參考文獻 |
Akaike, H. (1974). A new look at the statistical model identification. IEEE Transactions
on Automatic Control, 19, 716–723.
Babii, A., Ghysels, E., & Pan, J. (2022). Tensor principal component analysis. arXiv
preprint arXiv:2212.12981.
Bai, Z., Choi, K. P., & Fujikoshi, Y. (2018). Consistency of AIC and BIC in estimating
the number of significant components in high-dimensional principal component
analysis. The Annals of Statistics, 46, 1050–1076.
Chen, C.-M., Zhang, S.-Q., & Chen, Y.-F. (2010). Face recognition based on MPCA. 2010
The 2nd International Conference on Industrial Mechatronics and Automation, 1,
322–325.
Chen, T.-L., Hsieh, D.-N., Hung, H., Tu, I.-P., Wu, P.-S., Wu, Y.-M., Chang, W.-H., &
Huang, S.-Y. (2014a). γ-SUP: A clustering algorithm for cryo-electron microscopy
images of asymmetric particles. The Annals of Applied Statistics, 8, 259–285.
Chen, T.-L., Huang, S.-Y., Hung, H., & Tu, I.-P. (2014b). An introduction to multilinear
principal component analysis. 中國統計學報, 52, 24–43.
Chung, S.-C., Wang, S.-H., Niu, P.-Y., Huang, S.-Y., Chang, W.-H., & Tu, I.-P. (2020).
Two-stage dimension reduction for noisy high-dimensional images and application
to cryogenic electron microscopy. Annals of Mathematical Sciences and Applications,
5, 283–316.
De Lathauwer, L., De Moor, B., & Vandewalle, J. (2000). A multilinear singular value
decomposition. SIAM Journal on Matrix Analysis and Applications, 21, 1253–1278.
Huang, S.-H., & Huang, S.-Y. (2021). On the asymptotic normality and efficiency of
kronecker envelope principal component analysis. Journal of Multivariate Analysis,
184, 104761.
Hung, H., Huang, S.-Y., & Ing, C.-K. (2022). A generalized information criterion for
high-dimensional PCA rank selection. Statistical Papers, 63, 1295–1321.
Jain, A. K., Duin, R. P. W., & Mao, J. (2000). Statistical pattern recognition: A review.
IEEE Transactions on Pattern Analysis and Machine Intelligence, 22, 4–37.
Johnstone, I. M. (2001). On the distribution of the largest eigenvalue in principal components
analysis. The Annals of Statistics, 29, 295–327.
Jolliffe, I. (2002). Principal Component Analysis. Springer Verlag. New York.
Khan, A., & Zubair, S. (2020). A machine learning-based robust approach to identify
dementia progression employing dimensionality reduction in cross-sectional MRI
data. 2020 First International Conference of Smart Systems and Emerging Technologies
(SMARTTECH), 237–242.
Samaria, F. S., & Harter, A. C. (1994). Parameterisation of a stochastic model for human
face identification. Proceedings of 1994 IEEE Workshop on Applications of
Computer Vision, 138–142.
Schwarz, G. (1978). Estimating the dimension of a model. The Annals of Statistics, 6,
461–464.
Yang, J., Zhang, D., Frangi, A. F., & Yang, J.-Y. (2004). Two-dimensional PCA: A new
approach to appearance-based face representation and recognition. IEEE Transactions
on Pattern Analysis and Machine Intelligence, 26, 131–137.
Ye, J. (2004). Generalized low rank approximations of matrices. Proceedings of the Twenty-
First International Conference on Machine Learning, 112.
Zhao, L., & Yang, Y.-H. (1999). Theoretical analysis of illumination in PCA-based vision
systems. Pattern Recognition, 32, 547–564.
Zhu, W., Ma, X., Zhu, X.-H., Ugurbil, K., Chen, W., & Wu, X. (2022). Denoise functional
magnetic resonance imaging with random matrix theory based principal component
analysis. IEEE Transactions on Biomedical Engineering, 69, 3377–3388. |