博碩士論文 110323137 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:77 、訪客IP:3.19.30.232
姓名 李奕縉(Yi-Jin Li)  查詢紙本館藏   畢業系所 機械工程學系
論文名稱 A356、A206及AC2B合金重力鑄造分析 —孔洞、氧化膜及熱裂之基礎研究
相關論文
★ 7005與AZ61A拉伸、壓縮之機械性質研究★ 雷射去除矽晶圓表面分子機載污染參數的最佳化分析
★ 球墨鑄鐵的超音波檢測★ 模具溫度對TV前框高亮光澤產品研討
★ 高強度7075-T4鋁合金之溫間成形研究★ 鎂合金燃燒、鑽削加工與表面處理之研究
★ 純鈦陽極處理技術之研發★ 鋁鎂合金陽極處理技術之研發
★ 電化學拋光處理、陽極處理中硫酸流速與封孔處理對陽極皮膜品質之影響★ 電解液溫度與鋁金屬板表面粗糙度對陽極處理後外觀的影響
★ 製程參數對A356鋁合金品質的影響及可靠度的評估★ 噴砂與前處理對鋁合金陽極皮膜品質的影響
★ 鎂合金回收重溶之品質與疲勞性質分析★ 鋁合金熱合氧化膜與陽極氧化膜成長行為之研究
★ 潤滑劑與製程參數對Al-0.8Mg-0.5Si鋁合金擠壓鑄件的影響★ 摩擦攪拌製程對AA5052鋁合金之微觀組織及對陽極皮膜的影響
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   至系統瀏覽論文 ( 永不開放)
摘要(中) 本研究以A356(Al-Si-Mg)、A206(Al-Cu-Mg)及AC2B(Al-Si-Cu)三種不同元素比例之鋁合金進行金屬模重力鑄造實驗,實驗目的為經由本實驗探索三種不同合金元素比例之鋁合金於鑄造實務上的氧化膜生成、孔洞缺陷程度及熱裂缺陷發生的條件,並透過調整鑄造參數如模具預熱溫度來改善問題。
實驗結果顯示模具預熱溫度的提高及超音波震盪輔助對於孔洞缺陷的產生有高度正相關,尤其是對於A356合金的提升更是明顯,而熱裂缺陷僅發生在A206合金,推測是其高含量的銅元素導致冷卻速度過快及凝固區間太大而產生,超音波震盪後的A356及AC2B其氧化膜形式有很大的不同,前者主要呈現集中在孔洞區域附近,而後者多為平均散佈在表面。
關鍵字:A356、A206、AC2B、重力鑄造、氧化膜、孔洞率、熱裂缺陷
摘要(英) This study conducted metal mold gravity casting experiments using three different aluminum alloy compositions: A356 (Al-Si-Mg), A206 (Al-Cu-Mg), and AC2B (Al-Si-Cu). The purpose of the experiment was to explore the formation of oxide films, the degree of porosity defects, and the conditions for hot cracking defects in these three different elemental ratio aluminum alloys during practical casting. Additionally, adjustments to casting parameters, such as mold preheating temperature, were made to address these issues.
The experimental results showed a significant positive correlation between the increase in mold preheating temperature and the generation of porosity defects, especially in the case of A356 alloy. Hot cracking defects were observed only in the A206 alloy, possibly due to its high copper content, which led to rapid cooling and a wide solidification range. After ultrasonic vibration assistance, there were significant differences in the oxide film formation between A356 and AC2B alloys. In the former, oxide films were predominantly concentrated near the vicinity of pores, while in the latter, they were more evenly distributed on the surface.
Keywords:A356、A206、AC2B、gravity casting、oxidation film、porisity rate、hot cracking defect
關鍵字(中) ★ A356
★ A206
★ AC2B
★ 重力鑄造
★ 氧化膜
★ 孔洞率
關鍵字(英)
論文目次 目錄
摘要 I
Abstract II
致謝 III
目錄 IV
表目錄 VI
圖目錄 VII
第一章 前言 1
第二章 文獻回顧 2
2-1 鋁合金介紹 2
2-1-1 A206合金介紹 2
2-1-2 A356合金介紹 3
2-1-3 AC2B鋁合金介紹 4
2-2 氫氣對鑄造鋁合金氣孔的形成之影響 5
2-2-1 影響氫氣溶解度對氣孔形成的變數 5
2-2-2 合金元素對氫氣溶解度的影響 5
2-2-3 固液狀態對氫氣溶解度的影響 6
2-2-4 凝固速度/冷卻速率對氫氣溶解度的影響 7
2-2-5 晶粒細化劑添加對氫氣溶解度的影響 7
2-3 鋁合金鑄造常見之熱裂缺陷 9
2-3-1 合金元素比例對熱裂缺陷之影響 10
2-3-2 模具預熱溫度對熱裂缺陷之影響 11
2-3-3 鑄造溫度對熱裂缺陷之影響 14
2-3-4 晶粒細化劑的添加對熱裂程度影響 16
2-4 鋁合金鑄造過程之氧化膜缺陷 18
2-4-1 氧化膜的生成及對鋁合金的影響 18
2-4-2 氧化膜的檢測方法 18
2-4-3 超音波震盪檢測氧化膜之原理 19
2-5 影響氧化膜生成的因素 20
2-5-1 除氣處理對氧化膜生成的影響 20
2-5-2 不同元素比例對氧化膜的影響 21
第三章 實驗方法與步驟 24
3-1 實驗材料 24
3-2 實驗設備與儀器 24
3-3 實驗步驟 30
第四章 結果與討論 33
4-1 熱裂發生成因及影響要素 33
4-2 A356及AC2B熱裂結果 34
4-3 A206熱裂結果 36
4-4 模具預熱溫度對鑄件孔洞面積之影響 41
4-4-1 模具預熱溫度的改變對A356鑄件孔洞面積對比 41
4-4-2 模具預熱溫度的改變對AC2B鑄件孔洞面積對比 48
4-5 不同鋁合金元素比例對鑄件孔洞面積對比 55
4-6 超音波震盪前後對鑄件孔洞面積對比 57
4-7 超音波震盪前後對A356鑄件孔洞面積對比 57
4-7-1 超音波震盪前後對模具預熱溫度300℃之A356鑄件孔洞面積對比 57
4-7-2 超音波震盪前後對模具預熱溫度400℃之A356鑄件孔洞面積對比 60
4-8 超音波震盪前後對AC2B鑄件孔洞面積對比 66
4-8-1 超音波震盪前後對模具預熱溫度300℃之AC2B鑄件孔洞面積對比 66
4-8-2 超音波震盪前後對模具預熱溫度400℃之AC2B鑄件孔洞面積對比 71
4-9 氧化膜分析 77
第五章 結論 83
參考文獻 84
參考文獻 參考文獻
1. Hamadellah, A., A. Bouayad, and C.J.J.o.M.P.T. Gerometta, Hot tear characterization of AlCu5MgTi and AlSi9 casting alloys using an instrumented constrained six rods casting method. 2017. 244: p. 282-288.
2. Backerud, L., G. Chai, and J.J.A.F.s.S. Tamminen, Inc., ,, Solidification characteristics of aluminum alloys. Vol. 2. Foundry alloys. 1990: p. 266.
3. Campbell, J. and N.D. Alexopoulos, On the Ductility Potential of Cast Al-Cu-Mg (206) Alloys.
4. Tahamtan, S., et al., Fabrication of Al/A206–Al2O3 nano/micro composite by combining ball milling and stir casting technology. 2013. 49: p. 347-359.
5. Wang, P.-W., 除氣與除渣處理對於鋁合金品質的影響. 2001, National Central University.
6. Wen, K.-Y., 製程參數和除渣處理對 Al-Si 和 A356 合金 品質之影響. 2003, National Central University.
7. CHINBAT, M., Quantitative evaluation of hot tearing susceptibility in Al-Si-Cu casting alloy with different Co content. 2022, 부경대학교.
8. Poirier, D., K. Yeum, and A.J.M.T.A. Maples, A thermodynamic prediction for microporosity formation in aluminum-rich Al-Cu alloys. 1987. 18: p. 1979-1987.
9. Anyalebechi, P.N.J.J.o.M.S., Hydrogen-induced gas porosity formation in Al–4.5 wt% Cu–1.4 wt% Mg alloy. 2013. 48: p. 5342-5353.
10. Bahmani, A., et al., A mathematical model for prediction of microporosity in aluminum alloy A356. 2013. 64: p. 1313-1321.
11. Samuel, A.M., et al., A review on porosity formation in aluminum-based alloys. 2023. 16(5): p. 2047.
12. Gharagozloo, M., Development of parameters of GMAW-P for the wire and arc additive manufacturing (WAAM) of aluminum alloys. 2020, École de technologie supérieure.
13. Ohnaka, I., et al., Challenging issues in computer simulation of casting. 2011. 24(3-4): p. 133-138.
14. Sabau, A.S., et al. Process simulation role in the development of new alloys based on an integrated computational materials engineering approach. in ASME International Mechanical Engineering Congress and Exposition. 2014. American Society of Mechanical Engineers.
15. D’Elia, F., et al., Hot tearing mechanisms of B206 aluminum–copper alloy. 2014. 64: p. 44-55.
16. Mohamed, A.M., et al., Intermetallics formation during solidification of Al-Si-Cu-Mg cast alloys. 2022. 15(4): p. 1335.
17. Li, S.J.W.P.I., Hot tearing in cast aluminum alloys. 2010: p. 46-50.
18. Akhyar, H., V. Malau, and P.J.R.i.P. Iswanto, Hot tearing susceptibility of aluminum alloys using CRCM-Horizontal mold. 2017. 7: p. 1030-1039.
19. Esfahani, M.N. and B.J.M.c. Niroumand, Study of hot tearing of A206 aluminum alloy using Instrumented Constrained T-shaped Casting method. 2010. 61(3): p. 318-324.
20. Easton, M., et al. An analysis of the effect of grain refinement on the hot tearing of aluminium alloys. in Materials forum. 2004.
21. Dong, X., et al., Enhancement of mechanical properties in high silicon gravity cast AlSi9Mg alloy refined by Al3Ti3B master alloy. 2017. 700: p. 291-300.
22. Campbell, J., Castings. 2003: Elsevier.
23. Runyoro, J., S. Boutorabi, and J.J.A.T. Campbell, Critical gate velocities for film-forming casting alloys: a basis for process specification. 1992. 100: p. 225-234.
24. Nyahumwa, C., N. Green, and J.J.T.o.t.A.F.s.S. Campbell, Effect of mold-filling turbulence on fatigue properties of cast aluminum alloys (98-58). 1998. 106: p. 215-224.
25. 黃立伍, 製程參數對鑄造鋁合金品質影響之研究. 國立中央大學機械工程系博士班論文, 民國92年6月.
26. Chen, Y.-J., L.-W. Huang, and T.-S.J.M.t. Shih, Marking oxide films on the section of Al-XSi alloys by ultrasonic-vibration treatment. 2003. 44(6): p. 1190-1197.
27. Huang, L.-W., et al., Effect of degassing treatment on the quality of Al-7Si and A356 melts. 2002. 43(11): p. 2913-2920.
28. Chvorinov, N.J.G., Theorie der Erstarrung von Gussstücken. 1940. 27: p. 177-188.
29. Askeland, D.R. and W.J. Wright, Essentials of materials science and engineering. 2018: Cengage Learning.
30. Black, J.T. and R.A. Kohser, DeGarmo′s materials and processes in manufacturing. 2017: John Wiley & Sons.
31. Kapranos, P., et al., Advanced casting methodologies: investment casting, centrifugal casting, squeeze casting, metal spinning, and batch casting, in Comprehensive materials processing. 2014, Elsevier Ltd. p. 39-67.
32. Timelli, G. and F.J.I.J.o.C.M.R. Bonollo, Fluidity of aluminium die castings alloy. 2007. 20(6): p. 304-311.
指導教授 施登士 審核日期 2023-10-4
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明