
5.2.2 Case 2: At minimum z2 6 = 0 and at maximum z1 6 = 0 33
5.2.3 Case 3: At minimum z3 6 = 0 and at maximum z2 6 = 0 34
5.2.4 Case 4: At minimum z1 6 = 0 and at maximum z2 6 = 0 35
5.2.5 Case 5: At minimum z2 6 = 0 and at maximum z3 6 = 0 36
5.2.6 Case 6: At minimum z1 6 = 0 and at maximum z3 6 = 0 37
Conclusion 39
References 41
List of Figures
1 Case (i) p > q > 0 25
2 Case (ii) p > 0 > q 26
3 Case (iii) q > p > 0 27
4 Case (iv) q > 0 > p 28
5 Case (v) 0 > p > q 28
6 Case (vi) 0 > q > p 29
7 Case 1: At minimum z3 6 = 0 and at maximum z1 6 = 0 33
8 Case 2: At minimum z2 6 = 0 and at maximum z1 6 = 0 34
9 Case 3: At minimum z3 6 = 0 and at maximum z2 6 = 0 35
10 Case 4: At minimum z1 6 = 0 and at maximum z2 6 = 0 36
11 Case 5: At minimum z2 6 = 0 and at maximum z3 6 = 0 37
12 Case 6: At minimum z1 6 = 0 and at maximum z3 6 = 0 38
13 The graph of an effective Hamiltonian circle action on the complex projective plane 39
List of Tables
1 Table of linear action graphs 40參考文獻 [1] K. Ahara and A. Hattori. 4-dimensional symplectic S1-manifolds admitting moment map. J. Fac.
Sci. Univ. Tokyo Sect. IA Math., 38(2):251–298, 1991.
[2] M. Audin. Torus actions on symplectic manifolds, volume 93 of Progress in Mathematics.
Birkhäuser Verlag, Basel, revised edition, 2004.
[3] A. Baker. Matrix groups. Springer Undergraduate Mathematics Series. Springer-Verlag London,
Ltd., London, 2002. An introduction to Lie group theory.
[4] D. Barden and C. Thomas. An introduction to differential manifolds. Imperial College Press,
London, 2003.
[5] A. Cannas da Silva. Lectures on symplectic geometry, volume 1764 of Lecture Notes in Mathe-
matics. Springer-Verlag, Berlin, 2001.
[6] A. Cannas da Silva. Symplectic toric manifolds. In Symplectic geometry of integrable Hamiltonian
systems (Barcelona, 2001), Adv. Courses Math. CRM Barcelona, pages 85–173. Birkhäuser, Basel,
2003.
[7] R. Chiang and L. Kessler. Cyclic actions on rational ruled symplectic four-manifolds. Transform.
Groups, 24(4):987–1000, 2019.
[8] M. D. Crossley. Essential topology. Springer Undergraduate Mathematics Series. Springer-Verlag
London, Ltd., London, 2005.
[9] R. Fintushel. Circle actions on simply connected 4-manifolds. Trans. Amer. Math. Soc., 230:147–
171, 1977.
[10] R. Fintushel. Classification of circle actions on 4-manifolds. Trans. Amer. Math. Soc., 242:377–390,
1978.
[11] L. Godinho. On certain symplectic circle actions. J. Symplectic Geom., 3(3):357–383, 2005.
[12] A. Hatcher. Algebraic topology. Cambridge University Press, Cambridge, 2002.
[13] D. Jang. Symplectic periodic flows with exactly three equilibrium points. Ergodic Theory Dynam.
Systems, 34(6):1930–1963, 2014.
[14] D. Jang. Circle actions on almost complex manifolds with isolated fixed points. J. Geom. Phys.,
119:187–192, 2017.
[15] D. Jang. Symplectic circle actions with isolated fixed points. J. Symplectic Geom., 15(4):1071–
1087, 2017.
41
[16] D. Jang. Circle actions on oriented manifolds with discrete fixed point sets and classification in
dimension 4. J. Geom. Phys., 133:181–194, 2018.
[17] Y. Karshon. Periodic Hamiltonian flows on four-dimensional manifolds. Mem. Amer. Math. Soc.,
141(672):viii+71, 1999.
[18] Y. Karshon and L. Kessler. Circle and torus actions on equal symplectic blow-ups of CP2. Math.
Res. Lett., 14(5):807–823, 2007.
[19] S. Lang. Algebra, volume 211 of Graduate Texts in Mathematics. Springer-Verlag, New York,
third edition, 2002.
[20] H. Li and S. Tolman. Hamiltonian circle actions with minimal fixed sets. Internat. J. Math.,
23(8):1250071, 36, 2012.
[21] P. Li. Circle action with prescribed number of fixed points. Acta Math. Sin. (Engl. Ser.),
31(6):1035–1042, 2015.
[22] N. Lindsay. Hamiltonian circle actions on complete intersections. Bull. Lond. Math. Soc.,
54(1):206–212, 2022.
[23] D. McDuff. Blow ups and symplectic embeddings in dimension 4. Topology, 30(3):409–421, 1991.
[24] D. McDuff and D. Salamon. Introduction to symplectic topology. Oxford Mathematical Mono-
graphs. The Clarendon Press, Oxford University Press, New York, second edition, 1998.
[25] J. Milnor. Morse theory. Princeton University Press, Princeton, N.J.„ 1963. Based on lecture
notes by M. Spivak and R. Wells.
[26] J. R. Munkres. Topology: a first course. Prentice-Hall, Inc., Englewood Cliffs, N.J.„, 1975.
[27] J. R. Munkres. Elements of algebraic topology. Addison-Wesley Publishing Company, Menlo Park,
CA, 1984.
[28] L. W. Tu. An introduction to manifolds. Universitext. Springer,指導教授 姚美琳(Mei-Lin Yau) 審核日期 2023-7-24 推文 facebook plurk twitter funp google live udn HD myshare reddit netvibes friend youpush delicious baidu 網路書籤 Google bookmarks del.icio.us hemidemi myshare