參考文獻 |
[1] J. Xu, W. Ren, Z. Lian, P. Yu, H. Yu, A review: development of the maskless localized electrochemical deposition technology, The International Journal of Advanced Manufacturing Technology, 110 (2020) 1731-1757.
[2] A. Davydov, V. Volgin, Electrochemical local maskless micro/nanoscale deposition, dissolution, and oxidation of metals and semiconductors (a review), Russian Journal of Electrochemistry, 56 (2020) 52-81.
[3] J.D. Madden, S.R. Lafontaine, I.W. Hunter, Fabrication by electrodeposition: building 3D structures and polymer actuators, MHS′95. Proceedings of the Sixth International Symposium on Micro Machine and Human Science, IEEE, 1995, pp. 77-81.
[4] 葉柏青, "微陽極引導電鍍與監測," 國立中央大學, 碩士論文, 2003.
[5] J. Lin, T. Chang, J. Yang, J. Jeng, D. Lee, S. Jiang, Fabrication of a micrometer Ni–Cu alloy column coupled with a Cu micro-column for thermal measurement, Journal of Micromechanics and Microengineering, 19 (2008) 015030.
[6] J. Lin, T. Chang, J. Yang, Y. Chen, C. Chuang, Localized electrochemical deposition of micrometer copper columns by pulse plating, Electrochimica Acta, 55 (2010) 1888-1894.
[7] J. Lin, J. Yang, T. Chang, S. Jiang, On the structure of micrometer copper features fabricated by intermittent micro-anode guided electroplating, Electrochimica Acta, 54 (2009) 5703-5708.
[8] J. Yang, J. Lin, T. Chang, X. You, S. Jiang, Localized Ni deposition improved by saccharin sodium in the intermittent MAGE process, Journal of Micromechanics and Microengineering, 19 (2009) 025015.
[9] 鄭家宏, "以微陽極導引電鍍法製作鎳銅合金微柱," 國立中央大學, 碩士論文, 2005.
[10] 曾耀田, "銅微柱表面之電化學析鍍氧化鋅奈米結構研究," 國立中央大學, 碩士論文, 2012.
[11] Y.-T. Tseng, J.-C. Lin, J. Shian-Ching Jang, P.-H. Tsai, Y.-J. Ciou, Y.-R. Hwang, Three-Dimensional Amorphous Ni–Cr Alloy Printing by Electrochemical Additive Manufacturing, ACS Applied Electronic Materials, 2 (2020) 3538-3548.
[12] 許壬瀚, 林景崎, 羅元成, 曾耀田, "自含檸檬酸鈉鍍浴中以微電鍍法製備銅鎳合金微柱並探討其對葡萄糖之感測特性," Journal of Chinese Corrosion Engineering, 34 (2020) 11-21.
[13] L.R. Clemente, On the Fabrication of Three-Dimensional Nickel-Zinc alloys by electroplating and Their Performance of Hydrogen evolution in Alkaline Water Electrolysis, National Central University, 2020.
[14] Y.-T. Tseng, G.-X. Wu, J.-C. Lin, Y.-R. Hwang, D.-H. Wei, S.-Y. Chang, K.-C. Peng, Preparation of Co-Fe-Ni alloy micropillar by microanode-guided electroplating, Journal of Alloys and Compounds, 885 (2021) 160873.
[15] 邱永傑, "即時影像引導連續式微電鍍之立體微結構製作研究," 國立中央大學, 碩士論文, 2011.
[16] 顧乃華, "以微陽極導引電鍍法製備銅螺旋微米結構與其機械性質分析," 國立中央大學, 碩士論文, 2015.
[17] 黃振峰, "銅, 鎳微柱之機械性質與其在 3.5 wt% NaCl 溶液中之腐蝕行為," 國立中央大學, 碩士論文, 2009.
[18] 張翔, "銅鎳合金微結構之微電鍍研究," 國立中央大學, 碩士論文, 2018.
[19] 羅元成, "微米尺寸銅鎳合金電阻材料之電鍍與特性研究," 國立中央大學, 碩士論文, 2019.
[20] 張永杰, "即時影像監控導引下連續電鍍製作銅-鋅合金微柱並研究其結構與機械性質," 國立中央大學, 碩士論文, 2013.
[21] 李盈穀, "以微電鍍法製備鋅銅合金微結構," 國立中央大學, 碩士論文, 2020.
[22] 劉謹綸, "以微電鍍法製備三維銅錫介金屬化合物微結構," 國立中央大學, 碩士論文, 2018.
[23] 林佳政, "電鍍製作銅錫合金及Cu6Sn5之三維奈米晶微結構及其特性研究," 國立中央大學, 碩士論文, 2019.
[24] 曾耀田, "以微陽極導引電鍍法製作鎳鉻合金微螺旋及感測一氧化碳用氧化鋅/銅微感測器," 國立中央大學, 博士論文, 2021.
[25] 黃俊強, "微電鍍法之製程參數對其製備鎳鐵合金微柱之形貌, 機械性質與防蝕特性之影響," 國立中央大學, 碩士論文, 2010.
[26] 李昱, "以微電鍍法製備鎳鐵合金三維微結構之研究," 國立中央大學, 碩士論文, 2018.
[27] 李盈家, "以微電鍍法析鍍鎳鎢合金微結構並研究其在鹼性溶液電解產氫行為," 國立中央大學, 碩士論文, 2020.
[28] 謝東佑, "自焦磷酸浴中以微陽極導引電鍍製備鎳-鎢合金微柱、微螺旋及其在1.0 M KOH 中電解產氫特性研究," 國立中央大學, 碩士論文, 2022.
[29] 吳冠勳, "以電鍍法製備鈷鐵鎳合金三維微結構及其特性之研究," 國立中央大學, 碩士論文, 2019.
[30] 劉彥廷, "鎳鉬鎢合金微柱與微螺旋結構之 MAGE製備及其在1.0 M KOH中之產氫研究," 國立中央大學, 碩士論文, 2022.
[31] 黃勤, "Ni-W-Zn 三元合金微柱、微螺旋之製備及其在1.0 M KOH (pH = 14)中之產氫行為探討," 國立中央大學, 碩士論文, 2022.
[32] 黃楚雯, "鎳鉬鋅合金微柱、微螺旋之製備及其在1M KOH中之產氫行為探討," 國立中央大學, 碩士論文, 2022.
[33] S. Das, S. Jena, S. Banthia, A. Mitra, S. Das, K. Das, Novel pulse potentiostatic electrodeposition route for obtaining pure intermetallic Cu5Zn8-CuZn composite coating using glycerol-NaOH based electrolyte with advanced scratch resistance and anti-corrosive properties, Journal of Alloys and Compounds, 792 (2019) 770-779.
[34] E. El-Giar, D. Thomson, Localized electrochemical plating of interconnectors for microelectronics, IEEE WESCANEX 97 Communications, Power and Computing. Conference Proceedings, IEEE, 1997, pp. 327-332.
[35] T. Tadaki, K. Otsuka, K. Shimizu, Shape memory alloys, Annual Review of Materials Science, 18 (1988) 25-45.
[36] İ.H. Karahan, R. Özdemir, Effect of Cu concentration on the formation of Cu1− x Znx shape memory alloy thin films, Applied surface science, 318 (2014) 100-104.
[37] P. Moreno-García, N. Schlegel, A. Zanetti, A. Cedeño López, M.a.d.J.s. Gálvez-Vázquez, A. Dutta, M. Rahaman, P. Broekmann, Selective electrochemical reduction of CO2 to CO on Zn-based foams produced by Cu2+ and template-assisted electrodeposition, ACS applied materials & interfaces, 10 (2018) 31355-31365.
[38] H. Okamoto, T. Massalski, Binary alloy phase diagrams, ASM International, Materials Park, OH, USA, (1990) 12.
[39] A. Jones Denny, Principles and prevention of corrosion, (1996), Prentice Hall, New Jersey.
[40] M. Schlesinger, M. Paunovic, Modern electroplating, John Wiley & Sons2011.
[41] J.D. Madden, I.W. Hunter, Three-dimensional microfabrication by localized electrochemical deposition, Journal of microelectromechanical systems, 5 (1996) 24-32.
[42] E. El‐Giar, R. Said, G. Bridges, D. Thomson, Localized electrochemical deposition of copper microstructures, Journal of the Electrochemical Society, 147 (2000) 586.
[43] S. Yeo, J. Choo, Effects of rotor electrode in the fabrication of high aspect ratio microstructures by localized electrochemical deposition, Journal of micromechanics and microengineering, 11 (2001) 435.
[44] S. Yeo, J. Choo, K. Sim, On the effects of ultrasonic vibrations on localized electrochemical deposition, Journal of micromechanics and microengineering, 12 (2002) 271.
[45] S. Seol, J. Yi, X. Jin, C. Kim, J. Je, W. Tsai, P. Hsu, Y. Hwu, C. Chen, L. Chang, Coherent microradiology directly observes a critical cathode-anode distance effect in localized electrochemical deposition, electrochemical and solid-state letters, 7 (2004) C95.
[46] S. Seol, J. Kim, J. Je, Y. Hwu, G. Margaritondo, Corrosion, Passivation, and Anodic Films-Fabrication of Freestanding Metallic Micro Hollow Tubes by Template-Free Localized Electrochemical Deposition, Electrochemical and Solid State Letters, 10 (2007) C44.
[47] S. Seol, J. Kim, J. Je, Y. Hwu, G. Margaritondo, Fabrication of freestanding metallic micro hollow tubes by template-free localized electrochemical deposition, Electrochemical and solid-state letters, 10 (2007) C44.
[48] C. Lin, C. Lee, J. Yang, Y. Huang, Improved copper microcolumn fabricated by localized electrochemical deposition, electrochemical and solid-state letters, 8 (2005) C125.
[49] C.-Y. Lee, C.-S. Lin, B.-R. Lin, Localized electrochemical deposition process improvement by using different anodes and deposition directions, Journal of Micromechanics and Microengineering, 18 (2008) 105008.
[50] F. Wang, H. Xiao, H. He, Effects of applied potential and the initial gap between electrodes on localized electrochemical deposition of micrometer copper columns, Scientific reports, 6 (2016) 1-8.
[51] F. Wang, F. Wang, H. He, Parametric electrochemical deposition of controllable morphology of copper micro-columns, Journal of The Electrochemical Society, 163 (2016) E322.
[52] F. Wang, H. Bian, Y. Xiao, Fabrication of micro-sized copper columns using localized electrochemical deposition with a 20 μm diameter micro anode, ECS Journal of Solid State Science and Technology, 8 (2019) P223.
[53] F. Wang, B. Hua, Q. Niu, Fabrication of micro-sized-copper column array through localized electrochemical deposition using 20-μm-diameter micro-anode, Journal of Solid State Electrochemistry, 26 (2022) 799-808.
[54] J. Lin, S. Jang, D. Lee, C. Chen, P. Yeh, T. Chang, J. Yang, Fabrication of micrometer Ni columns by continuous and intermittent microanode guided electroplating, Journal of Micromechanics and Microengineering, 15 (2005) 2405.
[55] J. Yang, J. Lin, T. Chang, G. Lai, S. Jiang, Assessing the degree of localization in localized electrochemical deposition of copper, Journal of Micromechanics and Microengineering, 18 (2008) 055023.
[56] T.-C. Chen, Y.-R. Hwang, J.-C. Lin, Y.-J. Ciou, The development of a real-time image guided micro electroplating system, Int. J. Electrochem. Sci, 5 (2010) 1810-1820.
[57] Y.-R. Hwang, J.-C. Lin, T.-C. Chen, The analysis of the deposition rate for continuous micro-anode guided electroplating process, Int. J. Electrochem. Sci, 7 (2012) 1359.
[58] W.F. Smith, Structure and properties of engineering alloys, McGraw-Hill Book, (1981).
[59] K. Neishi, Z. Horita, T.G. Langdon, Achieving superplasticity in a Cu–40% Zn alloy through severe plastic deformation, Scripta Materialia, 45 (2001) 965-970.
[60] T.-G. Nieh, T.G. Nieh, J. Wadsworth, O. Sherby, Superplasticity in metals and ceramics, Cambridge university press1997.
[61] 周根葦, "以摩擦攪拌製程製造細晶 Cu-40% Zn 合金之顯微組織及機械性質之硏究, " 國立中山大學, 碩士倫文, 2013.
[62] H. Sugawara, H. Ebiko, Dezincification of brass, Corrosion Science, 7 (1967) 513-523.
[63] P. Zhou, M. Hutchison, J.W. Erning, J. Scully, K. Ogle, An in situ kinetic study of brass dezincification and corrosion, Electrochimica Acta, 229 (2017) 141-154.
[64] Y. Fujiwara, H. Enomoto, Electrodeposition of β′‐Brass from Cyanide Baths with Accumulative Underpotential Deposition of Zn, Journal of the Electrochemical Society, 147 (2000) 1840.
[65] J. Bjerrum, Stability constants of metal-ion complexes, Chemical Society1964.
[66] H. Konno, M. Nagayama, Mechanism of electrodeposition of copper from cupric pyrophosphate solutions, Electrochimica Acta, 22 (1977) 353-358.
[67] A. Stabrovsky, Electrolytic brass plating without cyanides, Zhur. Fiz. Khim, 26 (1952) 949-955.
[68] D. Page, S. Roy, Electrodeposition of thin film Cu-Zn shape memory alloys, Le Journal de Physique IV, 7 (1997) C5-269-C265-274.
[69] K. Johannsen, D. Page, S. Roy, A systematic investigation of current efficiency during brass deposition from a pyrophosphate electrolyte using RDE, RCE, and QCM, Electrochimica Acta, 45 (2000) 3691-3702.
[70] S. Beattie, J. Dahn, Comparison of electrodeposited copper-zinc alloys prepared individually and combinatorially, Journal of the Electrochemical Society, 150 (2003) C802.
[71] L.F.d. Senna, S.L. Díaz, L. Sathler, Hardness analysis and morphological characterization of copper-zinc alloys produced in pyrophosphate-based electrolytes, Materials Research, 8 (2005) 275-279.
[72] A. Yavuz, M.Y. Hacıibrahimoğlu, M. Bedir, Passivation of Cu–Zn alloy on low carbon steel electrodeposited from a pyrophosphate medium, Materials Research Express, 5 (2018) 016401.
[73] F. Silva, D. Do Lago, E. D’elia, L. Senna, Electrodeposition of Cu–Zn alloy coatings from citrate baths containing benzotriazole and cysteine as additives, Journal of applied electrochemistry, 40 (2010) 2013-2022.
[74] O. Aaboubi, J. Douglade, X. Abenaqui, R. Boumedmed, J. VonHoff, Influence of tartaric acid on zinc electrodeposition from sulphate bath, Electrochimica acta, 56 (2011) 7885-7889.
[75] R. Juškėnas, V. Karpavičienė, V. Pakštas, A. Selskis, V. Kapočius, Electrochemical and XRD studies of Cu–Zn coatings electrodeposited in solution with D-mannitol, Journal of Electroanalytical Chemistry, 602 (2007) 237-244.
[76] I.A. Carlos, M.R.H. de Almeida, Study of the influence of the polyalcohol sorbitol on the electrodeposition of copper–zinc films from a non-cyanide bath, Journal of Electroanalytical Chemistry, 562 (2004) 153-159.
[77] R. Krishnan, V. Muralidharan, S. Natarajan, A non-cyanide brass plating bath, Bulletin of electrochemistry, 12 (1996) 274-277.
[78] M. De Almeida, E. Barbano, M. De Carvalho, I. Carlos, J. Siqueira, L. Barbosa, Electrodeposition of copper–zinc from an alkaline bath based on EDTA, Surface and Coatings Technology, 206 (2011) 95-102.
[79] 陳廷詔, "即時影像導引連續式微電鍍系統之開發研究," 國立中央大學, 博士倫文, 2012.
[80] 邱永傑, "即時影像導引局部電化學沉積系統製作立體微結構物之研究," 國立中央大學, 博士倫文, 2016.
[81] Y.-J. Ciou, Y.-R. Hwang, J.-C. Lin, S.-J. Chen, Y.-T. Tseng, Comparison of simulation and experimental results for the deposition orientation in localized electrochemical deposition, Japanese Journal of Applied Physics, 57 (2018) 117301.
[82] Y.-J. Ciou, Y.-R. Hwang, J.-C. Lin, Y.-T. Tseng, Fabrication of 3D microstructure by localized electrochemical deposition with image feedback distance control and five-axis motion platform, ECS Journal of Solid State Science and Technology, 5 (2016) P425.
[83] T.-C. Chen, Y.-R. Hwang, J.-C. Lin, Continuity Microplating using Image Processing, International Journal of Mechanical and Mechatronics Engineering, 7 (2013) 207-212.
[84] G. Yang, D. Deng, Y. Zhang, Q. Zhu, J. Cai, Numerical Optimization of Electrodeposition Thickness Uniformity with Respect to the Layout of Anode and Cathode, Electrocatalysis, 12 (2021) 478-488.
[85] S. Morsali, S. Daryadel, Z. Zhou, A. Behroozfar, D. Qian, M. Minary-Jolandan, Multi-physics simulation of metal printing at micro/nanoscale using meniscus-confined electrodeposition: Effect of environmental humidity, Journal of Applied Physics, 121 (2017) 024903.
[86] P. Schürch, Template-assisted electrodeposition of nickel and nickel copper 3D microcomponents, EPFL, 2020.
[87] X. Zhang, L. Yuan, Y. Lei, Y. Zhang, Y. Li, W. Nie, Q. Gao, Z. Li, A. Sun, F. Liu, Electrochemical gradients driven 3D printing of nano-twinned copper structures by direct current dynamic meniscus confined electrodeposition, Applied Materials Today, 24 (2021) 101138.
[88] A. Kamaraj, S. Lewis, M. Sundaram, Numerical study of localized electrochemical deposition for micro electrochemical additive manufacturing, Procedia CIRP, 42 (2016) 788-792.
[89] L.d. Senna, S. Díaz, L. Sathler, Electrodeposition of copper–zinc alloys in pyrophosphate-based electrolytes, Journal of Applied Electrochemistry, 33 (2003) 1155-1161.
[90] M. Haciibrahimoglu, A. Yavuz, M. Oztas, M. Bedir, Electrochemical and structural study of zinc-rich brass deposited from pyrophosphate electrolyte onto the carbon steel, DIGEST JOURNAL OF NANOMATERIALS AND BIOSTRUCTURES, 11 (2016) 251-262.
[91] A. Kitada, K. Yanase, T. Ichii, H. Sugimura, K. Murase, Potentiostatic Cu-Zn alloying for polymer metallization using medium-low temperature ionic liquid baths, Journal of The Electrochemical Society, 160 (2013) D417.
[92] C. Gu, Y. You, X. Wang, J. Tu, Electrodeposition, structural, and corrosion properties of Cu films from a stable deep eutectics system with additive of ethylene diamine, Surface and Coatings Technology, 209 (2012) 117-123.
[93] M.A. Olgar, B. Başol, Y. Atasoy, M. Tomakin, G. Aygun, L. Ozyuzer, E. Bacaksız, Effect of heat treating metallic constituents on the properties of Cu2ZnSnSe4 thin films formed by a two-stage process, Thin Solid Films, 624 (2017) 167-174.
[94] Y.-B. Ren, Y.-X. Sun, K. Yang, Study on micron porous copper prepared by physical vacuum dealloying, Acta Metallurgica Sinica (English Letters), 29 (2016) 1144-1147.
[95] C.-Y. Wang, J.-C. Lin, Y.-C. Chang, Y.-T. Tseng, Y.-J. Ciou, Y.-R. Hwang, Fabrication of Cu-Zn alloy micropillars by potentiostatic localized electrochemical deposition, Journal of The Electrochemical Society, 166 (2019) E252.
[96] C.-Y. Wang, Y.-T. Tseng, J.-C. Lin, Y.-J. Ciou, Y.-R. Hwang, Effect of [Zn2+]/[Cu2+] ratio of the bath on the composition and property of Cu–Zn alloy micropillars prepared using microanode-guided electroplating, Electrochimica Acta, 375 (2021) 137969.
[97] S.P. Bhaskar, B.R. Jagirdar, A journey from bulk brass to nanobrass: a comprehensive study showing structural evolution of various Cu/Zn bimetallic nanophases from the vaporization of brass, Journal of Alloys and Compounds, 694 (2017) 581-595.
[98] R. Tu, Y. Su, S. Chou, Photoluminescence properties of Zn 1-x Mg x Se on misoriented GaAs substrates by molecular beam epitaxy, Journal of applied physics, 84 (1998) 6877-6880.
[99] M. Li, H. Zhai, Z. Huang, X. Liu, Y. Zhou, S. Li, C. Li, Microstructure and mechanical properties of TiC0. 5 reinforced copper matrix composites, Materials Science and Engineering: A, 588 (2013) 335-339.
[100] Q. Haifeng, L. Weining, L. Weiqiao, T. Heng, S. Yu, Simulation of Electrodepositing Process Based on Supercritical Fluid and Test Research, Rare Metal Materials and Engineering, 47 (2018) 717-722.
[101] J. Huang, Diffusion impedance of electroactive materials, electrolytic solutions and porous electrodes: Warburg impedance and beyond, Electrochimica Acta, 281 (2018) 170-188.
[102] A. Tang, Z. Li, F. Wang, M. Dou, Y. Pan, J. Guan, One step electrodeposition of Cu2ZnSnS4 thin films in a novel bath with sulfurization free annealing, Applied Surface Science, 402 (2017) 70-77.
[103] X. Zou, X. Lu, X. Xie, Electrodeposition of Zn, Cu, and Zn-Cu Alloys from Deep Eutectic Solvents, Ionic Liquids: Progress and Developments in, (2017) 263.
[104] F. El-Chiekh, M. El-Haty, H. Minoura, A. Montaser, Electrodeposition and characterization of Cu–Ni–Zn and Cu–Ni–Cd alloys, Electrochimica acta, 50 (2005) 2857-2864.
[105] J. Lu, H. Duan, K. Luo, L. Wu, W. Deng, J. Cai, Tensile properties and surface nanocrystallization analyses of H62 brass subjected to room-temperature and warm laser shock peening, Journal of Alloys and Compounds, 698 (2017) 633-642.
[106] C. Yang, Z. Ding, Q. Tao, L. Liang, Y. Ding, W. Zhang, Q. Zhu, High-strength and free-cutting silicon brasses designed via the zinc equivalent rule, Materials Science and Engineering: A, 723 (2018) 296-305.
[107] K. Laue, H. Stenger, Extrusion: processes, machinery, tooling, American Society for Metals, 1981, (1981) 457.
[108] W.D. Callister, Fundamentals of materials science and engineering, Wiley London2000.
[109] Y. Zhou, W. Zhang, B. Wang, J. Guo, Ultrafine-grained microstructure in a Cu–Zn alloy produced by electropulsing treatment, Journal of materials research, 18 (2003) 1991-1997.
[110] R. Özdemir, İ.H. Karahan, O. Karabulut, A study on the electrodeposited Cu-Zn alloy thin films, Metallurgical and Materials Transactions A, 47 (2016) 5609-5617.
[111] Y. Wang, X. Zhou, Z. Liang, H. Jin, Characterization of ultrasonic-assisted electrochemical deposition of Ni-Co-ZrO2, Coatings, 8 (2018) 211.
[112] J.M. Lee, K.M. Bae, K.K. Jung, J.H. Jeong, J.S. Ko, Creation of microstructured surfaces using Cu–Ni composite electrodeposition and their application to superhydrophobic surfaces, Applied Surface Science, 289 (2014) 14-20.
|