摘要(英) |
Additive manufacturing technology, also known as 3D printing, enables rapid customization and production. Consequently, it has been increasingly utilized in the medical field for experimentation and clinical trials. The main applications of this technology include preoperative simulation, surgical guidance, tissue engineering scaffolds, and implants. In terms of surgical guidance, customized surgical guides can be produced using additive manufacturing technology. Combined with computer software assistance, these guides simulate pre- and post-operative X-ray images, assisting surgeons in performing more precise bone cutting, reducing surgical time, and minimizing complications. Compared to traditional surgical methods, this approach reduces the reliance on the experience and skills of the surgeon, resulting in more accurate and precise surgeries. Additionally, the use of a wide range of biomaterials has become possible due to these advancements. Materials used as surgical instruments need to possess superhydrophobic surfaces to prevent adhesion to bone and tissue during surgery, which can lead to infections and inflammation.
In this study, Fused Deposition Modeling (FDM) was used to 3D print specimens, and Polyetheretherketone (PEEK) was selected as the printing material. PEEK is a thermoplastic polymer known for its unique properties, making it highly suitable for additive manufacturing. In recent years, PEEK has found extensive applications in the biomedical field, such as in human implants, due to its excellent biocompatibility and mechanical strength. Compared to metal implants, PEEK has an elastic modulus closer to cortical bone, making it a popular choice as a metal alternative. Furthermore, PEEK exhibits high-temperature resistance, meeting the requirements of sterilization in medical surgical equipment. PEEK is naturally hydrophobic, and in this study, its surface was sandblasted to enhance its superhydrophobicity. The water contact angle test confirmed the successful enhancement of PEEK to exhibit superhydrophobic properties. The Taguchi experimental method was employed to analyze the printing and sandblasting parameters, studying the relationship between different parameters and water contact angles. The study proposed an optimal combination of parameters to achieve the best hydrophobicity. The optimized results demonstrated a significant improvement, with the water contact angle of the sandblasted specimens being 54% higher than that of the non-sandblasted specimens. |
參考文獻 |
參考文獻
[1] J. P. Kruth, M. C. Leu and T. Nakagawa, "Progress in additive manufacturing and rapid rototyping" , Cirp Annals, Vol. 47, 525-540, 1998.
[2] ISO/ASTM 52900, "Additive manufacturing-General Principles-Terminology", International Organization for Standardization, 1st Edition, 2015.
[3] C. Morrison, R. Macnair, C. MacDonald, A. Wykman, I. Goldie and M. Grant, "In vitro biocompatibility testing of polymers for orthopaedic implants using cultured fibroblasts and osteoblasts", Biomaterials, Vol. 16, 987-992, 1995.
[4] J. Anguiano-Sanchez, O. Martinez-Romero, H. R. Siller, J. A. Diaz-Elizondo, E. Flores-Villalba and C. A. Rodriguez, "Influence of PEEK coating on hip implant stress shielding: a finite element analysis," Computational and Mathematical Methods in Medicine, 2016.
[5] Aplus:Product /High Tibial Osteotomy , Available at: https://www.aplusbio.com/tw/product/detail/Osteotomy/High-Tibial-Osteotomy.
[6] K. Teshima, H Sugimura, Y. Inoue, O. Takai, and A. Takano,"Transparent ultra water-repellent poly(ethylene terephthalate) substrates fabricated by oxygen plasma treatment and subsequent hydrophobic coating", Applied Surface Science,Vol. 244, 619-622, 2005.
[7] K. Tsougeni, N. Vourdas, A. Tserepi, and E. Gogolides, "Mechanisms of Oxygen Plasma Nanotexturing of Organic Polymer Surface : From Stable Super Hydrophilic to Super Hydrophobic Surfaces", Langmuir,Vol. 25, 11748-11759, 2009.
[8] R. Ourahmoune,M. Salvia,T.G. Mathia, and N. Mesrati, "Surface morphology and wettability of sandblasted PEEK and Its Composites", SCANNING, Vol. 36, 64-75, 2014.
[9] 葉雲鵬、鄭正元,「智慧機械與數位製造3D列印的發展」,科儀新知,222期,民國109年。
[10] J. S. Lee, J. M. Hong, J. W. Jung, J. H. Shim, J. H. Oh and D. W. Cho, "“3D Printing of Composite Tissue with Complex Shape Applied to Ear Regeneration", Biofabrication, Vol. 6, 103-115, 2014.
[11] S. M. Kurtz, "Chapter 1 - An Overview of PEEK Biomaterials", PEEK Biomaterials Handbook, Oxford: William Andrew Publishing, 1-7, 2012.
[12] H. B. Skinner, "Composite Technology for Total Hip Arthroplasty", Clinical Orthopaedics and Related Research, Vol. 235, 224-236, 1988.
[13] M. Bottlang, D. C. Fitzpatrick and P. Augat, "Musculoskeletal Biomechanics", Orthopaedic Knowledge Update, 59-72, 2011.
[14] Aerosint:Product /Spinal Fusion Implants / Cranial Reconstructive Implants
, Available at:https://aerosint.com/the-wasteful-truth-about-industrial-plastics-3d-printing/
[15] 黃俊瑋,「聚醚醚酮之積層製造系統開發」,碩士論文,國立中央大學,民國105年。
[16] 吳柏論,「利用熔融沉積成型技術列印聚醚醚酮模型之機械性質改善與表面改質研究」,碩士論文,國立中央大學,民國108年。
[17] 陳宥叡,「提高熔融沉積成型技術列印PEEK試片之親水性研究」,碩士論文,國立中央大學,民國110年。
[18] R. N. Wenzel, "Resistance of solid surface to wetting by water",Industrial and Engineering Chemistry Research, Vol. 28, 988-994 , 1936.
[19] D.Quéré, "Soft Matter" , On water repellency, Vol. 1, 55-61, 2005.
[20] K. Ma, T. S. Chung and R. J. Good, “Surface energy of thermotropic liquid crystalline polyesters and polyesteramide”,Journal of Polymer Science Part B, Vol. 36, 2327-2337,1998.
[21] 蘇朝墩,「產品穩健設計:田口品質工程方法的介紹和應用」,第二版,中華民國品質協會,民國88年。
[22] 李輝煌,「田口方法品質設計的原理與實務」,第四版,高立圖書有限公司,民國100年。
[23] ISO 527-2, "Plastics Determination of tensile properties Part 2: Test conditions for moulding and extrusion plastics", International Organization for Standardization, 2012.
[24] J. Kiendl and C. Gao, "Controlling toughness and strength of FDM 3D-printed PLA components through the raster layup" , Composites Part B, Vol.180,107562 , 2020.
[25] Victrex:Product /450G PEEK , Available at: https://www.victrex.com/en/products/polymers/peek-polymers/450g |