博碩士論文 109521004 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:120 、訪客IP:3.145.93.132
姓名 劉秉鈞(Bing-Jun Liu)  查詢紙本館藏   畢業系所 電機工程學系
論文名稱 基於Elman神經網路演算法的電動車鋰電池電量狀態估測與電路實現
(Estimation and Circuit Implementation of Lithium Battery State of Charge in Electric Vehicles Based on the Elman Neural Network Algorithm)
相關論文
★ 應用於2.5G/5GBASE-T乙太網路傳收機之高成本效益迴音消除器★ 應用於IEEE 802.3bp車用乙太網路之硬決定與軟決定里德所羅門解碼器架構與電路設計
★ 適用於 10GBASE-T 及 IEEE 802.3bz 之高速低密度同位元檢查碼解碼器設計與實現★ 基於蛙跳演算法及穩定性準則之高成本效益迴音消除器設計
★ 運用改良型混合蛙跳演算法設計之近端串音干擾消除器★ 運用改良粒子群最佳化演算法之近端串擾消除器電路設計
★ 應用於多兆元網速乙太網路接收機 類比迴音消除器之最小均方演算法電路設計★ 光耦合隔離系統 之接收端晶片電路設計與實現
★ 應用於光耦合隔離系統之發送端雜訊整形 類比轉數位轉換器★ 應用於數位視頻廣播系統之頻率合成器及3.1Ghz寬頻壓控震盪器
★ 地面數位電視廣播基頻接收器之載波同步設計★ 適用於通訊系統之參數化數位訊號處理器核心
★ 以正交分頻多工系統之同步的高效能內插法技術★ 正交分頻多工通訊中之盲目頻域等化器
★ 兆元位元率之平行化可適性決策回饋等化器設計與實作★ 應用於數位視頻廣播系統中之自動增益放大器 及接受端濾波器設計
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   至系統瀏覽論文 (2026-8-1以後開放)
摘要(中) 電池充電狀態
(State-Of-Charge; SOC)的估算在電池管理系統 (Battery Management System; BMS)中佔有極重要的角色,其估算精度對於系統安全有密切關係。然而隨著深度學習及神經網路的發展迅速,透過神經網路搜索估算電池狀態特徵的方式來取代傳統估算方式,變成接下來電池狀態估算的發展態勢,本論文依據神經網路模型之特色及適用架構,基於 Elman神經網路 [1-4]作為神經網路估算系統之模型主軸,規劃基於神經網路演算架構估算電池 SOC,系統規劃中將估測系統分割成參數訓練模(Training Part)與即時估測模組 (Real-Time Estimate Part)兩個部分,透過參數訓練模組 依據電池過往充放電資料找尋 電池特徵參數,利用更新電池特徵參數的方式更新即時估測模組中的電路,實現深度學習晶片規劃。
於即時估測模組中,在實際電池運作時,因為電池負載變動所造成的電池電壓電流波動過大,進而導致電池 SOC估算精度下降,為避免估算誤差本論文於晶片中規劃三階權重適配器來 微調權重以 提升即時估測精度,克服估測誤差。本文以電動車的動態壓力測試 (DST)、聯邦城市駕駛週期表 (FUDS)與電動車真實行車資料 D3 2014 BMW i3 BEV(SOC 90% - 10%)、 D3 2014 BMW i3 BEV(SOC 56.8% - 9.9%)進行系統模擬參數訓練與晶片設計規劃。其晶片設計部分以 TSMC-40nm製程為基底規劃,並利用 SMIMS Veri Enterprise Xilinx FPGA驗證其功能,並達成深度學習演算法估算電池 SOC之目的。
摘要(英) The estimation of State-Of-Charge (SOC) in Battery Management Systems (BMS) plays a crucial role, and its accuracy is closely related to system safety. However, with the rapid development of deep learning and neural networks, there is a shift towards utilizing neural networks to search for battery state features, replacing traditional estimation methods. This trend becomes the forefront of future developments in battery state estimation. This paper, based on the characteristics and applicable architecture of neural network models, adopts the Elman neural network [1-4] as the central model for the neural network estimation system. The system is designed to estimate battery SOC based on the neural network algorithm framework.
In the system design, the estimation system is divided into two parts: Parameter Training Module (Training Part) and Real-Time Estimate Module (Real-Time Estimate Part). The Parameter Training Module utilizes past charge-discharge data to identify battery feature parameters. The Real-Time Estimate Module updates the circuit in real-time based on the updated feature parameters, achieving deep learning chip planning.
In the Real-Time Estimate Module, during actual battery operation, the significant fluctuation in battery voltage and current caused by dynamic changes in battery load leads to a decrease in SOC estimation accuracy. To mitigate estimation errors, this paper incorporates a three-stage weight adapter in the chip to fine-tune weights and enhance real-time estimation accuracy, overcoming estimation inaccuracies. The system simulation for parameter training and chip design planning is conducted using dynamic stress testing (DST), Federal Urban Driving Schedule (FUDS), and real driving data from a 2014 BMW i3 BEV (SOC 90% - 10%) and a 2014 BMW i3 BEV (SOC 56.8% - 9.9%). The chip design is based on the TSMC-40nm process, and its functionality is verified using the SMIMS Veri Enterprise Xilinx FPGA, successfully achieving the goal of deep learning algorithm-based battery SOC estimation.
關鍵字(中) ★ 電量狀態估測 關鍵字(英)
論文目次 目錄
摘要 i
Abstract ii
致謝 iii
圖目錄 vii
表目錄 xi
第一章 緒論 1
1.1 背景 1
1.2 研究動機 1
1.3 論文回顧 2
1.4 論文貢獻 2
1.5 論文架構 2
第二章 神經網路架構介紹 3
2.1 神經網路簡介 3
2.2 神經網路架構選擇 5
2.3 Elman神經網路架構 7
第三章 演算法介紹 12
3.1 機器學習(Machine learning) 12
3.2 電池SOC估算法 14
3.3 激活函數(Activation function) 16
3.4 梯度下降法(Gradient descent) 23
3.5 誤差倒傳遞演算法(Error Backpropagation Algorithm) 26
第四章 電池數據及數據精準度 31
4.1 電池數據介紹 31
4.2 小數點比較 37
第五章 估算系統及Adapter介紹 38
5.1 電動車電池SOC估算系統 38
5.2 神經網路訓練系統 42
5.2.1指數函數近似電路(Exponential Approximate circuit) 48
5.2.2正規化電路(Normalize circuit) 51
5.3 ENN電池電量估算系統 54
5.4 權重適配器(Weight Adapter) 56
5.5 電池物理特性權重適配器(Battery Physical Characteristics Weight Adapter) 59
5.6 電池物理特性輸出適配器(Battery Physical Characteristics Output Adapter) 60
第六章 系統模擬結果 61
6.1 神經網路訓練模擬結果 61
6.1.1 FUDS訓練模擬結果 62
6.1.2 BMW i3(SOC 90% - 10%)訓練模擬結果 63
6.2 估算系統模擬結果 64
6.2.1 DST模擬結果 65
6.2.2 BMW i3(SOC 56.6% - 9.9%)模擬結果 67
第七章 電路架構與晶片實現 69
7.1電路設計流程 69
7.2硬體電路介紹 70
7.2.1估算系統架構 72
7.2.2適配器電路架構 79
7.3模擬驗證 81
7.4晶片設計結果 83
7.4.1佈局圖 83
7.4.2模組分布 84
7.4.3錯誤覆蓋率 86
7.4.4 LVS驗證結果 86
7.4.5 CHIP功率消耗分佈 87
7.4.6 CHIP總結與比較 89
7.5 FPGA驗證 91
第八章 結論與未來展望 92
參考文獻 94
參考文獻 [1] ZHAO Xiaobo, et al. “Elman neural network using ant colony optimization algorithm for estimating of state of charge of lithium-ion battery,” Journal of Energy Storage, Aug 2020, 32, 101789.
[2] ZHANG Ze, et al. “Short-term prediction for opening price of stock market based on self-adapting variant PSO-Elman neural network,” 2017 8th IEEE International Conference on Software Engineering and Service Science (ICSESS), IEEE, Nov 2017. p. 225-228.
[3] SHI Qingsheng, et al. ZHANG Xiaoping, “Battery state-of-charge estimation in electric vehicle using elman neural network method,” Proceedings of the 29th Chinese Control Conference, IEEE, Jul 2010. p. 5999-6003.
[4] QIU Guo-Qing, ZHAO Wen-ming, XIONG Geng-yun, “Estimation of power battery SOC based on PSO-Elman neural network,” 2018 Chinese Automation Congress (CAC), IEEE, Nov 2018. p. 91-96.
[5] ZAFAR Muhammad Hamza, et al, “Hybrid deep learning model for efficient state of charge estimation of Li-ion batteries in electric vehicles,” Energy, 2023, 282: 128317.
[6] SPORNS Olaf, TONONI Giulio, KÖTTER Rolf, “The human connectome: a structural description of the human brain,” PLoS computational biology, Sep 2005.
[7] 深度學習最優化方法總結比較, https://zhuanlan.zhihu.com/p/22252270.
[8] DING Bin, QIAN Huimin, ZHOU Jun, “Activation functions and their characteristics in deep neural networks,” 2018 Chinese control and decision conference (CCDC), IEEE, Jun 2018. p. 1836-1841.
[9] Center for Advanced Life Cycle Engineering(CALCE), https://calce.umd.edu/battery-data.
[10] Argonne National Laboratory(ANL), https://www.anl.gov/es/energy-systems-d3-2014-bmw-i3bev.
[11] Muh-Tian Shiue, Yang-Chieh Ou, Bing-Jun Liu, Yi-Fong Wang, Ping-Hao Liu, “The Battery Measurement Approach of Lithium Battery in Real Driving Data based on Deep Learning Algorithms,” ACEPS’11, Dec 2022.
[12] SPAGNOL Pierfrancesco, ROSSI Stefano, SAVARESI Sergio M, “Kalman filter SoC estimation for Li-ion batteries,” 2011 IEEE International Conference on Control Applications (CCA), IEEE, Sep 2011. p. 587-592.
[13] NILSSON Peter, et al. “Hardware implementation of the exponential function using Taylor series,” 2014 NORCHIP, IEEE, Oct 2014. p. 1-4.
[14] Ivan Tsmots, Oleksa Skorokhoda, Vasyl Rabyk, “Hardware implementation of sigmoid activation functions using FPGA,” 2019 IEEE 15th International Conference on the Experience of Designing and Application of CAD Systems (CADSM), IEEE, Feb 2019. p. 34-38.
[15] TISAN Alin, et al. “Digital implementation of the sigmoid function for FPGA circuits,” Acta Technica Napocensis Electronics and Telecommunications, Jun 2009, 50.2: 6.
[16] LEE Jinmook, SHIN Dongjoo, YOO Hoi-Jun, “A 21mW low-power recurrent neural network accelerator with quantization tables for embedded deep learning applications,” 2017 IEEE Asian Solid-State Circuits Conference (A-SSCC), IEEE, Nov 2017. p. 237-240.
[17] MOONS Bert, VERHELST Marian, “An energy-efficient precision-scalable ConvNet processor in 40-nm CMOS,” IEEE Journal of solid-state Circuits, Dec 2016, 52.4: 903-914.
[18] CHEN Chixiao, et al. “OCEAN: An on-chip incremental-learning enhanced artificial neural network processor with multiple gated-recurrent-unit accelerators,” IEEE Journal on Emerging and Selected Topics in Circuits and Systems, Jul 2018, 8.3: 519-530.
指導教授 薛木添 審核日期 2024-1-24
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明