博碩士論文 110221024 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:31 、訪客IP:3.138.134.247
姓名 謝欣妤(Hsin-Yu Heish)  查詢紙本館藏   畢業系所 數學系
論文名稱 等角直線叢的研究
(A Study on Equiangular Lines)
相關論文
★ A Study On Kissing Number Problem★ 歐式空間二距離集合之探討
★ An Observation on 7-distance Set in Euclidean Plane★ 多項式方法於等角直線叢上的半正定規劃上界
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   [檢視]  [下載]
  1. 本電子論文使用權限為同意立即開放。
  2. 已達開放權限電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。
  3. 請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。

摘要(中) 本論文將會整理離散幾何中一個有趣的領域: 等角直線組(equiangular lines)的歷史演進與發展。以1973年 Lemmens-Seidel 的文章為主體,並加入後續的進展,例如 Barg-Yu 證明了24維度之後的半正定規劃的上界,Lin-Yu 對Neumann定理的推廣, Greaves et al 對於14和16維度決定最大條數的結果。我們整理這些相關文獻,把等角直線組的故事與發展說明得更完整,並且詳細寫下相關的例子或構造。本文以Lemmens-Seidel第四節和第五節為重,第四節說明柱(pillar)是甚麼和相關定理證明,第五節討論當角度固定在arccos(1/5)時,會說明上下界會如何變化。
摘要(英) This paper dives into an intriguing realm of discrete geometry: the historical evolution and development of equiangular lines. It primarily builds upon the 1973 Lemmens-Seidel paper, incorporating subsequent advancements. For instance, Barg-Yu proved upper bounds for semidefinite programming beyond 24 dimensions, Lin-Yu extended Neumann′s theorem, and Greaves et al revealed results on determining the maximum number of lines in 14 and 16 dimensions. We′ll organize these relevant works, providing a more comprehensive narrative of the equiangular lines′ story and development, while delving into specific examples or constructions. The focus of this paper lies in Lemmens-Seidel′s fourth and fifth sections, the fourth section what a "pillar" is and proves associated theorems, while the fifth section how upper and lower bounds shift when the angle is fixed at arccos(1/5).
關鍵字(中) ★ 等角直線 關鍵字(英) ★ Equiangular Lines
論文目次 摘要 第ix頁
Abstract 第xi頁
目錄 第xiii頁
一、 緒論 第1頁
二、 定義跟例子 第5頁
三、 最大等角直線數的上下界 第11頁
四、 柱 第23頁
五、 v_{1/5}(r)的測定 (determination) 第33頁
六、 結論 第45頁
參考文獻 第51頁
參考文獻 1] P. W. Lemmens and J. J.Seidel, “Equiangular lines,” Journal of Algebra, vol. 24,
no. 3, pp. 494–512, 1973.
[2] A. Barg and W.-H. Yu, “New bounds for equiangular lines.,” Discrete geometry and
algebraic combinatorics, vol. 625, pp. 111–121, 2013.
[3] Y.-C. R. Lin and W.-H. Yu, “Equiangular lines and the lemmens–seidel conjecture,”
Discrete Mathematics, vol. 343, no. 2, p. 111667, 2020.
[4] G. Greaves, J. H. Koolen, A. Munemasa, and F. Szöllősi, “Equiangular lines in
euclidean spaces,” Journal of Combinatorial Theory, Series A, vol. 138, pp. 208–
235, 2016.
[5] J. Haantjes, “Equilateral point-sets in elliptic two-and three-dimensional spaces,”
Nieuw Arch. Wiskunde (2), vol. 22, pp. 355–362, 1948.
[6] J. H. van Lint and J. J. Seidel, “Equilateral point sets in elliptic geometry,” Pro-
ceedings of the Koninklijke Nederlandse Akademie van Wetenschappen: Series A:
Mathematical Sciences, vol. 69, no. 3, pp. 335–348, 1966.
[7] D. de Caen, “Large equiangular sets of lines in euclidean space,” the electronic journal
of combinatorics, vol. 7, pp. R55–R55, 2000.
[8] Y.-c. R. Lin and W.-H. Yu, “Saturated configuration and new large construction of
equiangular lines,” Linear Algebra and its Applications, vol. 588, pp. 272–281, 2020.
[9] G. Greaves, J. Syatriadi, and P. Yatsyna, “Equiangular lines in euclidean spaces:
dimensions 17 and 18,” Mathematics of Computation, vol. 92, no. 342, pp. 1867–
1903, 2023.
[10] J. C. Tremain, “Concrete constructions of real equiangular line sets,” arXiv preprint
arXiv:0811.2779, 2008.
[11] P. Delsarte, J. Goethals, and J. J. Seidel, “Orthogonal matrices with zero diagonal.
ii,” Canadian Journal of Mathematics, vol. 23, no. 5, pp. 816–832, 1971.
[12] M.-Y. Cao, J. H. Koolen, Y.-C. R. Lin, and W.-H. Yu, “The lemmens-seidel conjec-
ture and forbidden subgraphs,” Journal of Combinatorial Theory, Series A, vol. 185,
p. 105538, 2022.
[13] G. Greaves and P. Yatsyna, “On equiangular lines in 17 dimensions and the charac-
teristic polynomial of a seidel matrix,” Mathematics of Computation, vol. 88, no. 320,
pp. 3041–3061, 2019.
[14] G. R. Greaves, J. Syatriadi, and P. Yatsyna, “Equiangular lines in low dimensional
euclidean spaces,” Combinatorica, vol. 41, no. 6, pp. 839–872, 2021.
[15] G. R. Greaves and J. Syatriadi, “Real equiangular lines in dimension 18
and the de caen-jacobi identity for complementary subgraphs,” arXiv preprint
arXiv:2206.04267, 2022.
[16] I. Balla, “Equiangular lines via matrix projection,” arXiv preprint arXiv:2110.15842,
vol. 3, no. 4, p. 6, 2021.
指導教授 俞韋亘(Wei-Hsuan Yu) 審核日期 2023-12-29
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明