博碩士論文 110323128 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:75 、訪客IP:3.145.12.242
姓名 賴美蓁(Mei-Zhen Lai)  查詢紙本館藏   畢業系所 機械工程學系
論文名稱 奈米流體親水液滴於蒸發初期的流場模擬:表面活性劑的影響
相關論文
★ 溫度調變對二元合金固液介面形態穩定的影響★ 濃度調變對二元合金固液介面形態穩定的影響
★ 圓錐平板型生物反應器週期性流場研究★ 圓錐平板型生物反應器二次週期流場研究
★ 圓錐平板型生物反應器脈動式流場研究★ 濃度調變對單向固化形態穩定的影響
★ 圓錐平板型生物反應器脈動式二次流場研究★ 模擬注流式生物反應器之流場及細胞生長
★ 週期式圓錐平板裝置之設計與量測★ 模擬注流式生物反應器之細胞培養研究
★ 軟骨細胞在組織工程支架之培養研究★ 細胞在組織工程支架之生長與遷移
★ 冷電漿沉積類鑽碳膜之製程模擬分析★ 格狀自動機探討組織工程細胞體外培養研究
★ 細胞在注流式生物反應器之生長研究★ 週期式圓錐平板裝置之流場分析
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   至系統瀏覽論文 (2025-11-9以後開放)
摘要(中) 液滴蒸發的應用範圍相當廣泛,包括晶體陣列、噴墨印刷、噴霧冷卻、薄膜沉積、蛋白質結晶等各個領域。固著液滴的蒸發行為是隨時間變化的動態系統,其模式會受到基板溫度、基板表面粗糙度、環境溫溼度、液滴溶質成分和液滴接觸角等的影響,進而在液滴內部形成不同流場,最終導致不同的沉積圖案。本研究的主要目的為探究在常溫下的奈米流體親水液滴,加入不同濃度的表面活性劑對液滴的初期乾燥過程行為的影響。
本研究以數值模擬的方式,發展可以預測液滴內部流動的簡易模型,透過調整奈米粒子密度、奈米粒子粒徑和增加表面活性劑濃度等方法,進一步提供抑制咖啡環效應的解決方案。由模擬結果可知,親水液滴的水蒸氣在三相接觸線區域擴散較快,因此此處的蒸發通量最大並朝液滴頂點方向蒸發通量逐漸遞減。當液滴內部無添加表面活性劑,其流場為浮力驅動的瑞利流,奈米粒子容易堆積在接觸線區域,透過增加奈米粒子密度和調整奈米粒子粒徑均可以抑制咖啡環效應。當液滴內部加入表面活性劑,其流場為表面張力驅動的馬蘭哥尼流,奈米粒子被帶離接觸線區域,而加入越高濃度的表面活性劑,液滴抑制咖啡環效應的能力越強。


關鍵字:固著液滴、蒸發、瑞利流、馬蘭哥尼流、咖啡環
摘要(英) The application scope of droplet evaporation is extensive, encompassing various fields such as crystal arrays, inkjet printing, spray cooling, thin film deposition, protein crystallization, and more. The evaporation behavior of sessile droplets is a dynamic system. Factors such as substrate temperature, surface roughness, environmental temperature and humidity, solute composition within the droplet, and the contact angle influence the droplet’s deposition pattern. These factors give rise to different flows within the droplet, ultimately leading to distinct deposition patterns. The primary objective of this study is to investigate the short-time behavior of hydrophilic droplets of nanofluid evaporated at room temperature with varying concentrations of surfactants.
This study develops a simplified model for predicting the internal flow of the droplets for numerical simulation. By adjusting parameters such as nanoparticle density, nanoparticle size, and surfactant concentration, this study aims to provide a solution reference for mitigating the coffee ring effect. According to the simulation results, the water vapor from the hydrophilic droplets diffuses faster in the three-phase contact region. Consequently, the highest evaporation flux occurs in this region, gradually decreasing towards the droplet apex. In cases with no surfactant added to the droplet, the buoyancy-driven Rayleigh convection dominated the flow field, leading to nanoparticle accumulation in the contact line region. Increasing nanoparticle density and adjusting nanoparticle size can suppress the coffee ring effect. Conversely, when surfactants are added to the droplet, the flow field is governed by surface tension-driven Marangoni flow, causing the nanoparticle migration away from the contact line region. Higher surfactant concentrations enhance the mitigation of the coffee ring effect.


Keywords: sessile droplets, evaporation, Rayleigh flow, Marangoni flow, coffee ring
關鍵字(中) ★ 固著液滴
★ 蒸發
★ 瑞利流
★ 馬蘭哥尼流
★ 咖啡環
關鍵字(英) ★ sessile droplets
★ evaporation
★ Rayleigh flow
★ Marangoni flow
★ coffee ring
論文目次 摘要 i
Abstract ii
目錄 iii
圖目錄 v
表目錄 xii
符號表 xiii
第一章 緒論 1
1.1研究動機 1
1.2文獻回顧 3
1.2.1液滴蒸發模式 3
1.2.2液滴內部流場 3
1.2.3液滴蒸發的數值模擬 5
1.3研究目的 9
第二章 研究方法 10
2.1物理模型 10
2.1.1統御方程式 12
2.1.2初始條件 14
2.1.3邊界條件 14
2.1.4蒸發通量 16
2.1.5物理性質 18
2.2數值方法 19
2.2.1COMSOL Multiphysics 19
2.2.2網格獨立性測試 19
第三章 結果與討論 30
3.1改變奈米粒子密度對液滴流場的影響 30
3.1.1奈米粒子密度為1050 kg/m3 30
3.1.2奈米粒子密度為2500 kg/m3 36
3.1.3奈米粒子密度為4000 kg/m3 40
3.1.4不同奈米粒子密度對液滴流場的結果比較 44
3.2改變奈米粒子粒徑對液滴流場的影響 47
3.2.1奈米粒子粒徑為0.02 μm 47
3.2.2奈米粒子粒徑為2 μm 51
3.2.3不同奈米粒子粒徑對液滴流場的結果比較 55
3.3改變表面活性劑濃度對液滴流場的影響 60
3.3.1表面活性劑初始濃度為0.020 mol/m3 60
3.3.2表面活性劑初始濃度為1.7308 mol/m3 70
3.3.3表面活性劑初始濃度為17.3089 mol/m3 79
3.3.4表面活性劑初始濃度為34.6198 mol/m3 89
3.3.5增加不同濃度的表面活性劑對液滴流場的結果比較 99
第四章 結論與未來展望 105
4.1結論 105
4.2未來展望 106
參考文獻 107
附錄 114
參考文獻 Akdag, O., Akkus, Y., Çetin, B., & Dursunkaya, Z. (2021). Interplay of transport mechanisms during the evaporation of a pinned sessile water droplet. Physical Review Fluids, 6(7), 073605.
Bard, A. J., Faulkner, L. R., & White, H. S. (2022). Electrochemical methods: fundamentals and applications. John Wiley & Sons.
Barmi, M. R., & Meinhart, C. D. (2014). Convective flows in evaporating sessile droplets. The Journal of Physical Chemistry B, 118(9), 2414-2421.
Ben Said, M., Selzer, M., Nestler, B., Braun, D., Greiner, C., & Garcke, H. (2014). A phase-field approach for wetting phenomena of multiphase droplets on solid surfaces. Langmuir, 30(14), 4033-4039.
Bennacer, R., & Sefiane, K. (2014). Vortices, dissipation and flow transition in volatile binary drops. Journal of fluid mechanics, 749, 649-665.
Birdi, K. S., Vu, D. T., & Winter, A. (1989). A study of the evaporation rates of small water drops placed on a solid surface. The Journal of physical chemistry, 93(9), 3702-3703.
Bozorgmehr, B., & Murray, B. T. (2021). Numerical simulation of evaporation of ethanol–water mixture droplets on isothermal and heated substrates. ACS omega, 6(19), 12577-12590.
Caputo, F., Vogel, R., Savage, J., Vella, G., Law, A., Della Camera, G., ... & Calzolai, L. (2021). Measuring particle size distribution and mass concentration of nanoplastics and microplastics: addressing some analytical challenges in the sub-micron size range. Journal of Colloid and Interface Science, 588, 401-417.
Carney, R. R. P. (2010). Probing metal nanoparticles and assemblies with analytical ultracentrifugation (Doctoral dissertation, Massachusetts Institute of Technology).
Carreón, Y. J., Ríos-Ramírez, M., Moctezuma, R. E., & González-Gutiérrez, J. (2018). Texture analysis of protein deposits produced by droplet evaporation. Scientific reports, 8(1), 9580.
Chandramohan, A., Dash, S., Weibel, J. A., Chen, X., & Garimella, S. V. (2016). Marangoni convection in evaporating organic liquid droplets on a nonwetting substrate. Langmuir, 32(19), 4729-4735.
Chang, M. H., & Ruo, A. C. (2022). Rayleigh–Bénard instability in nanofluids: effect of gravity settling. Journal of Fluid Mechanics, 950, A37.
Chen, Y. H., Hu, W. N., Wang, J., Hong, F. J., & Cheng, P. (2017). Transient effects and mass convection in sessile droplet evaporation: The role of liquid and substrate thermophysical properties. International Journal of Heat and Mass Transfer, 108, 2072-2087.
Chen, Y., Yan, T., Zhang, Y., Wang, Q., & Li, G. (2020). Characterization of the incense ingredients of cultivated grafting Kynam by TG-FTIR and HS-GC-MS. Fitoterapia, 142, 104493.
Clift, R., Grace, J. R., & Weber, M. E. (2005). Bubbles, drops, and particles.
Dash, S., Chandramohan, A., Weibel, J. A., & Garimella, S. V. (2014). Buoyancy-induced on-the-spot mixing in droplets evaporating on nonwetting surfaces. Physical Review E, 90(6), 062407.
Deegan, R. D., Bakajin, O., Dupont, T. F., Huber, G., Nagel, S. R., & Witten, T. A. (1997). Capillary flow as the cause of ring stains from dried liquid drops. Nature, 389(6653), 827-829.
DeGans, B. J., &Schubert, U. S. (2004). Inkjet printing of well-defined polymer dots and arrays. Langmuir, 20(18), 7789-7793.
DeGans, B. J., Duineveld, P. C., & Schubert, U. S. (2004). Inkjet printing of polymers: state of the art and future developments. Advanced materials, 16(3), 203-213.
Diddens, C., Kuerten, J. G., Van der Geld, C. W. M., & Wijshoff, H. M. A. (2017). Modeling the evaporation of sessile multi-component droplets. Journal of colloid and interface science, 487, 426-436.
Diddens, C., Li, Y., & Lohse, D. (2021). Competing Marangoni and Rayleigh convection in evaporating binary droplets. Journal of fluid mechanics, 914, A23.
Edwards, A. M. J., Atkinson, P. S., Cheung, C. S., Liang, H., Fairhurst, D. J., & Ouali, F. F. (2018). Density-driven flows in evaporating binary liquid droplets. Physical review letters, 121(18), 184501.
Erbil, H. Y., McHale, G., & Newton, M. I. (2002). Drop evaporation on solid surfaces: constant contact angle mode. Langmuir, 18(7), 2636-2641.
Fischer, B. J. (2002). Particle convection in an evaporating colloidal droplet. Langmuir, 18(1), 60-67.
Hernáinz, F., & Caro, A. (2002). Variation of surface tension in aqueous solutions of sodium dodecyl sulfate in the flotation bath. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 196(1), 19-24.
Hirt, C. W., & Nichols, B. D. (1981). Volume of fluid (VOF) method for the dynamics of free boundaries. Journal of computational physics, 39(1), 201-225.
Hu, H., & Larson, R. G. (2002). Evaporation of a sessile droplet on a substrate. The Journal of Physical Chemistry B, 106(6), 1334-1344.
Hu, H., & Larson, R. G. (2005). Analysis of the effects of Marangoni stresses on the microflow in an evaporating sessile droplet. Langmuir, 21(9), 3972-3980.
Hu, H., & Larson, R. G. (2006). Marangoni effect reverses coffee-ring depositions. The Journal of Physical Chemistry B, 110(14), 7090-7094.
Hundy, G. F., Trott, A. R., & Welch, T. C. (2008). Refrigeration and air-conditioning. Butterworth-Heinemann.
Irfan, M., & Muradoglu, M. (2017). A front tracking method for direct numerical simulation of evaporation process in a multiphase system. Journal of Computational Physics, 337, 132-153.
Jang, J., Nam, S., Im, K., Hur, J., Cha, S. N., Kim, J., ... & Kim, K. (2012). Highly crystalline soluble acene crystal arrays for organic transistors: mechanism of crystal growth during dip‐coating. Advanced Functional Materials, 22(5), 1005-1014.
Jia, W., & Qiu, H. H. (2003). Experimental investigation of droplet dynamics and heat transfer in spray cooling. Experimental Thermal and Fluid Science, 27(7), 829-838.
Jiang, W., Ding, G., Peng, H., & Hu, H. (2010). Modeling of nanoparticles’ aggregation and sedimentation in nanofluid. Current Applied Physics, 10(3), 934-941.
Jing, J., Reed, J., Huang, J., Hu, X., Clarke, V., Edington, J., ... & Schwartz, D. C. (1998). Automated high resolution optical mapping using arrayed, fluid-fixed DNA molecules. Proceedings of the National Academy of Sciences, 95(14), 8046-8051.
Kang, K. H., Lim, H. C., Lee, H. W., & Lee, S. J. (2013). Evaporation-induced saline Rayleigh convection inside a colloidal droplet. Physics of Fluids, 25(4).
Kim, H., Boulogne, F., Um, E., Jacobi, I., Button, E., & Stone, H. A. (2016). Controlled uniform coating from the interplay of Marangoni flows and surface-adsorbed macromolecules. Physical review letters, 116(12), 124501.
Kim, J. H., Ahn, S. I., Kim, J. H., & Zin, W. C. (2007). Evaporation of water droplets on polymer surfaces. Langmuir, 23(11), 6163-6169.
Kim, J. Y., & Weon, B. M. (2018). Evaporation of strong coffee drops. Applied Physics Letters, 113(18).
Kovalchuk, N. M., Trybala, A., & Starov, V. M. (2014). Evaporation of sessile droplets. Current Opinion in Colloid & Interface Science, 19(4), 336-342.
Larson, R. G. (2014). Transport and deposition patterns in drying sessile droplets. AIChE Journal, 60(5), 1538-1571.
Li, Y., Diddens, C., Lv, P., Wijshoff, H., Versluis, M., & Lohse, D. (2019). Gravitational effect in evaporating binary microdroplets. Physical review letters, 122(11), 114501.
Lupo, G., Ardekani, M. N., Brandt, L., & Duwig, C. (2019). An immersed boundary method for flows with evaporating droplets. International Journal of Heat and Mass Transfer, 143, 118563.
Mansoor, B., & Chen, W. (2022). Nanoparticle deposition pattern during colloidal droplet evaporation as in-situ investigated by Low-Field NMR: The critical role of bound water. Journal of Colloid and Interface Science, 613, 709-719.
McHale, G., Rowan, S. M., Newton, M. I., & Banerjee, M. K. (1998). Evaporation and the wetting of a low-energy solid surface. The Journal of Physical Chemistry B, 102(11), 1964-1967.
Muramatsu, H., Pillai, A. L., Kitada, K., & Kurose, R. (2022). Numerical simulation of bi-component fuel droplet evaporation using Level Set method. Fuel, 318, 123331.
Murisic, N., & Kondic, L. (2011). On evaporation of sessile drops with moving contact lines. Journal of fluid mechanics, 679, 219-246.
Panwar, A. K., Barthwal, S. K., & Ray, S. (2003). Effect of evaporation on the contact angle of a sessile drop on solid substrates. Journal of adhesion science and technology, 17(10), 1321-1329.
Parsa, M., Harmand, S., & Sefiane, K. (2018). Mechanisms of pattern formation from dried sessile drops. Advances in colloid and interface science, 254, 22-47.
Patil, N. D., Bange, P. G., Bhardwaj, R., & Sharma, A. (2016). Effects of substrate heating and wettability on evaporation dynamics and deposition patterns for a sessile water droplet containing colloidal particles. Langmuir, 32(45), 11958-11972.
Picknett, R. G., & Bexon, R. (1977). The evaporation of sessile or pendant drops in still air. Journal of colloid and Interface Science, 61(2), 336-350.
Polyanin, A. D., & Manzhirov, A. V. (2006). Handbook of mathematics for engineers and scientists. CRC Press.
Pradhan, T. K., & Panigrahi, P. K. (2017). Evaporation induced natural convection inside a droplet of aqueous solution placed on a superhydrophobic surface. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 530, 1-12.
Reutzsch, J., Kieffer-Roth, C., & Weigand, B. (2020). A consistent method for direct numerical simulation of droplet evaporation. Journal of Computational Physics, 413, 109455.
Ristenpart, W. D., Kim, P. G., Domingues, C., Wan, J., & Stone, H. A. (2007). Influence of substrate conductivity on circulation reversal in evaporating drops. Physical review letters, 99(23), 234502.
Savino, R., & Monti, R. (1996). Buoyancy and surface-tension-driven convection in hanging-drop protein crystallizer. Journal of crystal growth, 165(3), 308-318.
Sefiane, K., & Bennacer, R. (2011). An expression for droplet evaporation incorporating thermal effects. Journal of Fluid Mechanics, 667, 260-271.
Semenov, S., Starov, V., Rubio, R. G., & Velarde, M. G. (2011). Computer simulations of quasi-steady evaporation of sessile liquid droplets. Trends in Colloid and Interface Science XXIV, 115-120.
Shaikh, J., Sharma, A., & Bhardwaj, R. (2019). On sharp-interface dual-grid level-set method for two-phase flow simulation. Numerical Heat Transfer, Part B: Fundamentals, 75(1), 67-91.
Shang, X., Zhang, X., Nguyen, T. B., & Tran, T. (2022). Direct numerical simulation of evaporating droplets based on a sharp-interface algebraic VOF approach. International Journal of Heat and Mass Transfer, 184, 122282.
Shin, D. H., Lee, S. H., Jung, J. Y., & Yoo, J. Y. (2009). Evaporating characteristics of sessile droplet on hydrophobic and hydrophilic surfaces. Microelectronic Engineering, 86(4-6), 1350-1353.
Stauber, J. M., Wilson, S. K., Duffy, B. R., & Sefiane, K. (2015). Evaporation of droplets on strongly hydrophobic substrates. Langmuir, 31(12), 3653-3660.
Still, T., Yunker, P. J., & Yodh, A. G. (2012). Surfactant-induced Marangoni eddies alter the coffee-rings of evaporating colloidal drops. Langmuir, 28(11), 4984-4988.
Tam, D., von ARNIM, V. O. L. K. M. A. R., McKinley, G. H., & Hosoi, A. E. (2009). Marangoni convection in droplets on superhydrophobic surfaces. Journal of Fluid Mechanics, 624, 101-123.
Thibodeaux, L. J., Birdwell, J. E., & Reible, D. D. (2011). 12 Diffusive Chemical Transport across Water and Sediment Boundary Layers. In Library of Congress Cataloging-in-Publication Data (p. 321).
Thokchom, A. K., Swaminathan, R., & Singh, A. (2014). Fluid flow and particle dynamics inside an evaporating droplet containing live bacteria displaying chemotaxis. Langmuir, 30(41), 12144-12153.
Tritton, D. J. (2012). Physical fluid dynamics. Springer Science & Business Media.
Vekilov, P. G., Thomas, B. R., & Rosenberger, F. (1998). Effects of convective solute and impurity transport in protein crystal growth. The Journal of Physical Chemistry B, 102(26), 5208-5216.
Winkelmann, J. (2017). Diffusion coefficient of sodium dodecyl sulfate in water. Diffusion in Gases, Liquids and Electrolytes: Nonelectrolyte Liquids and Liquid Mixtures-Part 1: Pure Liquids and Solute in Solvent Systems, 1001-1001.
Xu, X., & Luo, J. (2007). Marangoni flow in an evaporating water droplet. Applied Physics Letters, 91(12).
Yang, K., Hong, F., & Cheng, P. (2014). A fully coupled numerical simulation of sessile droplet evaporation using Arbitrary Lagrangian–Eulerian formulation. International Journal of Heat and Mass Transfer, 70, 409-420.
Zhang, X., Wang, J., Bao, L., Dietrich, E., van der Veen, R. C., Peng, S., ... & Lohse, D. (2015). Mixed mode of dissolving immersed nanodroplets at a solid–water interface. Soft Matter, 11(10), 1889-1900.
Zhong, X., Crivoi, A., & Duan, F. (2015). Sessile nanofluid droplet drying. Advances in colloid and interface science, 217, 13-30.
陳育澤. (2023). 溫度與表面活性劑對液滴沉積圖案的影響. Master Thesis. National Central University.
指導教授 鍾志昂(Chih-Ang Chung) 審核日期 2023-11-9
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明