博碩士論文 100383008 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:125 、訪客IP:3.144.42.174
姓名 王俊堯(Chun-Yao Wang)  查詢紙本館藏   畢業系所 機械工程學系
論文名稱 在焦磷酸鍍液中製備銅-鋅薄膜之平板電鍍法與製備合金微柱之微陽極導引電鍍法之比較
(A comparison between the planar electrodeposition of Cu-Zn thin films and the micro anode-guided electroplating (MAGE) of Cu-Zn micropillars in the pyrophosphate)
相關論文
★ 銅導線上鍍鎳或錫對遷移性之影響及鍍金之鎳/銅銲墊與Sn-3.5Ag BGA銲料迴銲之金脆研究★ 單軸步進運動陽極在瓦茲鍍浴中進行微電析鎳過程之監測與解析
★ 光電化學蝕刻n-型(100)單晶矽獲得矩陣排列之巨孔洞研究★ 銅箔基板在H2O2/H2SO4溶液中之微蝕行為
★ 助銲劑對迴銲後Sn-3Ag-0.5Cu電化學遷移之影響★ 塗佈奈米銀p型矽(100)在NH4F/H2O2 水溶液中之電化學蝕刻行為
★ 高效能Ni80Fe15Mo5電磁式微致動器之設計與製作★ 銅導線上鍍金或鎳/金對遷移性之影響及鍍金層對Sn-0.7Cu與In-48Sn BGA銲料迴銲後之接點強度影響
★ 含氮、硫雜環有機物對鍋爐鹼洗之腐蝕抑制行為研究★ 銦、錫金屬、合金與其氧化物的陽極拋光行為探討
★ n-型(100)矽單晶巨孔洞之電化學研究★ 鋁在酸性溶液中孔蝕行為研究
★ 微陽極引導電鍍與監測★ 鍍金層對Bi-43Sn與Sn-9Zn BGA銲料迴銲後之接點強度影響及二元銲錫在不同溶液之電解質遷移行為
★ 人體血清白蛋白構形改變之電化學及表面電漿共振分析研究★ 光電化學蝕刻製作n-型(100)矽質微米巨孔 陣列及連續壁結構
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   [檢視]  [下載]
  1. 本電子論文使用權限為同意立即開放。
  2. 已達開放權限電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。
  3. 請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。

摘要(中) 本研究在焦磷酸鹽鍍液中,分別以傳統之平板電鍍法(planar electrodeposition, PE)製備銅-鋅薄膜(thin films, TFs);以即時影像監控之微陽極導引法(micro anode-guided electroplating, MAGE)之局部電鍍法(localized electrodeposition, LE),製備銅-鋅合金微柱 (micropillars, MPs)。首先分別在平板電鍍法(PE)與局部電鍍法(LE)中,藉由解析產物在表面形貌、化學成分、晶體結構、機械性質、和抗腐蝕性能上與其實驗參數之關聯性。隨後,比較平板電鍍(PE)所得薄膜(TFs)與微電鍍(LE)所得微柱(MPs)在電化學 液中陰極極化曲線(cathodic polarization curve, CPC)和電化學阻抗頻譜(electrochemical impedance spectroscopy, EIS)的行為,有助於理解其反應過程之機制與差異。
在[Zn2+]/[Cu2+]比值為8/1的鍍液中,陰極極化曲線掃描分別解釋一般平板電鍍和微電鍍的電沉積機制,電化學交流阻抗驗證了電沉積機制,薄膜的鋅含量分布較廣(13.3~57.9 at.%)且有不同的銅鋅合金相(α、β和β′相),而微柱鋅含量較低(3.3~8.1 at.%)且只有單一銅鋅合金α相。微柱α相的硬度大於薄膜(1.7~3.0 GPa > 1.0~1.5 GPa)。經COMSOL 5.2軟體模擬得知薄膜和微柱的電場分佈與電力線密度明顯的不同。薄膜抗腐蝕優於微柱。
改變鍍液中銅離子濃度實驗中,藉由陰極極化曲線觀察微陽極導引局部電鍍的電化學還原機制。在特定的電位下進行電化學交流阻抗分析可以解析電鍍的機制。微柱的鋅含量從8.05 at.% (α 相)增加到54.60 at.% (β和β′相)。微柱由不同尺寸的奈米晶粒組成;含40.51 at.% Zn (β相)的微柱表現出最大硬度(5.30 GPa)和最高楊氏模數(113.64 GPa);電場模擬顯示,隨著鍍液中[Zn2+]/[Cu2+]比值的增加,集中在微柱頂端的最高場強僅略有增加(從152.2增加到152.5 kV/m)。
當[Zn2+]/[Cu2+]比值為64/1的鍍液中實驗改變電鍍電位,初始間距為30 μm微柱會有不同的結晶晶相(α、β和β + β′),其中鋅含量範圍為37.12~68.94 at.%;然後使用數據來描述電場強度對晶相、成分、生長速率和微柱直徑的相關性。
摘要(英) Cu–Zn alloys consisting of thin films (TFs) were prepared through ordinary planar electrodeposition (PE), and those of micropillars (MPs) were fabricated through localized electrodeposition (LE). Energy-dispersive spectroscopy and X-ray diffractometry analyses indicated that the TFs contained a wider range of Zn content (13.3–57.9 at.%) with different crystal phases (α-, β-, and β′-phases) than that in MPs (i.e., Zn content ranging from 3.3 to 8.1 at.%, confined to only α-phase). The results of the nano-indentation test indicate that the hardness of the α-phases in MPs was greater (1.7–3.0 GPa) than that in TFs (1.0–1.5 GPa). Simulations using the commercial software COMSOL 5.2 revealed that the distribution of the electric field in PE and LE was distinct. Through potentiodynamic cathodic polarization, we distinguished between the mechanisms of the PE and LE processes. Electrochemical impedance spectroscopy results confirm these mechanisms. The corrosion resistance in 3.5 wt% NaCl is lower for the MPs than for the TFs.
Cu–Zn alloy micropillars were fabricated using microanode-guided electroplating (MAGE) at a constant potntical under an initial inter-electrode gap of 30 μm in pyrophosphate baths. Energy-dispersive spectroscopy and X-ray diffractometry analysis revealed that the micropillar alloys exhibit an increase in the Zn content from 8.05 at.% (in α phase) to 54.60 at.% (in β, and β′ phases) with an increase in the ratio of [Zn2+]/[Cu2+] in the bath from 8/1 to 128/1. Transmission electron microscopy revealed that the Cu–Zn alloy micropillars were composed of nano-grains with different sizes depending on the bath employed. Nano-indentation test indicated that the micropillar containing 40.51 at.% Zn (in presence of β-phase) exhibits the maximum hardness (at 5.30 GPa) and highest Young′s modulus (at 113.64 GPa). Simulation of the electric field using the commercial software COMSOL 5.2 revealed that the highest field strength centralized at the cylindrical top displayed only a slight increase (from 152.2 to 152.5 kV/m) with an increase in the ratio of [Zn2+]/[Cu2+] in the bath. Potentiodynamic cathodic polarization is useful for understanding the mechanism of microanode-guided electroplating.
This process was carried out via micro-anode-guided electroplating in a pyrophosphate bath at a constant negative potential in the range -1.85 to -2.05 V. Thus, at an initial gap of 40 μm, the process afforded micropillars with a single α-brass crystal phase and at.% Zn contents in the range 17.20–32.01%. A reduction in the initial gap to 30 μm resulted in varied micropillar crystal phases (α, β, and β+ β′) with at.% Zn contents in the range 37.12–68.94. The simulation commercial software COMSOL 5.2 was employed to correlate the asymmetric distribution of the electric field to the experimental parameters and pillar characteristics. The resultant data was then used to delineate the dependence of the field strength on the crystal phase, composition, growth rate, and micropillar diameters. Finally, a potentiodynamic cathodic polarization study was employed to elucidate the mechanism for the fabrication of the Cu-Zn alloy micropillars via potentiostatic LECD.
關鍵字(中) ★ 焦磷酸鹽
★ 銅鋅合金
★ 平板電鍍
★ 微電鍍
★ 陰極極化曲線
★ 交流阻抗
關鍵字(英) ★ Cu–Zn alloy
★ Planar electrodeposition
★ Localized electrodeposition
★ Micro-anode-guided electroplating
★ Potentiodynamic cathodic polarization
★ Electrochemical impedance spectroscopy
論文目次 摘要 i
Abstract iii
致謝 v
目錄 vi
表目錄 xii
圖目錄 xiv
符號表 xviii
縮寫 xx
第一章、前言 1
1-1 研究背景 1
1-2 研究動機 2
1-3 研究目的 3
第二章、原理與文獻回顧 5
2-1 電鍍與合金電鍍原理 5
2-2 微電鍍製程之發展 8
2-3 塊材銅鋅合金之文獻 12
2-4 電鍍銅鋅合金之發展 14
第三章、實驗方法 17
3-1 實驗流程 17
3-2 陰陽極的製作 18
3-3 即時影像導引微電鍍平台 19
3-4 實驗方法 21
3-4-1 鍍液調配 21
3-4-2 電化學陰極極化掃描 22
3-4-3 EIS量測分析 24
3-4-4 銅鋅合金製備 24
3-4-5 SEM表面形貌分析 25
3-4-6 EDS定性分析 26
3-4-7 ICP定量分析 26
3-4-8 XRD晶體結構分析 26
3-4-9 TEM繞射結構分析 26
3-4-10 維氏硬度與奈米壓痕測試 27
3-4-11 電場模擬 29
3-4-12 抗腐蝕行為量測 29
第四章、結果 31
4-1 平板電鍍銅鋅合金 31
4-1-1 陰極極化曲線掃描 31
4-1-2 定電位電鍍與電流密度之結果 32
4-1-3 EIS分析結果 32
4-1-4 SEM表面形貌觀察 33
4-1-5 EDS定性之結果 33
4-1-6 XRD結晶結構之結果 33
4-1-7 維氏硬度分析之結果 34
4-1-8 電場模擬之結果 34
4-1-9 腐蝕量測之結果 34
4-2 微電鍍製做銅鋅合金微柱析鍍參數探討 35
4-2-1 改變兩極間距 35
4-2-1-1 電場模擬之結果 35
4-2-1-2 SEM表面形貌之結果 36
4-2-2 改變鍍液中銅離子濃度 36
4-2-2-1 陰極極化曲線掃描 36
4-2-2-2 定電位電鍍與電流之結果 38
4-2-2-3 EIS分析結果 39
4-2-2-4 SEM表面形貌觀察 39
4-2-2-5 EDS、ICP微柱分析結果 40
4-2-2-6 XRD結晶結構之結果 40
4-2-2-7 TEM繞射結構之結果 42
4-2-2-8 奈米壓痕之結果 44
4-2-2-9 電場模擬之結果 45
4-2-2-10 腐蝕量測之結果 45
4-2-3 改變電鍍電位 46
4-2-3-1 定電位電鍍與電流密度之結果 46
4-2-3-2 EIS分析結果 46
4-2-3-3 SEM表面形貌觀察 47
4-2-3-4 EDS定性之結果 47
4-2-3-5 XRD結晶結構之結果 47
4-2-3-6 奈米壓痕之結果 48
4-2-3-7 電場模擬之結果 48
4-2-3-8 腐蝕量測之結果 48
第五章、討論 49
5-1 平板電鍍和微電鍍銅鋅合金之比較 49
5-1-1 析鍍電位對表面形貌之影響 49
5-1-2 析鍍電位對晶體結構之影響 50
5-1-3 析鍍電位對成分含量之影響 51
5-1-4 析鍍電位對硬度之影響 51
5-1-5 析鍍電位對電場分佈之影響 52
5-1-6 析鍍電位對電流密度之影響 53
5-1-7 析鍍電位對陰極極化曲線之影響 54
5-1-8 析鍍電位對EIS之影響 57
5-1-9 析鍍電位對腐蝕之影響 58
5-2 微柱製程鍍液參數(兩極間距)之影響 58
5-2-1 兩極間距對微柱表面形貌之影響 59
5-2-2 兩極間距對微柱鋅含量之影響 59
5-2-3 兩極間距對微柱晶體結構之影響 60
5-2-4 兩極間距對微柱電場大小和沉積速率之影響 60
5-3 微柱製程鍍液參數(銅離子含量)之影響 61
5-3-1 鍍液參數對微柱表面形貌之影響 62
5-3-2 鍍液參數對微柱晶體結構之影響 62
5-3-3 鍍液參數對微柱成分含量之影響 62
5-3-4 鍍液參數對微柱TEM之影響 62
5-3-5 鍍液參數對微柱硬度之影響 63
5-3-6 鍍液參數對微柱電場分佈之影響 63
5-3-7 鍍液參數對微柱陰極極化曲線之影響 64
5-3-8 鍍液參數對微柱EIS之影響 66
5-4 微柱製程電位參數(固定鍍液)之影響 69
5-4-1 電位參數對微柱表面形貌之影響 70
5-4-2 電位參數對微柱晶體結構之影響 70
5-4-3 電位參數對微柱成分含量之影響 70
5-4-4 電位參數對微柱硬度之影響 70
5-4-5 電位參數對微柱電場分佈之影響 71
5-4-6 電位參數對微柱EIS之影響 71
5-4-7 電位參數對微柱腐蝕性能之影響 71
第六章、結論與展望 72
參考文獻 74
個人簡歷 133
著作列表 134

參考文獻 [1] J. Xu, W. Ren, Z. Lian, P. Yu, H. Yu, A review: development of the maskless localized electrochemical deposition technology, The International Journal of Advanced Manufacturing Technology, 110 (2020) 1731-1757.
[2] A. Davydov, V. Volgin, Electrochemical local maskless micro/nanoscale deposition, dissolution, and oxidation of metals and semiconductors (a review), Russian Journal of Electrochemistry, 56 (2020) 52-81.
[3] J.D. Madden, S.R. Lafontaine, I.W. Hunter, Fabrication by electrodeposition: building 3D structures and polymer actuators, MHS′95. Proceedings of the Sixth International Symposium on Micro Machine and Human Science, IEEE, 1995, pp. 77-81.
[4] 葉柏青, "微陽極引導電鍍與監測," 國立中央大學, 碩士論文, 2003.
[5] J. Lin, T. Chang, J. Yang, J. Jeng, D. Lee, S. Jiang, Fabrication of a micrometer Ni–Cu alloy column coupled with a Cu micro-column for thermal measurement, Journal of Micromechanics and Microengineering, 19 (2008) 015030.
[6] J. Lin, T. Chang, J. Yang, Y. Chen, C. Chuang, Localized electrochemical deposition of micrometer copper columns by pulse plating, Electrochimica Acta, 55 (2010) 1888-1894.
[7] J. Lin, J. Yang, T. Chang, S. Jiang, On the structure of micrometer copper features fabricated by intermittent micro-anode guided electroplating, Electrochimica Acta, 54 (2009) 5703-5708.
[8] J. Yang, J. Lin, T. Chang, X. You, S. Jiang, Localized Ni deposition improved by saccharin sodium in the intermittent MAGE process, Journal of Micromechanics and Microengineering, 19 (2009) 025015.
[9] 鄭家宏, "以微陽極導引電鍍法製作鎳銅合金微柱," 國立中央大學, 碩士論文, 2005.
[10] 曾耀田, "銅微柱表面之電化學析鍍氧化鋅奈米結構研究," 國立中央大學, 碩士論文, 2012.
[11] Y.-T. Tseng, J.-C. Lin, J. Shian-Ching Jang, P.-H. Tsai, Y.-J. Ciou, Y.-R. Hwang, Three-Dimensional Amorphous Ni–Cr Alloy Printing by Electrochemical Additive Manufacturing, ACS Applied Electronic Materials, 2 (2020) 3538-3548.
[12] 許壬瀚, 林景崎, 羅元成, 曾耀田, "自含檸檬酸鈉鍍浴中以微電鍍法製備銅鎳合金微柱並探討其對葡萄糖之感測特性," Journal of Chinese Corrosion Engineering, 34 (2020) 11-21.
[13] L.R. Clemente, On the Fabrication of Three-Dimensional Nickel-Zinc alloys by electroplating and Their Performance of Hydrogen evolution in Alkaline Water Electrolysis, National Central University, 2020.
[14] Y.-T. Tseng, G.-X. Wu, J.-C. Lin, Y.-R. Hwang, D.-H. Wei, S.-Y. Chang, K.-C. Peng, Preparation of Co-Fe-Ni alloy micropillar by microanode-guided electroplating, Journal of Alloys and Compounds, 885 (2021) 160873.
[15] 邱永傑, "即時影像引導連續式微電鍍之立體微結構製作研究," 國立中央大學, 碩士論文, 2011.
[16] 顧乃華, "以微陽極導引電鍍法製備銅螺旋微米結構與其機械性質分析," 國立中央大學, 碩士論文, 2015.
[17] 黃振峰, "銅, 鎳微柱之機械性質與其在 3.5 wt% NaCl 溶液中之腐蝕行為," 國立中央大學, 碩士論文, 2009.
[18] 張翔, "銅鎳合金微結構之微電鍍研究," 國立中央大學, 碩士論文, 2018.
[19] 羅元成, "微米尺寸銅鎳合金電阻材料之電鍍與特性研究," 國立中央大學, 碩士論文, 2019.
[20] 張永杰, "即時影像監控導引下連續電鍍製作銅-鋅合金微柱並研究其結構與機械性質," 國立中央大學, 碩士論文, 2013.
[21] 李盈穀, "以微電鍍法製備鋅銅合金微結構," 國立中央大學, 碩士論文, 2020.
[22] 劉謹綸, "以微電鍍法製備三維銅錫介金屬化合物微結構," 國立中央大學, 碩士論文, 2018.
[23] 林佳政, "電鍍製作銅錫合金及Cu6Sn5之三維奈米晶微結構及其特性研究," 國立中央大學, 碩士論文, 2019.
[24] 曾耀田, "以微陽極導引電鍍法製作鎳鉻合金微螺旋及感測一氧化碳用氧化鋅/銅微感測器," 國立中央大學, 博士論文, 2021.
[25] 黃俊強, "微電鍍法之製程參數對其製備鎳鐵合金微柱之形貌, 機械性質與防蝕特性之影響," 國立中央大學, 碩士論文, 2010.
[26] 李昱, "以微電鍍法製備鎳鐵合金三維微結構之研究," 國立中央大學, 碩士論文, 2018.
[27] 李盈家, "以微電鍍法析鍍鎳鎢合金微結構並研究其在鹼性溶液電解產氫行為," 國立中央大學, 碩士論文, 2020.
[28] 謝東佑, "自焦磷酸浴中以微陽極導引電鍍製備鎳-鎢合金微柱、微螺旋及其在1.0 M KOH 中電解產氫特性研究," 國立中央大學, 碩士論文, 2022.
[29] 吳冠勳, "以電鍍法製備鈷鐵鎳合金三維微結構及其特性之研究," 國立中央大學, 碩士論文, 2019.
[30] 劉彥廷, "鎳鉬鎢合金微柱與微螺旋結構之 MAGE製備及其在1.0 M KOH中之產氫研究," 國立中央大學, 碩士論文, 2022.
[31] 黃勤, "Ni-W-Zn 三元合金微柱、微螺旋之製備及其在1.0 M KOH (pH = 14)中之產氫行為探討," 國立中央大學, 碩士論文, 2022.
[32] 黃楚雯, "鎳鉬鋅合金微柱、微螺旋之製備及其在1M KOH中之產氫行為探討," 國立中央大學, 碩士論文, 2022.
[33] S. Das, S. Jena, S. Banthia, A. Mitra, S. Das, K. Das, Novel pulse potentiostatic electrodeposition route for obtaining pure intermetallic Cu5Zn8-CuZn composite coating using glycerol-NaOH based electrolyte with advanced scratch resistance and anti-corrosive properties, Journal of Alloys and Compounds, 792 (2019) 770-779.
[34] E. El-Giar, D. Thomson, Localized electrochemical plating of interconnectors for microelectronics, IEEE WESCANEX 97 Communications, Power and Computing. Conference Proceedings, IEEE, 1997, pp. 327-332.
[35] T. Tadaki, K. Otsuka, K. Shimizu, Shape memory alloys, Annual Review of Materials Science, 18 (1988) 25-45.
[36] İ.H. Karahan, R. Özdemir, Effect of Cu concentration on the formation of Cu1− x Znx shape memory alloy thin films, Applied surface science, 318 (2014) 100-104.
[37] P. Moreno-García, N. Schlegel, A. Zanetti, A. Cedeño López, M.a.d.J.s. Gálvez-Vázquez, A. Dutta, M. Rahaman, P. Broekmann, Selective electrochemical reduction of CO2 to CO on Zn-based foams produced by Cu2+ and template-assisted electrodeposition, ACS applied materials & interfaces, 10 (2018) 31355-31365.
[38] H. Okamoto, T. Massalski, Binary alloy phase diagrams, ASM International, Materials Park, OH, USA, (1990) 12.
[39] A. Jones Denny, Principles and prevention of corrosion, (1996), Prentice Hall, New Jersey.
[40] M. Schlesinger, M. Paunovic, Modern electroplating, John Wiley & Sons2011.
[41] J.D. Madden, I.W. Hunter, Three-dimensional microfabrication by localized electrochemical deposition, Journal of microelectromechanical systems, 5 (1996) 24-32.
[42] E. El‐Giar, R. Said, G. Bridges, D. Thomson, Localized electrochemical deposition of copper microstructures, Journal of the Electrochemical Society, 147 (2000) 586.
[43] S. Yeo, J. Choo, Effects of rotor electrode in the fabrication of high aspect ratio microstructures by localized electrochemical deposition, Journal of micromechanics and microengineering, 11 (2001) 435.
[44] S. Yeo, J. Choo, K. Sim, On the effects of ultrasonic vibrations on localized electrochemical deposition, Journal of micromechanics and microengineering, 12 (2002) 271.
[45] S. Seol, J. Yi, X. Jin, C. Kim, J. Je, W. Tsai, P. Hsu, Y. Hwu, C. Chen, L. Chang, Coherent microradiology directly observes a critical cathode-anode distance effect in localized electrochemical deposition, electrochemical and solid-state letters, 7 (2004) C95.
[46] S. Seol, J. Kim, J. Je, Y. Hwu, G. Margaritondo, Corrosion, Passivation, and Anodic Films-Fabrication of Freestanding Metallic Micro Hollow Tubes by Template-Free Localized Electrochemical Deposition, Electrochemical and Solid State Letters, 10 (2007) C44.
[47] S. Seol, J. Kim, J. Je, Y. Hwu, G. Margaritondo, Fabrication of freestanding metallic micro hollow tubes by template-free localized electrochemical deposition, Electrochemical and solid-state letters, 10 (2007) C44.
[48] C. Lin, C. Lee, J. Yang, Y. Huang, Improved copper microcolumn fabricated by localized electrochemical deposition, electrochemical and solid-state letters, 8 (2005) C125.
[49] C.-Y. Lee, C.-S. Lin, B.-R. Lin, Localized electrochemical deposition process improvement by using different anodes and deposition directions, Journal of Micromechanics and Microengineering, 18 (2008) 105008.
[50] F. Wang, H. Xiao, H. He, Effects of applied potential and the initial gap between electrodes on localized electrochemical deposition of micrometer copper columns, Scientific reports, 6 (2016) 1-8.
[51] F. Wang, F. Wang, H. He, Parametric electrochemical deposition of controllable morphology of copper micro-columns, Journal of The Electrochemical Society, 163 (2016) E322.
[52] F. Wang, H. Bian, Y. Xiao, Fabrication of micro-sized copper columns using localized electrochemical deposition with a 20 μm diameter micro anode, ECS Journal of Solid State Science and Technology, 8 (2019) P223.
[53] F. Wang, B. Hua, Q. Niu, Fabrication of micro-sized-copper column array through localized electrochemical deposition using 20-μm-diameter micro-anode, Journal of Solid State Electrochemistry, 26 (2022) 799-808.
[54] J. Lin, S. Jang, D. Lee, C. Chen, P. Yeh, T. Chang, J. Yang, Fabrication of micrometer Ni columns by continuous and intermittent microanode guided electroplating, Journal of Micromechanics and Microengineering, 15 (2005) 2405.
[55] J. Yang, J. Lin, T. Chang, G. Lai, S. Jiang, Assessing the degree of localization in localized electrochemical deposition of copper, Journal of Micromechanics and Microengineering, 18 (2008) 055023.
[56] T.-C. Chen, Y.-R. Hwang, J.-C. Lin, Y.-J. Ciou, The development of a real-time image guided micro electroplating system, Int. J. Electrochem. Sci, 5 (2010) 1810-1820.
[57] Y.-R. Hwang, J.-C. Lin, T.-C. Chen, The analysis of the deposition rate for continuous micro-anode guided electroplating process, Int. J. Electrochem. Sci, 7 (2012) 1359.
[58] W.F. Smith, Structure and properties of engineering alloys, McGraw-Hill Book, (1981).
[59] K. Neishi, Z. Horita, T.G. Langdon, Achieving superplasticity in a Cu–40% Zn alloy through severe plastic deformation, Scripta Materialia, 45 (2001) 965-970.
[60] T.-G. Nieh, T.G. Nieh, J. Wadsworth, O. Sherby, Superplasticity in metals and ceramics, Cambridge university press1997.
[61] 周根葦, "以摩擦攪拌製程製造細晶 Cu-40% Zn 合金之顯微組織及機械性質之硏究, " 國立中山大學, 碩士倫文, 2013.
[62] H. Sugawara, H. Ebiko, Dezincification of brass, Corrosion Science, 7 (1967) 513-523.
[63] P. Zhou, M. Hutchison, J.W. Erning, J. Scully, K. Ogle, An in situ kinetic study of brass dezincification and corrosion, Electrochimica Acta, 229 (2017) 141-154.
[64] Y. Fujiwara, H. Enomoto, Electrodeposition of β′‐Brass from Cyanide Baths with Accumulative Underpotential Deposition of Zn, Journal of the Electrochemical Society, 147 (2000) 1840.
[65] J. Bjerrum, Stability constants of metal-ion complexes, Chemical Society1964.
[66] H. Konno, M. Nagayama, Mechanism of electrodeposition of copper from cupric pyrophosphate solutions, Electrochimica Acta, 22 (1977) 353-358.
[67] A. Stabrovsky, Electrolytic brass plating without cyanides, Zhur. Fiz. Khim, 26 (1952) 949-955.
[68] D. Page, S. Roy, Electrodeposition of thin film Cu-Zn shape memory alloys, Le Journal de Physique IV, 7 (1997) C5-269-C265-274.
[69] K. Johannsen, D. Page, S. Roy, A systematic investigation of current efficiency during brass deposition from a pyrophosphate electrolyte using RDE, RCE, and QCM, Electrochimica Acta, 45 (2000) 3691-3702.
[70] S. Beattie, J. Dahn, Comparison of electrodeposited copper-zinc alloys prepared individually and combinatorially, Journal of the Electrochemical Society, 150 (2003) C802.
[71] L.F.d. Senna, S.L. Díaz, L. Sathler, Hardness analysis and morphological characterization of copper-zinc alloys produced in pyrophosphate-based electrolytes, Materials Research, 8 (2005) 275-279.
[72] A. Yavuz, M.Y. Hacıibrahimoğlu, M. Bedir, Passivation of Cu–Zn alloy on low carbon steel electrodeposited from a pyrophosphate medium, Materials Research Express, 5 (2018) 016401.
[73] F. Silva, D. Do Lago, E. D’elia, L. Senna, Electrodeposition of Cu–Zn alloy coatings from citrate baths containing benzotriazole and cysteine as additives, Journal of applied electrochemistry, 40 (2010) 2013-2022.
[74] O. Aaboubi, J. Douglade, X. Abenaqui, R. Boumedmed, J. VonHoff, Influence of tartaric acid on zinc electrodeposition from sulphate bath, Electrochimica acta, 56 (2011) 7885-7889.
[75] R. Juškėnas, V. Karpavičienė, V. Pakštas, A. Selskis, V. Kapočius, Electrochemical and XRD studies of Cu–Zn coatings electrodeposited in solution with D-mannitol, Journal of Electroanalytical Chemistry, 602 (2007) 237-244.
[76] I.A. Carlos, M.R.H. de Almeida, Study of the influence of the polyalcohol sorbitol on the electrodeposition of copper–zinc films from a non-cyanide bath, Journal of Electroanalytical Chemistry, 562 (2004) 153-159.
[77] R. Krishnan, V. Muralidharan, S. Natarajan, A non-cyanide brass plating bath, Bulletin of electrochemistry, 12 (1996) 274-277.
[78] M. De Almeida, E. Barbano, M. De Carvalho, I. Carlos, J. Siqueira, L. Barbosa, Electrodeposition of copper–zinc from an alkaline bath based on EDTA, Surface and Coatings Technology, 206 (2011) 95-102.
[79] 陳廷詔, "即時影像導引連續式微電鍍系統之開發研究," 國立中央大學, 博士倫文, 2012.
[80] 邱永傑, "即時影像導引局部電化學沉積系統製作立體微結構物之研究," 國立中央大學, 博士倫文, 2016.
[81] Y.-J. Ciou, Y.-R. Hwang, J.-C. Lin, S.-J. Chen, Y.-T. Tseng, Comparison of simulation and experimental results for the deposition orientation in localized electrochemical deposition, Japanese Journal of Applied Physics, 57 (2018) 117301.
[82] Y.-J. Ciou, Y.-R. Hwang, J.-C. Lin, Y.-T. Tseng, Fabrication of 3D microstructure by localized electrochemical deposition with image feedback distance control and five-axis motion platform, ECS Journal of Solid State Science and Technology, 5 (2016) P425.
[83] T.-C. Chen, Y.-R. Hwang, J.-C. Lin, Continuity Microplating using Image Processing, International Journal of Mechanical and Mechatronics Engineering, 7 (2013) 207-212.
[84] G. Yang, D. Deng, Y. Zhang, Q. Zhu, J. Cai, Numerical Optimization of Electrodeposition Thickness Uniformity with Respect to the Layout of Anode and Cathode, Electrocatalysis, 12 (2021) 478-488.
[85] S. Morsali, S. Daryadel, Z. Zhou, A. Behroozfar, D. Qian, M. Minary-Jolandan, Multi-physics simulation of metal printing at micro/nanoscale using meniscus-confined electrodeposition: Effect of environmental humidity, Journal of Applied Physics, 121 (2017) 024903.
[86] P. Schürch, Template-assisted electrodeposition of nickel and nickel copper 3D microcomponents, EPFL, 2020.
[87] X. Zhang, L. Yuan, Y. Lei, Y. Zhang, Y. Li, W. Nie, Q. Gao, Z. Li, A. Sun, F. Liu, Electrochemical gradients driven 3D printing of nano-twinned copper structures by direct current dynamic meniscus confined electrodeposition, Applied Materials Today, 24 (2021) 101138.
[88] A. Kamaraj, S. Lewis, M. Sundaram, Numerical study of localized electrochemical deposition for micro electrochemical additive manufacturing, Procedia CIRP, 42 (2016) 788-792.
[89] L.d. Senna, S. Díaz, L. Sathler, Electrodeposition of copper–zinc alloys in pyrophosphate-based electrolytes, Journal of Applied Electrochemistry, 33 (2003) 1155-1161.
[90] M. Haciibrahimoglu, A. Yavuz, M. Oztas, M. Bedir, Electrochemical and structural study of zinc-rich brass deposited from pyrophosphate electrolyte onto the carbon steel, DIGEST JOURNAL OF NANOMATERIALS AND BIOSTRUCTURES, 11 (2016) 251-262.
[91] A. Kitada, K. Yanase, T. Ichii, H. Sugimura, K. Murase, Potentiostatic Cu-Zn alloying for polymer metallization using medium-low temperature ionic liquid baths, Journal of The Electrochemical Society, 160 (2013) D417.
[92] C. Gu, Y. You, X. Wang, J. Tu, Electrodeposition, structural, and corrosion properties of Cu films from a stable deep eutectics system with additive of ethylene diamine, Surface and Coatings Technology, 209 (2012) 117-123.
[93] M.A. Olgar, B. Başol, Y. Atasoy, M. Tomakin, G. Aygun, L. Ozyuzer, E. Bacaksız, Effect of heat treating metallic constituents on the properties of Cu2ZnSnSe4 thin films formed by a two-stage process, Thin Solid Films, 624 (2017) 167-174.
[94] Y.-B. Ren, Y.-X. Sun, K. Yang, Study on micron porous copper prepared by physical vacuum dealloying, Acta Metallurgica Sinica (English Letters), 29 (2016) 1144-1147.
[95] C.-Y. Wang, J.-C. Lin, Y.-C. Chang, Y.-T. Tseng, Y.-J. Ciou, Y.-R. Hwang, Fabrication of Cu-Zn alloy micropillars by potentiostatic localized electrochemical deposition, Journal of The Electrochemical Society, 166 (2019) E252.
[96] C.-Y. Wang, Y.-T. Tseng, J.-C. Lin, Y.-J. Ciou, Y.-R. Hwang, Effect of [Zn2+]/[Cu2+] ratio of the bath on the composition and property of Cu–Zn alloy micropillars prepared using microanode-guided electroplating, Electrochimica Acta, 375 (2021) 137969.
[97] S.P. Bhaskar, B.R. Jagirdar, A journey from bulk brass to nanobrass: a comprehensive study showing structural evolution of various Cu/Zn bimetallic nanophases from the vaporization of brass, Journal of Alloys and Compounds, 694 (2017) 581-595.
[98] R. Tu, Y. Su, S. Chou, Photoluminescence properties of Zn 1-x Mg x Se on misoriented GaAs substrates by molecular beam epitaxy, Journal of applied physics, 84 (1998) 6877-6880.
[99] M. Li, H. Zhai, Z. Huang, X. Liu, Y. Zhou, S. Li, C. Li, Microstructure and mechanical properties of TiC0. 5 reinforced copper matrix composites, Materials Science and Engineering: A, 588 (2013) 335-339.
[100] Q. Haifeng, L. Weining, L. Weiqiao, T. Heng, S. Yu, Simulation of Electrodepositing Process Based on Supercritical Fluid and Test Research, Rare Metal Materials and Engineering, 47 (2018) 717-722.
[101] J. Huang, Diffusion impedance of electroactive materials, electrolytic solutions and porous electrodes: Warburg impedance and beyond, Electrochimica Acta, 281 (2018) 170-188.
[102] A. Tang, Z. Li, F. Wang, M. Dou, Y. Pan, J. Guan, One step electrodeposition of Cu2ZnSnS4 thin films in a novel bath with sulfurization free annealing, Applied Surface Science, 402 (2017) 70-77.
[103] X. Zou, X. Lu, X. Xie, Electrodeposition of Zn, Cu, and Zn-Cu Alloys from Deep Eutectic Solvents, Ionic Liquids: Progress and Developments in, (2017) 263.
[104] F. El-Chiekh, M. El-Haty, H. Minoura, A. Montaser, Electrodeposition and characterization of Cu–Ni–Zn and Cu–Ni–Cd alloys, Electrochimica acta, 50 (2005) 2857-2864.
[105] J. Lu, H. Duan, K. Luo, L. Wu, W. Deng, J. Cai, Tensile properties and surface nanocrystallization analyses of H62 brass subjected to room-temperature and warm laser shock peening, Journal of Alloys and Compounds, 698 (2017) 633-642.
[106] C. Yang, Z. Ding, Q. Tao, L. Liang, Y. Ding, W. Zhang, Q. Zhu, High-strength and free-cutting silicon brasses designed via the zinc equivalent rule, Materials Science and Engineering: A, 723 (2018) 296-305.
[107] K. Laue, H. Stenger, Extrusion: processes, machinery, tooling, American Society for Metals, 1981, (1981) 457.
[108] W.D. Callister, Fundamentals of materials science and engineering, Wiley London2000.
[109] Y. Zhou, W. Zhang, B. Wang, J. Guo, Ultrafine-grained microstructure in a Cu–Zn alloy produced by electropulsing treatment, Journal of materials research, 18 (2003) 1991-1997.
[110] R. Özdemir, İ.H. Karahan, O. Karabulut, A study on the electrodeposited Cu-Zn alloy thin films, Metallurgical and Materials Transactions A, 47 (2016) 5609-5617.
[111] Y. Wang, X. Zhou, Z. Liang, H. Jin, Characterization of ultrasonic-assisted electrochemical deposition of Ni-Co-ZrO2, Coatings, 8 (2018) 211.
[112] J.M. Lee, K.M. Bae, K.K. Jung, J.H. Jeong, J.S. Ko, Creation of microstructured surfaces using Cu–Ni composite electrodeposition and their application to superhydrophobic surfaces, Applied Surface Science, 289 (2014) 14-20.
指導教授 林景崎(Jing-Chie Lin) 審核日期 2022-12-27
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明