博碩士論文 110521146 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:41 、訪客IP:3.21.76.0
姓名 翁育愷(Yu-Kai Weng)  查詢紙本館藏   畢業系所 電機工程學系
論文名稱 使用傳輸線基準全通網路之 Ka 頻段四位元 CMOS 被動式相位偏移器
(A Ka-Band 4-Bit CMOS Passive Phase Shifter Using Transmission-Line-Based Quasi-All-Pass Networks)
相關論文
★ 分佈式類比相位偏移器之設計與製作★ 以可變電容與開關為基礎之可調式匹配網路應用於功率放大器效率之提升
★ 全通網路相位偏移器之設計與製作★ 使用可調式負載及面積縮放技巧提升功率放大器之效率
★ 應用於無線個人區域網路系統之低雜訊放大器設計與實現★ 應用於極座標發射機之高效率波包放大器與功率放大器
★ 數位家庭無線資料傳輸系統之壓控振盪器設計與實現★ 鐵電可變電容之設計與製作
★ 用於功率放大器效率提升之鐵電基可調式匹配網路★ 基於全通網路之類比式及數位式相位偏移器
★ 使用鐵電可變電容及PIN二極體之頻率可調天線★ 具鐵電可變電容之積體被動元件製程及其應用於微波相位偏移器之製作
★ 使用磁耦合全通網路之寬頻四位元 CMOS相位偏移器★ 具矽基板貫孔之鐵電可變電容的製作與量測
★ 矽基板貫孔的製作和量測★ 使用鐵電可變電容之頻率可調微帶貼片天線
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   至系統瀏覽論文 (2027-1-31以後開放)
摘要(中) 在本論文中,我們基於傳輸線基準全通網路架構理論來實現 Ka 頻段的數位被動式相位偏移器。

在第二章中,我們採用傳輸線基準全通網路架構,並且使用 TSMC 0.18-µm CMOS 製程,重新設計 Ka 頻段中心頻率為 35 GHz 的 90◦ 相位偏移器。此電路為先前實驗室洪志恩學長的電路 [1] 使用傳輸線基準全通網路之 35 GHz 90◦ 相位偏移器之重新設計,由對比學長量測與模擬結果可以看到,相位偏移量變小且頻偏。我們以先前實驗室學長重新模擬之結果,將此電路傳輸線及電容理論值重新設計,以獲得較佳的頻率響應。模擬結果顯示,相位誤差低於 3◦ 的相對應頻寬可達 26.8 % (33.8-44.3 GHz)。在頻寬內返回損耗皆大於 19.1 dB,植入損耗皆小於 6.3 dB,振幅誤差皆在 ±0.98 dB 之內。量測結果顯示,相位誤差低於 3◦ 的相對應頻寬可達 30.0 % (36.1-48.7 GHz)。在頻寬內返回損耗皆大於 14.2 dB,植入損耗皆小於 6.1 dB,振幅誤差皆在 ±0.6 dB 之內。由量測結果可得知,我們將學長電路之頻寬由22.5 % 提升至 30.0 %,並使相位偏移量更貼近模擬結果,符合此次重新設計電路之目標。

在第三章中,我們採用傳輸線基準全通網路架構,並且使用 TSMC 0.18-µm CMOS 製程,設計 Ka 頻段四位元被動式相位偏移器。此電路為先前實驗室學長洪維鴻的電路 [2] 四位元傳輸線基準全通網路相位偏移器的重新設計。由學長量測結果可以得知,均方根相位誤差大於 19.2◦ 且相位偏移量之頻率響應往高頻頻偏。本次電路設計目標為降低相位誤差及改善高頻之頻偏。此電路中 22.5◦、45◦ 及 90◦ 相移級皆是使用單級傳輸線基全通網路來實現,而 180◦ 相移級是以中心頻率不同的兩級傳輸線基全通網路串接而成,中心頻率分別為 22 GHz 及 51 GHz 並分別稱為 low-band ( LB ) 及 High-band ( HB )。電路中心頻率為 35 GHz,特徵阻抗為 25 Ω ,傳輸線特徵阻抗使用 50 Ω 、電氣長度為 30◦。模擬結果顯示,均方根相位誤差低於 3◦ 的相對應頻寬可達 19.3 % (33.2-40.3 GHz)。量測結果顯示,在各個狀態下的相移量皆有變小並往高頻頻偏之趨勢,且均方根相位誤差高於 3◦,因此我們重新定義頻寬為均方根相位誤差 10◦ 以內。在頻段內頻寬可達 17 % (36.2-42.9 GHz)。輸入返回損耗與植入損耗則與學長量測結果相差不多。與學長論文 [2] 之量測結果對比可得知,我們將最小均方根相位誤差由 19.2◦ 降低到 7.5◦,且改善了相位偏移量之頻偏。在第二顆晶片中,我們將電路加上理想元件以此模擬製程變異,並重新設計微調電晶體及電容值使模擬結果貼合量測結果。重新設計之量測結果顯示,180◦ 相位偏移量變小且每級皆往高頻頻偏,而均方根相位誤差高於 3◦,因此我們重新定義頻寬為均方根相位誤差 6◦ 以內,在頻段內頻寬可達 20.5 % (35.0-43.0 GHz)。本次電路之重新設計,我們將學長電路之最小均方根相位誤差由 19.2◦ 降低到 4◦,並且將電路中心頻由 45 GHz 調整至 38 GHz,由此驗證了電路重新設計上之改善。並在之後的重新模擬中,模擬元件之寄生效應,將重新模擬結果貼近量測結果。
摘要(英) In this thesis, we implemented Ka-band digital passive phase shifters based on the theory of transmission line-based all-pass network.

Chapter 2 focuses on the redesign of a 90◦ phase shifter at the center frequency of 35 GHz in the Ka-band, utilizing the transmission line-based all-pass network architecture and TSMC 0.18-µm CMOS process. The circuit is a redesign of the transmission line-based all-pass network 35 GHz 90◦ phase shifter previously designed by Senior Hung Chih-En.
Comparing Hung′s measurements and simulations indicates a reduction in phase shift and a movement of frequency response offset. Based on the re-simulation results of Senior Hung Chih-En, we redesigned the theoretical values of the transmission line and capacitance of this circuit to obtain a better frequency response. Simulation results indicate the phase error is within 3◦ and the corresponding bandwidth is 26.8 % (33.8-44.3 GHz) with return losses bigger than 19.1 dB within the bandwidth, insertion loss below 6.3 dB, and amplitude error within ±0.98 dB.
Measurement result demonstrates that the phase error is within 3◦ and the bandwidth is 30.0 % (36.1-48.7 GHz). Return loss within the bandwidth is above 14.2 dB, insertion loss is below 6.1 dB, and amplitude error is within ±0.6 dB. The measurement indicates that We increased the bandwidth of the senior′s circuit from 22.5 % to 30.0 % and made the phase shift oset closer to the simulation results, which aligns with the redesign objectives.

Chapter 3 presents the design of a four-bit passive phase shifter in the Ka-band, based on the transmission line-based all-pass network architecture and TSMC 0.18-µm CMOS process. The circuit is a redesign of Senior Hong Wei-Hong′s four-bit transmission line-based all-pass network phase shifter. The senior′s measurement results indicate that the root mean square phase errors exceed 19.2◦, as well as the phase shift
decreases and shifts toward higher frequencies, highlighting the circuit′s objective of mitigating phase errors and addressing high-frequency offsets. The 22.5◦, 45◦, and 90◦ phase shift stages employ single-stage transmission line-based all-pass network, while the 180◦ stage is composed of
two in-series transmission line-based all-pass networks with different center frequencies (22 GHz and 51 GHz) referred to as low-band (LB) and high-band (HB). The circuit operates at a center frequency of 35 GHz with a characteristic impedance of 25 Ω, using 50 Ω for transmission line characteristic impedance and an electrical length of 30◦. Simulations show a phase error below 3◦ over a corresponding bandwidth of
19.3% (33.2-40.3 GHz). Measurement shows that the phase shift in various states reduced, trending towards higher frequency. Therefore, the bandwidth is redened as phase errors within 10◦, achieving a bandwidth of 17% (36.2-42.9 GHz) within this criteria. Comparing with the measurement results of the senior′s paper [2], we can see that we have
reduced the minimum root mean square phase error from 19.2◦
to 7.5◦ and improved the frequency response offset of phase shift.
In the second chip, we added ideal components to the circuit to simulate process variations and redesigned the transistor and capacitor values to make the simulation results fit the measurement results. The measurement results of the redesign show that the 180◦ phase shift decreased and each stage shifts towards higher frequencies; the root mean square phase error is higher than 3◦, so we redefined the bandwidth as the root mean square phase error is within 6◦. The bandwidth within the frequency band can reach 20.5 % (35.043.0 GHz). In this circuit′s redesign, we reduced the minimum root mean square phase error of the senior′s circuit from 19.2◦ to 4◦, and adjusted the circuit center frequency
from 45 GHz to 38 GHz, thus verifying the improvement of the circuit′s redesign. And the subsequent re-simulation, the simulation results are close to the measurement results. In the subsequent re-simulation, we simulate the parasitic effect of the components that make the simulation results close to the measurement results.
關鍵字(中) ★ 相位偏移器 關鍵字(英) ★ Phase shifter
論文目次 目 錄
摘要. . . . . . . . . . . . . . . . . . . . . . . . . . . I
Abstract . . . . . . . . . . . . . . . . . . . . . . . . III
目錄. . . . . . . . . . . . . . . . . . . . . . . . . . VII
圖目錄 . . . . . . . . . .. . . . . . . . . . . . . . . . IX
表目錄 . . . . . . . . . . . . . . .. . . . . . . . . . XIII
第一章 緒論 . . . . . . . . . . .. . . . . . . . . . . . . 1
1.1 研究動機 . . . . . . . . . . . . . . . . . . . . . . . 1
1.2 文獻回顧 . . . . . . . . . . . . . . . . . . . . . . . 2
1.3 論文架構 . . . . . . . . . . . . . . . . . . . . . . . 3
第二章 使用傳輸線基準全通網路之 Ka 頻段 90◦ 被動式相
位偏移器 . . . . . . . . . . . . . . . . . . . . . . . . . 5
2.1 簡介 . . . . . . . . . . . . . . . . . . . . . . . . . 5
2.2 電路設計 . . . . . . . . . . . . . . . . . . . . . . . 6
2.2.1 相位偏移量設計 . . . . . . . . . . . . . . . . . . . 6
2.2.2 電路設計 . . . . . . . . . . . . . . . . . . . . . . 7
2.3 模擬結果 . . . . . . . . . . . . . . . . . . . . . . 11
2.4 量測結果 . . . . . . . . . . . . . . . . . . . . . . 19
2.5 結論 . . . . . . . . . . . . . . . . . . . . . . . . 24
第三章 使用傳輸線基準全通網路之 Ka 頻段四位元 CMOS
被動式相位偏移器 . . . . . . . . . . . . . . . . . . . . . 25
3.1 簡介 . . . . . . . . . . . . . . . . . . . . . . . . 25
3.2 電路設計 . . . . . . . . . . . . . . . . .. . . . . . 27
3.2.1 相位偏移量設計 . . . . . . . . . . . . . . . . . . . 28
3.2.2 22.5◦、45◦ 及 90◦ 相位偏移器 . . . . . . . . . . . . 29
3.2.3 180◦ 相位偏移器 . . . . . . . . . . . . . . . . . . 30
3.3 模擬結果 . . . . . . . . . . . . . . . . . . . . . . 36
3.4 量測結果 . . . . . . . . . . . . . . . .. . . . . . . 46
3.5 重新模擬 . . . . . . . . . . . . . . . . . . . . . . 52
3.6 重新設計模擬結果 . . . . . . . . . . . . . . . . . . . 58
3.7 重新設計量測結果 . . . . . . . . . . . . . . . . . . . 64
3.8 重新設計之重新模擬 . . . . . . . . . . . . . . . . . . 70
3.9 結論 . . . . . . . . . . . . . . . . . . . . . . . . 76
第四章 結論 . . . . . . . . . . . . . . . . . . . . . . . 79
參考文獻 [1]C.-E. Hung, Design of Ka-band digital phase shifter and variable gain amplier chips, Master′s thesis, National Central University, 2021.
[2] W.-H. Hong, Ka-band passive shifters using transmission-linebased all-pass networks, Master′s thesis, National Central University, 2020.
[3] A. Gupta and R. K. Jha, A survey of 5G network: Architecture and emerging technologies, IEEE Access, vol. 3, pp. 12061232, July 2015.
[4] D. Liu, X. Gu, C. W. Baks, and A. Valdes-Garcia, Antenna-inpackage design considerations for Ka-band 5G communication applications, IEEE Trans. Antennas Propag, vol. 65, no. 12, pp.63726379, July 2017.
[5] F. Boccardi, R. W. Heath, A. Lozano, T. L. Marzetta, and
P. Popovski, Five disruptive technology directions for 5G, IEEE Commun. Mag, vol. 52, no. 2, pp. 7480, Feb. 2014.
[6] K. Kibaroglu, M. Sayginer, and G. M. Rebeiz, A low-cost scalable 32-element 28-GHz phased array transceiver for 5G communication links based on a 2 × 2 beamformer ip-chip unit cell, IEEE J.Solid-State Circuits, vol. 53, no. 5, pp. 12601274, Jan. 2018.
[7] W. Roh, J.-Y. Seol, J. Park, B. Lee, J. Lee, Y. Kim, J. Cho, K. Cheun, and F. Aryanfar, Millimeter-wave beamforming as an enabling technology for 5G cellular communications: theoretical feasibility and prototype results, IEEE Commun. Mag, vol. 52, no. 2, pp. 106113, Feb. 2014.
[8] B. Sadhu, Y. Tousi, J. Hallin, S. Sahl, S. K. Reynolds, O. Renstrom, K. Sjogren, O. Haapalahti, N. Mazor, B. Bokinge, G. Weibull, H. Bengtsson, A. Carlinger, E. Westesson, J.-E. Thillberg, L. Rexberg, M. Yeck, X. Gu, M. Ferriss, D. Liu, D. Friedman, and A. Valdes-Garcia, A 28-GHz 32-element TRX phased-array IC with concurrent dual- polarized operation and orthogonal phase and gain control for 5G communications, IEEE J. Solid-State Circuits,
vol. 52, no. 12, pp. 33733391, Nov. 2017.
[9] R. Mendez-Rial, C. Rusu, N. González-Prelcic, A. Alkhateeb, and R. W. Heath, Hybrid MIMO architectures for millimeter wave communications: Phase shifters or switches? IEEE Access, vol. 4, pp. 247267, Jan. 2016.
[10] H.-S. Lee and B.-W. Min, W-band CMOS 4-bit phase shifter for high power and phase compression points, IEEE Trans. Circuits Syst. II Express Briefs, vol. 62, no. 1, pp. 15, Oct. 2015.
[11] S. Y. Kim and G. M. Rebeiz, A low-power BiCMOS 4-element phased array receiver for 7684 GHz radars and communication systems, IEEE J. Solid-State Circuits, vol. 47, no. 2, pp. 359367, Dec. 2012.

[12] D. Pepe and D. Zito, Two mm-Wave vector modulator active phase shifters with novel iq generator in 28 nm FDSOI CMOS, IEEE J. Solid-State Circuits, vol. 52, no. 2, pp. 344356, Oct. 2017.
[13] X. Quan, X. Yi, C. C. Boon, K. Yang, C. Li, B. Liu, Z. Liang, and Y. Zhuang, A 5257 GHz 6-bit phase shifter with hybrid of passive and active structures, IEEE Microw. Wirel. Compon. Lett., vol. 28, no. 3, pp. 236238, Feb. 2018.
[14] T.-W. Li and H. Wang, A millimeter-wave fully integrated passive reection-type phase shifter with transformer-based multiresonance loads for 360° phase shifting, IEEE Trans. Circuits Syst. I: Regul. Pap., vol. 65, no. 4, pp. 14061419, Nov. 2018.
[15] P. Gu and D. Zhao, Geometric analysis and systematic design of a reective-type phase shifter with full 360° phase shift range and minimal loss variation, IEEE Trans. Microw. Theory Tech., vol. 67, no. 10, pp. 41564166, Aug. 2019.
[16] G.-S. Shin, J.-S. Kim, H.-M. Oh, S. Choi, C. W. Byeon, J. H. Son, J. H. Lee, and C.-Y. Kim, Low insertion loss, compact 4-bit phase shifter in 65 nm CMOS for 5G applications, IEEE Microw. Wirel. Compon. Lett., vol. 26, no. 1, pp. 3739, Dec. 2016.
[17] D. Huang, L. Zhang, D. Li, L. Zhang, Y. Wang, and Z. Yu, A 60-GHz 360° 5-bit phase shifter with constant IL compensation followed by a normal amplier with ±1 dB gain variation and 0.6-dBm OP−1dB, IEEE Trans. Circuits Syst. II Express Briefs, vol. 64, no. 12, pp. 14371441, Dec. 2017.
[18] X. Li, B. Liu, H. Fu, and K. Ma, A 3036 GHz passive hybrid phase shifter with a transformer-based high-resolution reect-type phase-shifting technique, IEEE Trans. Circuits Syst. II Express Briefs, vol. 68, no. 7, pp. 24192423, Feb. 2021.
[19] A. Asoodeh and M. Atarodi, A full 360◦ vector-sum phase shifter with very low RMS phase error over a wide bandwidth, IEEE Trans. Microw. Theory Techn., vol. 60, no. 6, pp. 16261634, Jun. 2012.
[20] D. Adler and R. Popovich, Broadband switched-bit phase shifter using all-pass networks, vol. 1, pp. 265268, Apr. 1991.
[21] M. Hangai, M. Hieda, N. Yunoue, Y. Sasaki, and M. Miyazaki, S-and C-band ultra-compact phase shifters based on all-pass networks, IEEE Trans. Microw. Theory Techn., vol. 58, no. 1, pp. 4147, Jan. 2010.
[22] D.-W. Kang, H. D. Lee, C.-H. Kim, and S. Hong, Ku-band MMIC phase shifter using a parallel resonator with 0.18-µm CMOS technology, IEEE Trans. Microw. Theory Techn., vol. 54, no. 1, pp. 294301, Jan. 2006.
[23] Q. Xiao, A compact L-band broadband 4-bit MMIC phase shifter with low phase error, pp. 291294, Dec. 2011.

[24] C.-j. Chang, Design of K-band digital phase shifter and variable gain amplier chips, Master′s thesis, National Central University, 2022.
[25] W.-J. Tseng, C.-S. Lin, Z.-M. Tsai, and H. Wang, A miniature switching phase shifter in 0.18-µm CMOS, pp. 21322135, Dec. 2009.
[26] J.-H. Tsai, F.-M. Lin, and H. Xiao, Low RMS phase error 28 GHz 5-bit switch type phase shifter for 5G applications, Electronics Letters, vol. 54, no. 20, pp. 11841185, Oct. 2018.
[27] G.-S. Shin, J.-S. Kim, H.-M. Oh, S. Choi, C. W. Byeon, J. H. Son, J. H. Lee, and C.-Y. Kim, Low insertion loss, compact 4-bit phase shifter in 65 nm cmos for 5G applications, IEEE Microw. Wireless Compon. Lett., vol. 26, no. 1, pp. 3739, Jan. 2016.
[28] B.-W. Min and G. M. Rebeiz, Single-ended and dierential Kaband bicmos phased array front-ends, IEEE J. Solid-State Circuits, vol. 43, no. 10, pp. 22392250, Oct. 2008.
[29] X. Lv, T. Mo, and C. Yu, A 28 GHz RF phase shifter with high phase resolution in 180-nm CMOS technology, pp. 351353, Dec. 2020.
[30] J.-H. Tsai, T.-T. He, and W.-H. Lin, A K/Ka-band low RMS phase error 5-bit CMOS phase shifter, pp. 13, Aug. 2021.

[31] W. Gao and D. Zhao, K-band 360◦ passive vector modulator phase shifter with coupled line qadrature coupler and passive transistor array, pp. 13, Dec. 2021.
[32] R. Garg and A. S. Natarajan, A 28-GHz low-power phased-array receiver front-end with 360◦ RTPS phase shift range, IEEE Trans. Microw. Theory Techn., vol. 65, no. 11, pp. 47034714, Jun. 2017.
[33] S. Londhe and E. Socher, 2838-GHz 6-bit compact passive phase shifter in 130-nm CMOS, IEEE Microw. Wireless Compon. Lett., vol. 31, no. 12, pp. 13111314, Dec. 2021.
[34] M. Schindler and M. Miller, A 3 bit K/Ka band MMIC phase shifter, pp. 9598, May 1988.
[35] E. V. P. Anjos, D. M. M.-P. Schreurs, G. A. E. Vandenbosch, and M. Geurts, A 24 - 30 GHz ultra-compact phase shifter using all-pass networks for 5G user equipment, pp. 217220, Aug. 2020.
[36] E. V. P. Anjos, D. Schreurs, G. A. E. Vandenbosch, and M. Geurts, A compact 26.529.5-GHz LNA-phase-shifter combo with 360◦ continuous phase tuning based on all-pass networks for millimeter-wave 5G, IEEE Trans. Circuits Syst. I: Regul. Pap., vol. 68, no. 9, pp. 39273940, Sept 2021.
[37] Q. Zheng, Z. Wang, K. Wang, G. Wang, H. Xu, L. Wang, W. Chen, M. Zhou, Z. Huang, and F. Yu, Design and performance of a wideband Ka-band 5-b MMIC phase shifter, IEEE Microw. Wireless Compon. Lett., vol. 27, no. 5, pp. 482484, May 2017.
[38] J. G. Yang and K. Yang, Ka-band 5-bit MMIC phase shifter using InGaAs PIN switching diodes, IEEE Microw. Wireless Compon. Lett., vol. 21, no. 3, pp. 151153, Mar. 2011.
[39] D. Kramer, Ka-band P-I-N diode based digital phase shifter, pp. 317320, Sep 2018.
指導教授 傅家相(Jia-Shiang Fu) 審核日期 2024-1-23
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明