博碩士論文 110323110 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:87 、訪客IP:3.147.73.35
姓名 李宗祐(Li-Zong-You)  查詢紙本館藏   畢業系所 機械工程學系
論文名稱 AA6061-T6鋁板GMAW銲件機械性質與疲勞強度分析
相關論文
★ 7005與AZ61A拉伸、壓縮之機械性質研究★ 雷射去除矽晶圓表面分子機載污染參數的最佳化分析
★ 球墨鑄鐵的超音波檢測★ 模具溫度對TV前框高亮光澤產品研討
★ 高強度7075-T4鋁合金之溫間成形研究★ 鎂合金燃燒、鑽削加工與表面處理之研究
★ 純鈦陽極處理技術之研發★ 鋁鎂合金陽極處理技術之研發
★ 電化學拋光處理、陽極處理中硫酸流速與封孔處理對陽極皮膜品質之影響★ 電解液溫度與鋁金屬板表面粗糙度對陽極處理後外觀的影響
★ 製程參數對A356鋁合金品質的影響及可靠度的評估★ 噴砂與前處理對鋁合金陽極皮膜品質的影響
★ 鎂合金回收重溶之品質與疲勞性質分析★ 鋁合金熱合氧化膜與陽極氧化膜成長行為之研究
★ 潤滑劑與製程參數對Al-0.8Mg-0.5Si鋁合金擠壓鑄件的影響★ 摩擦攪拌製程對AA5052鋁合金之微觀組織及對陽極皮膜的影響
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   至系統瀏覽論文 ( 永不開放)
摘要(中) 本研究以AA6061-T6鋁合金為實驗材料。選擇對接接頭,進行鎢極氣體保護電弧銲(GTAW銲)及金屬極氣體保護電弧銲(GMAW銲)並在銲件設置背吹板,觀察不同銲接工藝及背吹板對鋁合金銲件在拉伸測試以及疲勞測試下的機械性質與疲勞壽命的影響。
研究顯示銲接時在銲件底部設置背吹板可縮小銲道根部面積,但有無背吹板對銲件的抗拉強度並無明顯的關聯,主要的原因為銲件拉伸斷裂位置皆在熱影響區上的軟化區與銲道截面形狀的變化無關,軟化區受到銲接熱影響造成微結構改變機械強度下降,銲件疲勞試片的斷裂點主要發生在銲道根部靠近熱影響區的位置, 三種板厚中以2mm的銲件疲勞壽命最高原因為較薄的試片中疲勞裂紋閉合程度較高疲勞裂紋延伸較慢所導致,在本實驗設定之疲勞限N=106回下板厚2mm 銲件疲勞強度相比板厚3mm 及板厚4mm 提高約8~12%,而板厚4mm的銲件在背吹板上進行銲接容易捲入氣體,使銲道上出現氣孔造成銲接品質不佳機械性質與疲勞壽命下降,將銲接過程背吹板氣體使用氬氣代替壓縮空氣,可減少氣體捲入銲道產生氣孔,提高銲接品質與穩定性。
摘要(英) This study used AA6061-T6 aluminum alloy as the experimental material. Butt joints were selected for tungsten inert gas welding (GTAW) and gas metal arc welding (GMAW) processes, with the addition of a back purge plate during welding. The objective was to investigate the impact of different welding processes and the use of a back purge plate on the mechanical properties and fatigue life of aluminum alloy weldments under tensile testing and fatigue testing.
The findings indicated that for both GTAW and GMAW weldments, the fracture locations of fatigue test specimens were primarily in the weld root area near the heat-affected zone. The use of 2mm thick plates resulted in an approximately 8-12% increase in fatigue life compared to plates with 3mm and 4mm thicknesses. In the case of 4mm thick plate weldments, welding on the backside of the plate was prone to gas entrapment, leading to the formation of porosity in the weld bead, which adversely affected the mechanical properties and fatigue life. However, by replacing compressed air with argon gas during the backside welding process, the occurrence of gas entrapment and porosity in the weld bead was reduced, thereby enhancing welding quality and stability.

Keywords:AA6061、Aluminium、Gas Tungsten Arc Welding、Gas Metal Arc Welding、Fatigue Life
關鍵字(中) ★ 鋁合金
★ 疲勞壽命
★ 鎢極氣體保護電弧銲
★ 金屬極氣體保護電弧銲
關鍵字(英)
論文目次 摘要 I
Abstract III
目錄 IV
表目錄 VI
圖目錄 VII
第一章 前言 1
第二章 文獻回顧 2
2-1 AA6061鋁合金介紹 2
2-2 鋁合金銲接方法 2
2-2-1 鎢極氣體保護電弧銲(GTAW銲) 2
2-2-2 金屬極氣體保護電弧銲(GMAW銲) 3
2-3 鋁合金銲道各區域說明 5
2-4 鋁合金銲件拉伸性質 8
2-5 疲勞破壞的原理及影響 13
2-5-1 疲勞破壞的過程 13
2-5-2 疲勞裂紋初始機構 14
2-5-3 疲勞裂紋成長機構 15
2-5-4 疲勞最終破壞 15
2-5-5 疲勞應力分析 16
2-6 鋁合金銲接疲勞壽命評估 19
2-6-1 Al-Mg-Si合金銲件疲勞壽命 19
2-6-2 疲勞破斷面 22
2-7 銲道氣孔 25
2-7-1 氣孔形成原因 25
2-7-2 銲道氣孔對銲件機械性質之影響 26
第三章 實驗方法與分析 27
3-1 測試材料 27
3-2 測試用之設備 27
3-3 實驗與分析流程 30
第四章 結果與討論 33
4-1 銲道觀察 33
4-1-1 板厚與熱輸入量對銲道形狀尺寸影響 36
4-1-2 背吹板對銲道形狀尺寸影響 40
4-2 銲道金相組織 43
4-2-1 不同銲接方式的AA6061-T6鋁合金滾軋板銲道融化區金相微結構 43
4-2-2 不同銲接方式的AA6061-T6鋁合金滾軋板銲道部分融化區金相微結構 45
4-2-3 不同銲接方式的AA6061-T6鋁合金滾軋板銲道熱影響區金相微結構 47
4-3 銲道硬度 49
4-4 銲道機械性質 55
4-5 銲道疲勞性質 57
4-5-1 GTAW銲件疲勞壽命 57
4-5-2 GMAW銲件疲勞壽命 59
4-6 疲勞銲件斷面 62
4-6-1 GMAW-2mm背吹試片斷面 62
4-6-2 GMAW-3mm背吹試片斷面 63
4-6-3 GMAW-3mm氬氣背吹試片斷面 64
4-6-4 GMAW-4mm背吹試片斷面 66
第五章 結論 68
參考文獻 69
參考文獻 1. Mutombo, K. and M. Du Toit, Corrosion fatigue behaviour of aluminium alloy 6061-T651 welded using fully automatic gas metal arc welding and ER5183 filler alloy. International Journal of Fatigue, 2011. 33(12): p. 1539-1547.
2. Fahimpour, V., S. Sadrnezhaad, and F. Karimzadeh, Corrosion behavior of aluminum 6061 alloy joined by friction stir welding and gas tungsten arc welding methods. Materials & Design, 2012. 39: p. 329-333.
3. Kou, S., Welding metallurgy. New Jersey, USA, 2003. 431(446): p. 223-225.
4. Sathiya, P., et al., Microstructural characteristics on bead on plate welding of AISI 904 L super austenitic stainless steel using gas metal arc welding process. International Journal of Engineering, Science and Technology, 2010. 2(6).
5. Karadeniz, E., U. Ozsarac, and C. Yildiz, The effect of process parameters on penetration in gas metal arc welding processes. Materials & Design, 2007. 28(2): p. 649-656.
6. Ibrahim, I.A., et al., The Effect of Gas Metal Arc Welding (GMAW) processes on different welding parameters. Procedia Engineering, 2012. 41: p. 1502-1506.
7. Rojas, H., et al., The impact of heat input on the microstructures, fatigue behaviors, and stress lives of TIG-welded 6061-T6 alloy joints. Materials Research Express, 2020. 7(12): p. 126512.
8. Liang, Y., et al., Effect of TIG current on microstructural and mechanical properties of 6061-T6 aluminium alloy joints by TIG–CMT hybrid welding. Journal of Materials Processing Technology, 2018. 255: p. 161-174.
9. Malin, V., Study of metallurgical phenomena in the HAZ of 6061-T6 aluminum welded joints. Welding Journal-Including Welding Research Supplement, 1995. 74(9): p. 305s.
10. Vargas, J.A., et al., Analysis of heat input effect on the mechanical properties of Al-6061-T6 alloy weld joints. Materials & Design (1980-2015), 2013. 52: p. 556-564.
11. Lin, S., et al., Microstructures and fatigue behavior of metal-inert-gas-welded joints for extruded Al-Mg-Si alloy. Materials Science and Engineering: A, 2019. 745: p. 63-73.
12. Nie, F., et al., Microstructure and mechanical properties of pulse MIG welded 6061/A356 aluminum alloy dissimilar butt joints. Journal of materials science & technology, 2018. 34(3): p. 551-560.
13. Handbook, A., Fatigue and fracture. ASM International, 1996. 19: p. 18.
14. 李庭豪, 鋁合金7075-T73原材與陽極處理封孔後的疲勞性質對微結構的研究. 中央大學,碩士論文, 民國102年.
15. Krenn, C. and J. Morris Jr, The compatibility of crack closure and Kmax dependent models of fatigue crack growth. International Journal of Fatigue, 1999. 21: p. S147-S155.
16. Reed-Hill, R.E., The Microscopic Aspects of Fatigue Failure. Physical Metallurgy Principles, 1994: p. 755-760.
17. Reed-Hill, R.E., The Plastic Zone Size Ahead of A Crack. Physical Metallurgy Principles, 1994: p. 792-795.
18. Klesnil, M. and P. Lukas, Kinetics of Crack Growth. Fatigue of Metallic Materials, Second Revised Edition, 1992: p. 92-97.
19. Laird, C., The influence of metallurgical structure on the mechanisms of fatigue crack propagation, in Fatigue crack propagation. 1967, ASTM International.
20. 高屏區技術教學中心, 材料試驗課程-勞試試驗輔助教材.
21. Duan, C., et al., Formation and fatigue property of MIG welded high-speed train 6005A-T6 aluminum alloy. Materials Research Express, 2019. 6(5): p. 056532.
22. Bloem, C., et al., Fatigue behaviour of GMAW welded aluminium alloy AA7020. Welding International, 2009. 23(10): p. 773-777.
23. Shih, T.-S. and J.-W. Lin, Mechanical Properties and Fatigue Behavior of Cast/Forged Al–1.2% Mg–1.0% Si–1.0% Cu Aluminum Alloys. MATERIALS TRANSACTIONS, 2018. 59(7): p. 1130-1134.
24. Shih, T.-S. and Q.-Y. Chung, Fatigue of as-extruded 7005 aluminum alloy. Materials Science and Engineering: A, 2003. 348(1-2): p. 333-344.
25. Toda, H., et al., Statistical assessment of fatigue crack initiation from sub-surface hydrogen micropores in high-quality die-cast aluminum. Acta materialia, 2011. 59(12): p. 4990-4998.
26. Li, Z., et al., Study of 3D pores and its relationship with crack initiation factors of aluminum alloy die castings. Metallurgical and Materials Transactions B, 2019. 50: p. 1204-1212.
27. Huang, Y., et al., Real-time monitoring and control of porosity defects during arc welding of aluminum alloys. Journal of Materials Processing Technology, 2020. 286: p. 116832.
28. Ascari, A., et al., The influence of process parameters on porosity formation in hybrid LASER-GMA welding of AA6082 aluminum alloy. Optics & Laser Technology, 2012. 44(5): p. 1485-1490.
29. Ahsan, M.R., et al., Porosity formation mechanisms in cold metal transfer (CMT) gas metal arc welding (GMAW) of zinc coated steels. Science and Technology of Welding and Joining, 2016. 21(3): p. 209-215.
30. Han, X., et al., Porosity distribution and mechanical response of laser-MIG hybrid butt welded 6082-T6 aluminum alloy joint. Optics & Laser Technology, 2020. 132: p. 106511.
31. Kah, P., et al., Investigation of weld defects in friction-stir welding and fusion welding of aluminium alloys. International Journal of Mechanical and Materials Engineering, 2015. 10(1): p. 1-10.
32. Zhao, Y., et al., Investigate on the porosity morphology and formation mechanism in laser-MIG hybrid welded joint for 5A06 aluminum alloy with Y-shaped groove. Journal of Manufacturing Processes, 2020. 57: p. 847-856.
33. Ferreira, P., I. Robertson, and H. Birnbaum, Hydrogen effects on the character of dislocations in high-purity aluminum. Acta materialia, 1999. 47(10): p. 2991-2998.
34. Wu, S.C., et al., Fatigue behaviors of laser hybrid welded AA7020 due to defects via synchrotron X‐ray microtomography. Fatigue & Fracture of Engineering Materials & Structures, 2019. 42(10): p. 2232-2246.
35. Leo, P., et al., Effect of power distribution on the weld quality during hybrid laser welding of an Al–Mg alloy. Optics & Laser Technology, 2015. 73: p. 118-126.
36. Yang, K.V., et al., Porosity formation mechanisms and fatigue response in Al-Si-Mg alloys made by selective laser melting. Materials Science and Engineering: A, 2018. 712: p. 166-174.
37. Du Toit, M. and K. Mutombo, The influence of pulsed gas metal arc welding on the fatigue and corrosion-fatigue properties of wrought aluminium 6061-T651. Anti-Corrosion Methods and Materials, 2019. 66(6): p. 719-729.
38. Liu, H., et al., Mechanisms of fatigue crack initiation and propagation in 6005A CMT welded joint. Journal of Alloys and Compounds, 2018. 741: p. 188-196.
39. Bao, H. and A. McEvily, On plane stress–plane strain interactions in fatigue crack growth. International Journal of Fatigue, 1998. 20(6): p. 441-448.
指導教授 施登士 審核日期 2023-10-5
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明