博碩士論文 109353024 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:50 、訪客IP:18.218.13.111
姓名 黃俊瑋(Chun-Wei Huang)  查詢紙本館藏   畢業系所 機械工程學系在職專班
論文名稱 提高熔融沉積成型技術列印PEEK試片之疏水性研究
(Research on Improving the Hydrophobic of PEEK Specimen Printed by Fused Deposition Molding Technology)
相關論文
★ 雙光子光致聚合微製造系統之研發★ 雙光子光致聚合五軸微製造系統之雷射加工路徑生成研究
★ 椎弓根螺釘定位演算法及導引夾治具自動化設計流程開發★ 雙光子聚合微製造技術以能量均勻橢圓體為基之曝光時間最佳化研究
★ 雙光子光致聚合微製造以弦高誤差為基之切層演算法★ 雙光子光致聚合微製造技術以螺旋線雷射掃描路徑增強微結構強度研究
★ 雙光子聚合微製造技術之三維結構 製造品質改進研究★ 利用二維多重圖像建構三維三角網格模型的生成與品質改進
★ 組織工程用冷凍成型製造系統 之自動化製作流程開發★ 自動相機校正與二維影像輪廓萃取研究
★ 基於雙光子光致聚合技術之四軸微製造系統製作高深寬比結構之研究★ 冷凍成型積層製造之機台設計與組織工程支架製作參數調校研究
★ 基於二維影像輪廓重建三維模型技術之多視角相機群組空間座標系統整合★ 應用於大型物體三維模型重建之多重二維校正板相機校正流程開發
★ 組織工程用冷凍成型積層製造之固態水支撐結構生成研究★ 聚醚醚酮之積層製造系統開發
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   至系統瀏覽論文 (2027-12-31以後開放)
摘要(中) 積層製造技術能夠快速客製化生產,因此在醫學領域中,它被越來越廣泛的用於實驗或臨床試驗之案例。這項技術的主要應用包括術前模擬、手術導引、組織工程支架及植入物。在手術導引方面,透過積層製造技術製作出客製化的手術引導治具,搭配電腦軟體輔助,模擬患者手術前後的X光影像,進而協助醫師進行更精確的骨頭切割,縮短手術時間並減少併發症。相較於傳統手術方法,能夠減少對醫師經驗和技術的考驗,使手術更為準確和精密。而因應這方面的發展,使用的生物材料種類也漸趨廣泛。而做為手術器具的材料,需要擁有表面的超疏水性,以避免在手術中與骨肉組織黏附,造成感染發炎。
本研究運用熔融沉積成型技術(Fused Deposition Modeling, FDM)列印試片,列印材料選用聚醚醚酮(Polyetheretherketone, PEEK),是一種熱塑性高分子聚合物,因其獨特的特性,非常適合用於積層製造技術材料。近年來,PEEK在生物醫療領域中被廣泛應用,例如作為人體植入物,因其具有良好的生物相容性和機械強度。與金屬植入物相比,PEEK的彈性模數更接近於人體皮質骨,因此成為金屬替代材料的熱門選擇之一。此外,PEEK具有耐高溫的特性,能夠滿足醫療手術器材對高溫滅菌的要求。PEEK為疏水性材質,本研究透過將其表面進行噴砂處理,並以水滴接觸角試驗驗證,成功提升PEEK至超疏水性。本研究也運用田口實驗方法進行列印參數與噴砂參數分析,研究不同的參數與水滴接觸角的關聯性,提出最佳疏水性之參數組合,最佳化的結果顯示,噴砂後的試片其水滴接觸角高出未噴砂的試片54%,有顯卓的提升。
摘要(英) Additive manufacturing technology, also known as 3D printing, enables rapid customization and production. Consequently, it has been increasingly utilized in the medical field for experimentation and clinical trials. The main applications of this technology include preoperative simulation, surgical guidance, tissue engineering scaffolds, and implants. In terms of surgical guidance, customized surgical guides can be produced using additive manufacturing technology. Combined with computer software assistance, these guides simulate pre- and post-operative X-ray images, assisting surgeons in performing more precise bone cutting, reducing surgical time, and minimizing complications. Compared to traditional surgical methods, this approach reduces the reliance on the experience and skills of the surgeon, resulting in more accurate and precise surgeries. Additionally, the use of a wide range of biomaterials has become possible due to these advancements. Materials used as surgical instruments need to possess superhydrophobic surfaces to prevent adhesion to bone and tissue during surgery, which can lead to infections and inflammation.
In this study, Fused Deposition Modeling (FDM) was used to 3D print specimens, and Polyetheretherketone (PEEK) was selected as the printing material. PEEK is a thermoplastic polymer known for its unique properties, making it highly suitable for additive manufacturing. In recent years, PEEK has found extensive applications in the biomedical field, such as in human implants, due to its excellent biocompatibility and mechanical strength. Compared to metal implants, PEEK has an elastic modulus closer to cortical bone, making it a popular choice as a metal alternative. Furthermore, PEEK exhibits high-temperature resistance, meeting the requirements of sterilization in medical surgical equipment. PEEK is naturally hydrophobic, and in this study, its surface was sandblasted to enhance its superhydrophobicity. The water contact angle test confirmed the successful enhancement of PEEK to exhibit superhydrophobic properties. The Taguchi experimental method was employed to analyze the printing and sandblasting parameters, studying the relationship between different parameters and water contact angles. The study proposed an optimal combination of parameters to achieve the best hydrophobicity. The optimized results demonstrated a significant improvement, with the water contact angle of the sandblasted specimens being 54% higher than that of the non-sandblasted specimens.
關鍵字(中) ★ 聚醚醚酮
★ 積層製造技術
★ 熔融沉積成型
★ 疏水性
★ 表面改質
★ 噴砂
關鍵字(英)
論文目次 目錄
摘要 I
ABSTRACT II
誌謝 IV
目錄 V
圖目錄 VII
表目錄 IX
第一章 緒論 1
1-1 前言 1
1-2 文獻回顧 3
1-3 研究動機與目的 5
第二章 理論說明 6
2-1 積層製造簡介 6
2-2 積層製造於醫療領域的應用 8
2-3 聚醚醚酮之材料性質 10
2-4 聚醚醚酮FDM積層製造系統 11
2-5 聚醚醚酮之表面改質 13
2-6 疏水性測試 15
2-7 田口實驗方法 16
第三章 研究方法 18
3-1 試片製作流程 18
3-2 表面改質噴砂處理 21
3-3 田口法實驗設計 22
第四章 實驗結果與討論 25
4-1 積層製造列印PEEK試片之機械性質討論 25
4-2 試片疏水性實驗結果 30
第五章 結論與未來展望 39
5-1 結論 39
5-2 未來展望 39
參考文獻 40
參考文獻 參考文獻
[1] J. P. Kruth, M. C. Leu and T. Nakagawa, "Progress in additive manufacturing and rapid rototyping" , Cirp Annals, Vol. 47, 525-540, 1998.
[2] ISO/ASTM 52900, "Additive manufacturing-General Principles-Terminology", International Organization for Standardization, 1st Edition, 2015.
[3] C. Morrison, R. Macnair, C. MacDonald, A. Wykman, I. Goldie and M. Grant, "In vitro biocompatibility testing of polymers for orthopaedic implants using cultured fibroblasts and osteoblasts", Biomaterials, Vol. 16, 987-992, 1995.
[4] J. Anguiano-Sanchez, O. Martinez-Romero, H. R. Siller, J. A. Diaz-Elizondo, E. Flores-Villalba and C. A. Rodriguez, "Influence of PEEK coating on hip implant stress shielding: a finite element analysis," Computational and Mathematical Methods in Medicine, 2016.
[5] Aplus:Product /High Tibial Osteotomy , Available at: https://www.aplusbio.com/tw/product/detail/Osteotomy/High-Tibial-Osteotomy.
[6] K. Teshima, H Sugimura, Y. Inoue, O. Takai, and A. Takano,"Transparent ultra water-repellent poly(ethylene terephthalate) substrates fabricated by oxygen plasma treatment and subsequent hydrophobic coating", Applied Surface Science,Vol. 244, 619-622, 2005.
[7] K. Tsougeni, N. Vourdas, A. Tserepi, and E. Gogolides, "Mechanisms of Oxygen Plasma Nanotexturing of Organic Polymer Surface : From Stable Super Hydrophilic to Super Hydrophobic Surfaces", Langmuir,Vol. 25, 11748-11759, 2009.
[8] R. Ourahmoune,M. Salvia,T.G. Mathia, and N. Mesrati, "Surface morphology and wettability of sandblasted PEEK and Its Composites", SCANNING, Vol. 36, 64-75, 2014.
[9] 葉雲鵬、鄭正元,「智慧機械與數位製造3D列印的發展」,科儀新知,222期,民國109年。
[10] J. S. Lee, J. M. Hong, J. W. Jung, J. H. Shim, J. H. Oh and D. W. Cho, "“3D Printing of Composite Tissue with Complex Shape Applied to Ear Regeneration", Biofabrication, Vol. 6, 103-115, 2014.
[11] S. M. Kurtz, "Chapter 1 - An Overview of PEEK Biomaterials", PEEK Biomaterials Handbook, Oxford: William Andrew Publishing, 1-7, 2012.

[12] H. B. Skinner, "Composite Technology for Total Hip Arthroplasty", Clinical Orthopaedics and Related Research, Vol. 235, 224-236, 1988.
[13] M. Bottlang, D. C. Fitzpatrick and P. Augat, "Musculoskeletal Biomechanics", Orthopaedic Knowledge Update, 59-72, 2011.
[14] Aerosint:Product /Spinal Fusion Implants / Cranial Reconstructive Implants
, Available at:https://aerosint.com/the-wasteful-truth-about-industrial-plastics-3d-printing/
[15] 黃俊瑋,「聚醚醚酮之積層製造系統開發」,碩士論文,國立中央大學,民國105年。
[16] 吳柏論,「利用熔融沉積成型技術列印聚醚醚酮模型之機械性質改善與表面改質研究」,碩士論文,國立中央大學,民國108年。
[17] 陳宥叡,「提高熔融沉積成型技術列印PEEK試片之親水性研究」,碩士論文,國立中央大學,民國110年。
[18] R. N. Wenzel, "Resistance of solid surface to wetting by water",Industrial and Engineering Chemistry Research, Vol. 28, 988-994 , 1936.
[19] D.Quéré, "Soft Matter" , On water repellency, Vol. 1, 55-61, 2005.
[20] K. Ma, T. S. Chung and R. J. Good, “Surface energy of thermotropic liquid crystalline polyesters and polyesteramide”,Journal of Polymer Science Part B, Vol. 36, 2327-2337,1998.
[21] 蘇朝墩,「產品穩健設計:田口品質工程方法的介紹和應用」,第二版,中華民國品質協會,民國88年。
[22] 李輝煌,「田口方法品質設計的原理與實務」,第四版,高立圖書有限公司,民國100年。
[23] ISO 527-2, "Plastics Determination of tensile properties Part 2: Test conditions for moulding and extrusion plastics", International Organization for Standardization, 2012.
[24] J. Kiendl and C. Gao, "Controlling toughness and strength of FDM 3D-printed PLA components through the raster layup" , Composites Part B, Vol.180,107562 , 2020.
[25] Victrex:Product /450G PEEK , Available at: https://www.victrex.com/en/products/polymers/peek-polymers/450g
指導教授 廖昭仰 審核日期 2023-7-11
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明