博碩士論文 107383610 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:80 、訪客IP:18.116.36.221
姓名 語嫣(Nazish Murad)  查詢紙本館藏   畢業系所 機械工程學系
論文名稱
(Enhancing Diffuse Optical Imaging: Utilizing Deep Learning Networks for Accuracy and Efficiency Improvement in Image Reconstruction of Optical Properties)
相關論文
★ TFT-LCD前框卡勾設計之衝擊模擬分析與驗證研究★ TFT-LCD 導光板衝擊模擬分析及驗證研究
★ 數位機上盒掉落模擬分析及驗證研究★ 旋轉機械狀態監測-以傳動系統測試平台為例
★ 發射室空腔模態分析在噪音控制之應用暨結構聲輻射效能探討★ 時頻分析於機械動態訊號之應用
★ VKF階次追蹤之探討與應用★ 火箭發射多通道主動噪音控制暨三種線上鑑別方式
★ TFT-LCD衝擊模擬分析及驗證研究★ TFT-LCD掉落模擬分析及驗證研究
★ TFT-LCD螢幕掉落破壞分析驗證與包裝系統設計★ 主動式火箭發射噪音控制使用可變因子演算法
★ 醫學/動態訊號處理於ECG之應用★ 光碟機之動態研究與適應性尋軌誤差改善
★ 具新型菲涅爾透鏡之超音波微噴墨器分析與設計★ 醫用近紅外光光電量測系統之設計與驗証
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   至系統瀏覽論文 (2024-12-1以後開放)
摘要(中) 本論文基於近红外光 (near-infrared, NIR)及擴散光學造影 (Diffuse Optical Imaging, DOI)技術,結合不同特性學習層發展深度學習網路以重建乳腺腫瘤識別及定位的擴散光學斷層造影 (Diffuse Optical Tomography, DOT)。為克服有限數據帶來的挑戰,研究生成具有多個仿體和不同部位置入物的大型數據集,並設計一單一深度神經網路 (Deep Neural Network, DNN)重建吸收集、散射係數。透過大量的實驗與優化,決定所提出的網路架構及各層的順序與排列方式,該網路可學習分層象徵並透過卷積及特定順序排列的批次歸一化層提取持續變化的複雜特徵。所提出的 DNN模型使用不同的仿體數據集來進行評估,而提出的Tikhonov正則化 (Tikhonov Regularization, TR) 方法和其他人工神经網路 (Artificial Neural Network, ANN)相比 (如倒傳遞神經網路, U-net、Dense-net 等)表現出更加優越的性能。此外,包含批次歸一化的DNN 模型可提高空間分辨率,提供合適的對比度尺寸细節(Contrast-and-Size Detail, CSD)分析。
一種端到端的靈活深度學習框架被用於檢測早期乳腺癌並重建其光學特性。所提出的Periodic-net框架獲得反算模型中的不均勻精確重建與評估。Periodic-net 允許有效組合不同空間尺度的濾波器(filter),允許網路同時提取細粒度的細節與更全局的上下文訊息。透過組合這些濾波器,Periodic-net可有效捕捉多樣特徵而不犧牲計算效能 (Dense-net:31s, U-net:20s, Periodic-net:3s)。本研究也採用了複合式深度學習模型(hybrid deep learning model)用於擴散光學成像中的腫瘤檢測。來自前向模型的訊號和反向計算的圖像在單一解碼器中結合,彌補了直接及後處理方法之間的差距。複合式深度學習模型達到了最先進的重建精度 (模擬數據集的SSIM:0.88 和 PSNR:33.50;量測數據集的SSIM:0.52 和 PSNR:31.74)。
此外,本研究使用了遷移學習方法解決圓形仿體的侷限並提高重建方法的多功能性。遷移學習方法用來調整先前開發的Periodic-net 網路架構來處理橢圓仿體,利用從圓形仿體數據集所得到的先驗知識與預訓練權重,透過新收集的橢圓形仿體數據對網路進行微調。
總結來說,本文提出了用於DOI重建的創新深度學習架構,克服了有限數據集、空間分辨率提升、精確腫瘤檢測及光學特性高效重建等多項挑戰。這些進步有效推進DOI技術的演進,並有望增强乳腺腫瘤早期檢测和定性的齡床應用。與最先進的競爭對手相比,重建出來的圖像顯示.
摘要(英) This thesis focuses on the development of deep learning networks by combining properties of various layers for the reconstruction of diffuse optical imaging (DOI) in the context of near-infrared (NIR) diffuse optical tomography (DOT) for breast tumor identification and localization. Large datasets with multiple phantoms and inclusions at various positions are generated to overcome the limited dataset challenge. Additionally, a single deep neural network (DNN) model is designed to reconstruct both absorption and scattering coefficients. Extensive experimentation and optimization determined the specific order and arrangement of layers in proposed networks. The network can learn hierarchical representations and extract increasingly complex features by applying convolutional layers followed by batch-normalization layers arranged in a specific order. The proposed DNN models are evaluated using a varied phantom dataset, demonstrating superior performance compared to the Tikhonov Regularization (TR) method and other artificial neural networks (ANN), i.e., backpropagation neural network, U-net, Dense-net. Moreover, the inclusion of a batch normalization layer in the DNN model results in improved spatial resolution, providing a suitable Contrast-and-Size Detail (CSD) analysis.
An end-to-end flexible deep learning framework is developed for DOI to detect breast cancer and reconstruct its optical properties in the early stages. The proposed Periodic-net algorithm achieves accurate reconstruction and evaluation of inhomogeneities in an inverse model. Periodic-net allows for the efficient combination of filters at different spatial scales, allowing the network to extract fine-grained details and more global context information simultaneously. By combining these filters, the Periodic-net efficiently captures a wide range of features without sacrificing computational efficiency (Dense-net: 31s, U-net: 20s, Periodic-net: 3s). This study also incorporated a hybrid deep learning model for tumor detection in diffuse optical imaging. Signals from the forward model and images from the inverse computations are combined in a single decoder, bridging the gap between direct processing and post-processing methods. The hybrid network achieves state-of-the-art reconstruction accuracy (SSIM: 0.88 and PSNR: 33.50 for simulation and SSIM: 0.52 and PSNR: 31.74 for measure dataset).
Additionally, in order to address the limitations of circular phantoms and improve the versatility of the reconstruction approach, transfer learning is utilized in this research. Transfer learning is employed to adapt the previously developed Periodic-net architecture to handle elliptical phantoms. The network is fine-tuned using the newly acquired elliptical phantom dataset by leveraging the knowledge and pre-trained weights obtained from the circular phantom dataset.
Overall, this thesis presents innovative deep-learning networks for diffuse optical imaging reconstruction, overcoming challenges related to limited datasets, improved spatial resolution, accurate tumor detection, and efficient reconstruction of optical properties. These advancements contribute to diffuse optical imaging and hold promise for enhanced clinical applications in the early detection and characterization of breast tumors. The reconstructed images demonstrate higher quality, increased small detail preservation, improved noise immunity, sharper edges, and reduced artifacts compared to state-of-the-art competitors.
關鍵字(中) ★ 擴散光學斷層造影
★ 組織光學特性
★ 批次歸一化
★ Periodic-net
★ 複合式模型
★ 遷移學習
★ 深度卷積網路
★ Tikhonov正則化
★ 域轉換
★ 逆問题
關鍵字(英) ★ Diffuse Optical Imaging
★ tissue optical properties
★ Batch-normalization network
★ Periodic-Net
★ Hybrid Network
★ transfer learning
★ deep convolutional neural networks
★ Tikhonov regularization
★ domain transformation
★ inverse problem
論文目次 Table of Contents
National Central University Library Authorization for Thesis/ Dissertation ..................... ii
Application to the National Central Library for Deferring the Public Access to the
Thesis/Dissertation............................................................................................................. iv
Advisor’s Recommendation for Doctoral Students.............................................................v
National Central University Verification Letter from the Oral Examination Committee for
Doctoral Students............................................................................................................... vi
摘要………………........................................................................................................... vii
Abstract.............................................................................................................................. ix
Acknowledgments............................................................................................................. xii
List of Figures................................................................................................................ xviii
List of Tables ................................................................................................................. xxiii
List of Acronyms ........................................................................................................... xxiv
Chapter 1 : Introduction.................................................................................................1
1.1 Overview ..........................................................................................................1
1.2 Background and Motivation.............................................................................2
1.3 Literature Review.............................................................................................3
1.3.1 Introduction to Diffuse Optical Imaging.............................................3
1.3.2 Basic Setup of DOI.............................................................................5
1.3.3 Techniques in Diffuse Optical Imaging..............................................6
1.3.4 Machine Learning in Diffuse Optical Imaging...................................6
1.3.5 Deep Learning in Diffuse Optical Imaging ......................................10
1.4 Significance of the Study ...............................................................................11
1.5 Overview of thesis structure...........................................................................12
Chapter 2 : Theory and Preliminary definitions .............................................................14
2.1 Fundamentals of Diffuse Optical Imaging .....................................................14
2.1.1 Governing Equations ........................................................................14
Modeling of Light Propagation in Tissue .........................................14
Forward Problem: Physics of Light Propagation..............................15
Inverse Problem: Optical Properties of Tissue .................................16
2.2 Neural networks .............................................................................................18
2.2.1 Convolutional Neural Networks.......................................................19
2.2.2 Training Methodology of Neural Networks .....................................19
2.2.3 Overfitting and Underfitting .............................................................21
2.2.4 Common layers of CNN ...................................................................21
Convolution Layers...........................................................................21
Pooling Layers..................................................................................22
Activation Function Layers ..............................................................23
Fully connected Layers.....................................................................24
Dropout Layers.................................................................................24
Batch Normalization Layers.............................................................24
2.2.5 Hyperparameters...............................................................................25
Performance Measures......................................................................26

2.3 State of the Art Techniques in Deep Learning ...............................................28
2.3.1 Backpropagation: Fully Connected layers........................................28
2.3.2 U-Net.................................................................................................29
2.3.3 Dense-net ..........................................................................................30
2.3.4 Transfer Learning..............................................................................31
Chapter 3 : Dataset Preparation .........................................................................................32
3.1 Splitting the dataset ........................................................................................32
3.2 Simulation dataset ..........................................................................................35
3.3 Dataset 20 ×19 and 36 ×35:............................................................................36
3.4 Transfer Learning Dataset..............................................................................40
3.5 Experimental dataset ......................................................................................43
Chapter 4 : Deep Learning Image Reconstruction Networks........................................46
4.1 1D BNCNN Image Reconstruction................................................................46
4.2 2D BNCNN Image Reconstruction................................................................48
4.3 Results............................................................................................................49
4.3.1 Simulation dataset.............................................................................49
4.3.2 Phantom dataset ................................................................................52
4.4 Effect of Normalization during Training........................................................52
4.5 Discussion ......................................................................................................54
Chapter 5 : Periodic-Net Architecture and Results......................................................61

5.1 Periodic Network Architecture.......................................................................61
5.1.1 Feature Module .................................................................................61
5.1.2 Efficient Module ...............................................................................61
5.1.3 Escalate Module................................................................................62
5.1.4 Encompass Module...........................................................................62
5.2 Issues with Traditional Encoder-Decoder Network .......................................62
5.3 Training and Optimization Parameters...........................................................64
5.4 Results............................................................................................................64
5.4.1 Dataset 1: 16 × 15 Boundary Data....................................................66
5.4.2 Dataset 2: 20 × 19 Boundary Data....................................................67
5.4.3 Dataset 3: 36 × 35 Boundary Data....................................................67
5.5 Discussion ......................................................................................................68
Chapter 6 : Hybrid Network: Spatial Resolution Improvement ..................................75
6.1 Hybrid Network..............................................................................................75
6.2 Signal encoder: Boundary information processing ........................................76
6.3 Image encoder: Conventional image processing............................................77
6.4 Decoder: Concatenation of extracted features and learned parameters .........78
6.5 Results and Discussion...................................................................................79
6.5.1 Simulation test set case study ...........................................................80
6.5.2 Experimental test set case study .......................................................81
6.6 Accuracy Analysis..........................................................................................82
Chapter 7 : Transfer Learning: Domain Transformation from Circle to Ellipse ..........88
7.1 Domain Transfer from Circular to Elliptical Phantom...................................88
7.1.1 Frozen Layers....................................................................................89
7.1.2 Retraining Layers..............................................................................90
7.2 Method............................................................................................................90
7.3 Results............................................................................................................91
7.3.1 Case Studies:.....................................................................................93
7.4 Discussion ......................................................................................................98
Chapter 8 : Conclusion and Future Research............................................................100
8.1 Summary of Findings...................................................................................100
8.2 Future Research............................................................................................101
Bibliography ....................................................................................................................103
參考文獻 [1] M. A. Pinkert, L. R. Salkowski, P. J. Keely, T. J. Hall, W. F. Block, and K. W. Eliceiri, “Review of quantitative multiscale imaging of breast cancer,” Journal of Medical Imaging, vol. 5, no. 1, pp. 010901-010901, 2018.
[2] Y. Fan, and L. Ying, “Solving optical tomography with deep learning,” arXiv preprint arXiv:1910.04756, 2019.
[3] S. Serte, A. Serener, and F. Al‐Turjman, “Deep learning in medical imaging: A brief review,” Transactions on Emerging Telecommunications Technologies, vol. 33, no. 10, pp. e4080, 2022.
[4] G. Haskins, U. Kruger, and P. Yan, “Deep learning in medical image registration: a survey,” Machine Vision and Applications, vol. 31, pp. 1-18, 2020.
[5] H. Lan, D. Jiang, C. Yang, and F. Gao, “Y-Net: a hybrid deep learning reconstruction framework for photoacoustic imaging in vivo,” arXiv preprint arXiv:1908.00975, 2019.
[6] Y. Zhao, A. Raghuram, F. Wang, S. H. Kim, A. Hielscher, J. T. Robinson, and A. Veeraraghavan, “Unrolled-DOT: an interpretable deep network for diffuse optical tomography,” Journal of biomedical optics, vol. 28, no. 3, pp. 036002-036002, 2023.
[7] B. Zhu, J. Z. Liu, S. F. Cauley, B. R. Rosen, and M. S. Rosen, “Image reconstruction by domain-transform manifold learning,” Nature, vol. 555, no. 7697, pp. 487-492, 2018.
[8] R. D. Gottapu, and C. H. Dagli, “DenseNet for anatomical brain segmentation,” Procedia Computer Science, vol. 140, pp. 179-185, 2018.
[9] O. Ronneberger, P. Fischer, and T. Brox, "U-net: Convolutional networks for biomedical image segmentation." pp. 234-241, 2018.
[10] S. Okawa, and Y. Hoshi, “A Review of Image Reconstruction Algorithms for Diffuse Optical Tomography,” Applied Sciences, vol. 13, no. 8, pp. 5016, 2023.
[11] H. Zhao, F. Gao, Y. Tanikawa, K. Homma, and Y. Yamada, “Time-resolved diffuse optical tomographic imaging for the provision of both anatomical and functional information about biological tissue,” Applied optics, vol. 44, no. 10, pp. 1905-1916, 2005.
[12] V. Ntziachristos, A. H. Hielscher, A. Yodh, and B. Chance, “Diffuse optical tomography of highly heterogeneous media,” IEEE transactions on medical imaging, vol. 20, no. 6, pp. 470-478, 2001.
[13] D. A. Boas, D. H. Brooks, E. L. Miller, and C. A. DiMarzio, “Imaging the body with diffuse optical tomography,” IEEE signal processing magazine, vol. 18, no. 6, pp. 57-75, 2001.
[14] M. Guven, B. Yazici, X. Intes, and B. Chance, “Diffuse optical tomography with a priori anatomical information,” Physics in Medicine & Biology, vol. 50, no. 12, pp. 2837, 2005.
[15] Y. Lin, H. Gao, O. Nalcioglu, and G. Gulsen, “Fluorescence diffuse optical tomography with functional and anatomical a priori information: feasibility study,” Physics in Medicine & Biology, vol. 52, no. 18, pp. 5569, 2007.
[16] A. Hielscher, A. Bluestone, G. Abdoulaev, A. Klose, J. Lasker, M. Stewart, U. Netz, and d. J. Beuthan, “Near-infrared diffuse optical tomography,” Disease markers, vol. 18, no. 5-6, pp. 313-337, 2002.
[17] M. Schweiger, A. Gibson, and S. R. Arridge, “Computational aspects of diffuse optical tomography,” Computing in Science & Engineering, vol. 5, no. 6, pp. 33-41, 2003.
[18] S. Sabir, S. Cho, Y. Kim, R. Pua, D. Heo, K. H. Kim, Y. Choi, and S. Cho, “Convolutional neural network-based approach to estimate bulk optical properties in diffuse optical tomography,” Applied optics, vol. 59, no. 5, pp. 1461-1470, 2020.
[19] J. T. Smith, M. Ochoa, D. Faulkner, G. Haskins, and X. Intes, “Deep learning in macroscopic diffuse optical imaging,” Journal of Biomedical Optics, vol. 27, no. 2, pp. 020901-020901, 2022.
[20] G. M. Balasubramaniam, B. Wiesel, N. Biton, R. Kumar, J. Kupferman, and S. Arnon, “Tutorial on the use of deep learning in diffuse optical tomography,” Electronics, vol. 11, no. 3, pp. 305, 2022.
[21] N. I. Nizam, M. Ochoa, J. T. Smith, S. Gao, and X. Intes, “Monte Carlo-based data generation for efficient deep learning reconstruction of macroscopic diffuse optical tomography and topography applications,” Journal of Biomedical Optics, vol. 27, no. 8, pp. 083016-083016, 2022.
[22] M. Applegate, R. Istfan, S. Spink, A. Tank, and D. Roblyer, “Recent advances in high speed diffuse optical imaging in biomedicine,” APL Photonics, vol. 5, no. 4, pp. 040802, 2020.
[23] N. Murad, M.-C. Pan, and Y.-F. Hsu, “Periodic-net: an end-to-end data driven framework for diffuse optical imaging of breast cancer from noisy boundary data,” Journal of Biomedical Optics, vol. 28, no. 2, pp. 026001-026001, 2023.
[24] M. D. Wheelock, J. P. Culver, and A. T. Eggebrecht, “High-density diffuse optical tomography for imaging human brain function,” Review of Scientific Instruments, vol. 90, no. 5, 2019.
[25] C. Balas, “Review of biomedical optical imaging—a powerful, non-invasive, non-ionizing technology for improving in vivo diagnosis,” Measurement science and technology, vol. 20, no. 10, pp. 104020, 2009.
[26] C. B. Shaw, and P. K. Yalavarthy, “Effective contrast recovery in rapid dynamic near-infrared diffuse optical tomography using ℓ 1-norm-based linear image reconstruction method,” Journal of biomedical optics, vol. 17, no. 8, pp. 086009-086009, 2012.
[27] M. A. Franceschini, and D. A. Boas, “Noninvasive measurement of neuronal activity with near-infrared optical imaging,” Neuroimage, vol. 21, no. 1, pp. 372-386, 2004.
[28] D. Piao, and B. W. Pogue, “Rapid near-infrared diffuse tomography for hemodynamic imaging using a low-coherence wideband light source,” Journal of biomedical optics, vol. 12, no. 1, pp. 014016-014016-12, 2007.
[29] J. D. Rivera-Fernández, K. Roa-Tort, S. Stolik, A. Valor, D. A. Fabila-Bustos, G. de la Rosa, M. Hernández-Chávez, and J. M. de la Rosa-Vázquez, “Design of a Low-Cost Diffuse Optical Mammography System for Biomedical Image Processing in Breast Cancer Diagnosis,” Sensors, vol. 23, no. 9, pp. 4390, 2023.
[30] S. Brigadoi, S. Powell, R. J. Cooper, L. A. Dempsey, S. Arridge, N. Everdell, J. Hebden, and A. P. Gibson, “Evaluating real-time image reconstruction in diffuse optical tomography using physiologically realistic test data,” Biomedical Optics Express, vol. 6, no. 12, pp. 4719-4737, 2015.
[31] H. Jiang, Diffuse optical tomography: principles and applications: CRC press, 2018.
[32] S. R. Arridge, and J. C. Schotland, “Optical tomography: forward and inverse problems,” Inverse problems, vol. 25, no. 12, pp. 123010, 2009.
[33] S. R. Arridge, and M. Schweiger, “A gradient-based optimisation scheme for optical tomography,” Optics Express, vol. 2, no. 6, pp. 213-226, 1998.
[34] Y. Hoshi, and Y. Yamada, “Overview of diffuse optical tomography and its clinical applications,” Journal of biomedical optics, vol. 21, no. 9, pp. 091312-091312, 2016.
[35] A. Godavarty, S. Erickson, J. Gonzalez, U. Chaudhary, M. Hall, M. Roman, and R. Roche, "Non-invasive optical imaging technology: Breast cancer imaging and functional brain mapping." pp. 125-125, 2012.
[36] P. K. Yalavarthy, B. W. Pogue, H. Dehghani, C. M. Carpenter, S. Jiang, and K. D. Paulsen, “Structural information within regularization matrices improves near infrared diffuse optical tomography,” Optics Express, vol. 15, no. 13, pp. 8043-8058, 2007.
[37] S. H. Katamreddy, and P. K. Yalavarthy, “Model-resolution based regularization improves near infrared diffuse optical tomography,” JOSA A, vol. 29, no. 5, pp. 649-656, 2012.
[38] S. Srinivasan, B. W. Pogue, H. Dehghani, S. Jiang, X. Song, and K. D. Paulsen, “Improved quantification of small objects in near-infrared diffuse optical tomography,” Journal of biomedical optics, vol. 9, no. 6, pp. 1161-1171, 2004.
[39] D. Karkala, and P. K. Yalavarthy, “Data‐resolution based optimization of the data‐collection strategy for near infrared diffuse optical tomography,” Medical physics, vol. 39, no. 8, pp. 4715-4725, 2012.
[40] M. Zhang, S. Li, Y. Zou, and Q. Zhu, “Deep learning-based method to accurately estimate breast tissue optical properties in the presence of the chest wall,” Journal of Biomedical Optics, vol. 26, no. 10, pp. 106004-106004, 2021.
[41] A. Hauptmann, and B. Cox, “Deep learning in photoacoustic tomography: current approaches and future directions,” Journal of Biomedical Optics, vol. 25, no. 11, pp. 112903-112903, 2020.
[42] G. M. Balasubramaniam, and S. Arnon, “Regression-based neural network for improving image reconstruction in diffuse optical tomography,” Biomedical Optics Express, vol. 13, no. 4, pp. 2006-2017, 2022.
[43] H. B. Yedder, B. Cardoen, M. Shokoufi, F. Golnaraghi, and G. Hamarneh, “Multitask deep learning reconstruction and localization of lesions in limited angle diffuse optical tomography,” IEEE Transactions on Medical Imaging, vol. 41, no. 3, pp. 515-530, 2021.
[44] J. Yoo, S. Sabir, D. Heo, K. H. Kim, A. Wahab, Y. Choi, S.-I. Lee, E. Y. Chae, H. H. Kim, and Y. M. Bae, “Deep learning diffuse optical tomography,” IEEE transactions on medical imaging, vol. 39, no. 4, pp. 877-887, 2019.
[45] H. Ben Yedder, A. BenTaieb, M. Shokoufi, A. Zahiremami, F. Golnaraghi, and G. Hamarneh, "Deep learning based image reconstruction for diffuse optical tomography." pp. 112-119, 2018.
[46] H. Ben Yedder, M. Shokoufi, B. Cardoen, F. Golnaraghi, and G. Hamarneh, "Limited-angle diffuse optical tomography image reconstruction using deep learning." pp. 66-74, 2019.
[47] Y. Zou, Y. Zeng, S. Li, and Q. Zhu, “Machine learning model with physical constraints for diffuse optical tomography,” Biomedical Optics Express, vol. 12, no. 9, pp. 5720-5735, 2021.
[48] S. Li, M. Zhang, M. Xue, and Q. Zhu, “Difference imaging from single measurements in diffuse optical tomography: a deep learning approach,” Journal of Biomedical Optics, vol. 27, no. 8, pp. 086003-086003, 2022.
[49] Deng, Bin, Hanxue Gu, and Stefan A. Carp. "Deep learning enabled high-speed image reconstruction for breast diffuse optical tomography." Optical Tomography and Spectroscopy of Tissue XIV. Vol. 11639. SPIE, 2021.
[50] M. Zhang, M. Xue, S. Li, Y. Zou, and Q. Zhu, “Fusion deep learning approach combining diffuse optical tomography and ultrasound for improving breast cancer classification,” Biomedical Optics Express, vol. 14, no. 4, pp. 1636-1646, 2023.
[51] N. I. Nizam, M. Ochoa, J. T. Smith, and X. Intes, “Deep learning-based fusion of widefield diffuse optical tomography and micro-CT structural priors for accurate 3D reconstructions,” Biomedical Optics Express, vol. 14, no. 3, pp. 1041-1053, 2023.
[52] B. Deng, H. Gu, H. Zhu, K. Chang, K. V. Hoebel, J. B. Patel, J. Kalpathy-Cramer, and S. A. Carp, “FDU-Net: Deep Learning-Based Three-Dimensional Diffuse Optical Image Reconstruction,” IEEE Transactions on Medical Imaging, 2023.
[53] Wang, Fay, Andreas H. Hielscher, and Stephen H. Kim. "Deep Learning for Time-Domain Diffuse Optical Tomography Reconstructions by Unrolling a Sensitivity Equation-based Algorithm." Bio-Optics: Design and Application. Optica Publishing Group, 2023.
[54] E. E. Vidal-Rosas, A. von Lühmann, P. Pinti, and R. J. Cooper, “Wearable, high-density fNIRS and diffuse optical tomography technologies: a perspective,” Neurophotonics, vol. 10, no. 2, pp. 023513-023513, 2023.
[55] J. Feng, Q. Sun, Z. Li, Z. Sun, and K. Jia, “Back-propagation neural network-based reconstruction algorithm for diffuse optical tomography,” Journal of biomedical optics, vol. 24, no. 5, pp. 051407-051407, 2019.
[56] Balasubramaniam, Ganesh M., and Shlomi Arnon. "Deep-learning algorithm to detect anomalies in compressed breast: A numerical study." Bio-Optics: Design and Application. Optica Publishing Group, 2021.
[57] M. Golhar, T. L. Bobrow, M. P. Khoshknab, S. Jit, S. Ngamruengphong, and N. J. Durr, “Improving colonoscopy lesion classification using semi-supervised deep learning,” IEEE Access, vol. 9, pp. 631-640, 2020.
[58] N. M. Aboelenein, P. Songhao, A. Koubaa, A. Noor, and A. Afifi, “HTTU-Net: Hybrid Two Track U-Net for automatic brain tumor segmentation,” IEEE Access, vol. 8, pp. 101406-101415, 2020.
[59] N. Murad, M.-C. Pan, and Y.-F. Hsu, "BNCNN based diffuse optical imaging." pp. 52-56.
[60] U. S. Kamilov, I. N. Papadopoulos, M. H. Shoreh, A. Goy, C. Vonesch, M. Unser, and D. Psaltis, “Learning approach to optical tomography,” Optica, vol. 2, no. 6, pp. 517-522, 2015.
[61] S. Kiranyaz, O. Avci, O. Abdeljaber, T. Ince, M. Gabbouj, and D. J. Inman, “1D convolutional neural networks and applications: A survey,” Mechanical systems and signal processing, vol. 151, pp. 107398, 2021.
[62] G. Wang, J. C. Ye, K. Mueller, and J. A. Fessler, “Image reconstruction is a new frontier of machine learning,” IEEE transactions on medical imaging, vol. 37, no. 6, pp. 1289-1296, 2018.
[63] M. Kim, J. Yun, Y. Cho, K. Shin, R. Jang, H.-j. Bae, and N. Kim, “Deep learning in medical imaging,” Neurospine, vol. 17, no. 2, pp. 471, 2020.
[64] M. Mozumder, A. Hauptmann, I. Nissilä, S. R. Arridge, and T. Tarvainen, “A model-based iterative learning approach for diffuse optical tomography,” IEEE Transactions on Medical Imaging, vol. 41, no. 5, pp. 1289-1299, 2021.
[65] C. Zeng, P. E. Kinahan, H. Qian, R. L. Harrison, K. M. Champley, and L. R. MacDonald, “Simulation study of quantitative precision of the PET/X dedicated breast PET scanner,” Journal of Medical Imaging, vol. 4, no. 4, pp. 045502-045502, 2017.
[66] P. Mlynarski, H. Delingette, A. Criminisi, and N. Ayache, “Deep learning with mixed supervision for brain tumor segmentation,” Journal of Medical Imaging, vol. 6, no. 3, pp. 034002-034002, 2019.
[67] G. Xu, H. Wang, and Q. Zhou, “Enhancing Electrical Impedance Tomography reconstruction using Learned Half-Quadratic Splitting Networks with Anderson Acceleration,” arXiv preprint arXiv:2304.14491, 2023.
[68] M. H. Jalalimanesh, and M. A. Ansari, “Deep learning based image reconstruction for sparse-view diffuse optical tomography,” Waves in Random and Complex Media, pp. 1-17, 2021.
[69] G. Murtaza, L. Shuib, A. W. Abdul Wahab, G. Mujtaba, G. Mujtaba, H. F. Nweke, M. A. Al-garadi, F. Zulfiqar, G. Raza, and N. A. Azmi, “Deep learning-based breast cancer classification through medical imaging modalities: state of the art and research challenges,” Artificial Intelligence Review, vol. 53, pp. 1655-1720, 2020.
[70] A. Suganya, and S. Aarthy, "Deep Learning in Medical Image Classification," Integrating Deep Learning Algorithms to Overcome Challenges in Big Data Analytics, pp. 139-169: CRC Press, 2021.
[71] H. Lan, D. Jiang, C. Yang, F. Gao, and F. Gao, “Y-Net: Hybrid deep learning image reconstruction for photoacoustic tomography in vivo,” Photoacoustics, vol. 20, pp. 100197, 2020.
[72] D. Selvathi, and A. Aarthy Poornila, “Deep learning techniques for breast cancer detection using medical image analysis,” Biologically rationalized computing techniques for image processing applications, pp. 159-186, 2018.
[73] T. P. Szczykutowicz, G. V. Toia, A. Dhanantwari, and B. Nett, “A review of deep learning CT reconstruction: concepts, limitations, and promise in clinical practice,” Current Radiology Reports, vol. 10, no. 9, pp. 101-115, 2022.
[74] S. U. H. Dar, M. Özbey, A. B. Çatlı, and T. Çukur, “A transfer‐learning approach for accelerated MRI using deep neural networks,” Magnetic resonance in medicine, vol. 84, no. 2, pp. 663-685, 2020.
[75] Ghafoorian, Mohsen, et al. "Transfer learning for domain adaptation in MRI: Application in brain lesion segmentation." Medical Image Computing and Computer Assisted Intervention− MICCAI 2017: 20th International Conference, Quebec City, QC, Canada, September 11-13, 2017, Proceedings, Part III 20. Springer International Publishing, 2017.
[76] Chelghoum, Rayene, et al. "Transfer learning using convolutional neural network architectures for brain tumor classification from MRI images." IFIP international conference on artificial intelligence applications and innovations. Cham: Springer International Publishing, 2020.
[77] K. Ren, G. Bal, and A. H. Hielscher, “Frequency domain optical tomography based on the equation of radiative transfer,” SIAM Journal on Scientific Computing, vol. 28, no. 4, pp. 1463-1489, 2006.
[78] A. D. Klose, and A. H. Hielscher, “Iterative reconstruction scheme for optical tomography based on the equation of radiative transfer,” Medical physics, vol. 26, no. 8, pp. 1698-1707, 1999.
[79] A. D. Klose, and A. H. Hielscher, “Optical tomography with the equation of radiative transfer,” International Journal of Numerical Methods for Heat & Fluid Flow, vol. 18, no. 3/4, pp. 443-464, 2008.
[80] A. D. Klose, “The forward and inverse problem in tissue optics based on the radiative transfer equation: a brief review,” Journal of Quantitative Spectroscopy and Radiative Transfer, vol. 111, no. 11, pp. 1852-1853, 2010.
[81] S. R. Arridge, “Optical tomography in medical imaging,” Inverse problems, vol. 15, no. 2, pp. R41, 1999.
[82] H. Jiang, K. D. Paulsen, U. L. Osterberg, B. W. Pogue, and M. S. Patterson, “Optical image reconstruction using frequency-domain data: simulations and experiments,” JOSA A, vol. 13, no. 2, pp. 253-266, 1996.
[83] D. E. Rumelhart, G. E. Hinton, and R. J. Williams, “Learning representations by back-propagating errors,” nature, vol. 323, no. 6088, pp. 533-536, 1986.
[84] I. Goodfellow, Y. Bengio, and A. Courville, Deep learning: MIT press, 2016.
[85] J.-W. Lin, “Artificial neural network related to biological neuron network: a review,” Advanced Studies in Medical Sciences, vol. 5, no. 1, pp. 55-62, 2017.
[86] Albawi, Saad, Tareq Abed Mohammed, and Saad Al-Zawi. "Understanding of a convolutional neural network." 2017 international conference on engineering and technology (ICET). Ieee, 2017.
[87] A. Zafar, M. Aamir, N. Mohd Nawi, A. Arshad, S. Riaz, A. Alruban, A. K. Dutta, and S. Almotairi, “A comparison of pooling methods for convolutional neural networks,” Applied Sciences, vol. 12, no. 17, pp. 8643, 2022.
[88] A. F. Agarap, "Deep learning using rectified linear units (relu)," arXiv preprint arXiv:1803.08375, 2018.
[89] S. Narayan, “The generalized sigmoid activation function: Competitive supervised learning,” Information sciences, vol. 99, no. 1-2, pp. 69-82, 1997.
[90] S. R. Dubey, S. K. Singh, and B. B. Chaudhuri, “Activation functions in deep learning: A comprehensive survey and benchmark,” Neurocomputing, 2022.
[91] B. Xu, N. Wang, T. Chen, and M. Li, “Empirical evaluation of rectified activations in convolutional network,” arXiv preprint arXiv:1505.00853, 2015.
[92] Ioffe, Sergey, and Christian Szegedy. "Batch normalization: Accelerating deep network training by reducing internal covariate shift." International conference on machine learning. pmlr, pp. 448-456, 2015.
[93] B. D. Learning, “A performance and power analysis,” NVidia Whitepaper, Nov, 2015.
[94] B. W. Pogue, X. Song, T. D. Tosteson, T. O. McBride, S. Jiang, and K. D. Paulsen, “Statistical analysis of nonlinearly reconstructed near-infrared tomographic images. I. Theory and simulations,” IEEE transactions on medical imaging, vol. 21, no. 7, pp. 755-763, 2002.
[95] A. P. Cuadros, and G. R. Arce, “Coded aperture optimization in compressive X-ray tomography: a gradient descent approach,” Optics express, vol. 25, no. 20, pp. 23833-23849, 2017.
[96] Z. Wang, A. C. Bovik, H. R. Sheikh, and E. P. Simoncelli, “Image quality assessment: from error visibility to structural similarity,” IEEE transactions on image processing, vol. 13, no. 4, pp. 600-612, 2004.
[97] L.-Y. Chen, M.-C. Pan, C.-C. Yan, and M.-C. Pan, “Wavelength optimization using available laser diodes in spectral near-infrared optical tomography,” Applied optics, vol. 55, no. 21, pp. 5729-5737, 2016.
[98] L.-Y. Chen, M.-C. Pan, and M.-C. Pan, “Visualized numerical assessment for near infrared diffuse optical tomography with contrast-and-size detail analysis,” Optical review, vol. 20, pp. 19-25, 2013.
[99] Huang, Gao, Zhuang Liu, Laurens Van Der Maaten, and Kilian Q. Weinberger. "Densely connected convolutional networks." In Proceedings of the IEEE conference on computer vision and pattern recognition, pp. 4700-4708. 2017.
[100] L.-Y. Chen, M.-C. Pan, and M.-C. Pan, “Implementation of edge-preserving regularization for frequency-domain diffuse optical tomography,” Applied Optics, vol. 51, no. 1, pp. 43-54, 2012.
[101] S. Kiranyaz, T. Ince, and M. Gabbouj, “Real-time patient-specific ECG classification by 1-D convolutional neural networks,” IEEE Transactions on Biomedical Engineering, vol. 63, no. 3, pp. 664-675, 2015.
[102] U. R. Acharya, S. L. Oh, Y. Hagiwara, J. H. Tan, M. Adam, A. Gertych, and R. San Tan, “A deep convolutional neural network model to classify heartbeats,” Computers in biology and medicine, vol. 89, pp. 389-396, 2017.
[103] F.-X. Carton, M. Chabanas, F. Le Lann, and J. H. Noble, “Automatic segmentation of brain tumor resections in intraoperative ultrasound images using U-Net,” Journal of Medical Imaging, vol. 7, no. 3, pp. 031503-031503, 2020.
[104] L. Alzubaidi, M. A. Fadhel, O. Al-Shamma, J. Zhang, J. Santamaría, Y. Duan, and S. R. Oleiwi, “Towards a better understanding of transfer learning for medical imaging: a case study,” Applied Sciences, vol. 10, no. 13, pp. 4523, 2020.
[105] H. E. Kim, A. Cosa-Linan, N. Santhanam, M. Jannesari, M. E. Maros, and T. Ganslandt, “Transfer learning for medical image classification: a literature review,” BMC medical imaging, vol. 22, no. 1, pp. 69, 2022.
[106] Ravishankar, Hariharan, Prasad Sudhakar, Rahul Venkataramani, Sheshadri Thiruvenkadam, Pavan Annangi, Narayanan Babu, and Vivek Vaidya. "Understanding the mechanisms of deep transfer learning for medical images." In Deep Learning and Data Labeling for Medical Applications: First International Workshop, LABELS 2016, and Second International Workshop, DLMIA 2016, Held in Conjunction with MICCAI 2016, Athens, Greece, October 21, 2016, Proceedings 1, pp. 188-196, 2016.
[107] N. Murad, M.-C. Pan, and Y.-F. Hsu, “Reconstruction and localization of tumors in breast optical imaging via convolution neural network based on batch normalization layers,” IEEE Access, vol. 10, pp. 57850-57864, 2022.
[108] B. Mustafa, A. Loh, J. Freyberg, P. MacWilliams, M. Wilson, S. M. McKinney, M. Sieniek, J. Winkens, Y. Liu, and P. Bui, “Supervised transfer learning at scale for medical imaging,” arXiv preprint arXiv:2101.05913, 2021.
指導教授 潘敏俊(Min-Chun PAN) 審核日期 2023-11-8
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明