博碩士論文 110323037 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:53 、訪客IP:3.135.246.193
姓名 楊勝光(Shen-guang,Yang)  查詢紙本館藏   畢業系所 機械工程學系
論文名稱 以微銑削製程進行金屬微流道及微結構製造研究
(Research on the fabrication of metal microchannels and microstructures using micro-milling process.)
相關論文
★ 微流體系統應用於機械力刺激人體膀胱癌細胞之研究★ 多重微流體晶片機械應力刺激細胞培養之研究
★ 藉由熱接合、表面改質與溶劑處理方法 封閉於環狀嵌段共聚物與環烯烴共聚物材料上 微流道之研究★ Development of A Label-Free Imaging Droplet Sorting System with Machine Learning-Support Vector Machine (SVM)
★ 複合式物理力的生物反應器自動化與控制設計★ 外部致動之微流體機電控制平台
★ 以微铣削進行高分子微流體裝置之製程整合★ 奈米矽質譜晶片於質譜檢測之應用研究
★ 矽奈米結構對於質譜離子化效率探討之研究★ 微滾軋製程應用於高分子材料轉印微結構之研究
★ 設計微流體晶片應用於人體胎盤幹細胞的物理/化學誘導分化之研究★ 利用熱壓製造類多孔隙介質之 微流道模型研究
★ 單晶矽材料電化學放電鑽孔及同軸電度之研究★ 微流道中液滴成形及滴落現象之模擬分析
★ 兆聲波輔助化學溶液清潔晶圓表面汙染顆粒研究★ 真空加熱矽奈米結構晶片對於提升質譜檢測靈敏度與離子化機制探討與應用
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   至系統瀏覽論文 (2028-11-21以後開放)
摘要(中) 本次論文研究,可分為兩部份,分別以銅材料,做為製造高深寬比微流道成品材料。另外使用銅、鋁6061材料,做為製造微結構成品材料。搭配使用電腦數控銑床(Computer numerical control milling machine , CNC milling machine)進行微銑削(Micro-milling),利用電腦數控銑床優勢,例如:微流道模具快速建模、高深寬比微流道、良好微流道尺寸控制和即時進行少量化生產等優勢,微觀銑削製程時與宏觀微銑削製程,有著不同銑削狀態,被稱為尺寸效應(Size effect),本次研究製造,著重在高深寬比微流道,然而使用加長型端銑刀(Extra long end-mill)、加長型球形端銑刀(Extra long ball-end-mill)進行銑削時,因為參數設定不同,例如:主軸轉速(Spindle speed,N)、進給速率(Feed rate,V_f)、每刀切深量(Axial cutting depth,a_P)、每齒進給率(Feed per tooth,f_z),皆具有不同犁切效應(Ploughing effect)影響,對於微銑削後,表面粗糙度(Surface roughness,R_z)、毛邊尺寸(Burr size),具有不同影響成品精準度,且使用其他方式,並不容易移除毛邊,故將對於加長型端銑刀,使用銑削參數進行研究。此外,使用加長型球形端銑刀具,產生自然扇形高度(Scallop height),影響微銑削後表面粗糙度,且搭配十字型刀具銑削路徑,在材料表面製造出金字塔微結構(Microstructure),並研究此金字塔微結構尺寸變化。
摘要(英) The present research can be divided into two parts, each focusing on the utilization of copper materials for the fabrication of high aspect ratio microchannels as well as the use of copper and aluminum 6061 materials for the production of microstructures. Micro-milling processes are conducted using a computer numerical control milling machine (CNC milling machine). Leveraging the advantages of CNC milling machines, such as rapid modeling of microchannel molds, the creation of high aspect ratio microchannels, precise control of microchannel dimensions, and real-time small-scale production capabilities, the micro-milling process exhibits distinct milling conditions when compared to macro-milling processes. This phenomenon is known as the size effect. In this study, the emphasis is placed on high aspect ratio microchannels.
However, when utilizing extended end mills and extended ball-end mills for milling, variations in milling parameters, such as spindle speed(N), feed rate(V_f), axial cutting depth per pass (a_P), and feed per tooth (f_z) result in different ploughing effects. Consequently, after micro-milling, the surface roughness (R_z) and burr size exhibit differing impacts on the precision of the final product. Additionally, alternative methods are not easily effective in removing burrs. Therefore, this research investigates the use of extended end mills with different milling parameters.
Furthermore, the use of extended ball-end mills produces a natural scallop height, which affects the surface roughness after micro-milling. When combined with a cross-shaped toolpath, it creates pyramid microstructures on the material′s surface. The variation in the dimensions of these pyramid microstructures is also studied.
關鍵字(中) ★ 微銑削
★ 加長型端銑刀
★ 加長型球形端銑刀
★ 微流道
★ 微結構
★ 毛邊
★ 表面粗糙
★ 犁切效應
關鍵字(英) ★ Micro-milling
★ Extra long end-mill
★ Extra long ball-end-mill
★ Microchannel
★ Microstructures
★ Burrs size
★ Surface roughness
★ Ploughing effect
論文目次 目錄
摘要................................................................i
致謝...............................................................iii
目錄...............................................................iv
圖目錄..............................................................v
表目錄............................................................viii
第一部分 微流道製造.................................................1
第一章 緒論.........................................................1
1.1前言............................................................1
1.2製造金屬微流道現況..............................................2
1.2.1蝕刻製程......................................................2
1.2.2放電加工......................................................2
1.2.3雷射加工......................................................3
1.2.4微銑削製程....................................................5
1.3研究動機.......................................................10
第二章 實驗設備及設計方法..........................................11
2.1微流道實驗設備及方法...........................................11
2.1.1量測微流道毛邊寬度實驗設備及方法.............................11
2.1.2量測微流道表面粗糙度實驗設備及方法...........................13
第三章 實驗結果與討論..............................................15
3.1微流道製造.....................................................16
3.1.1每刀銑削深度影響高深寬比微流道精度...........................16
3.1.2每齒進給量及進給速率影響高深寬比薄壁微流道精度...............22
3.1.3利用端銑刀製造低表面粗糙度高深寬比微流道.....................30
3.1.4利用球形端銑刀製造可控制表面粗糙度曲面微流道.................33
3.2微流道製造成品.................................................42
第四章 結論........................................................43
第五章 未來展望....................................................44
第二部分 微結構製造................................................45
第一章 緒論........................................................45
1.1前言...........................................................45
1.2製造金屬微結構現況.............................................45
1.2.1蝕刻製程.....................................................45
1.2.2放電加工製程.................................................47
1.2.3雷射加工製程.................................................48
1.2.4微銑削製程...................................................49
1.3研究動機.......................................................51
第二章 實驗材料設備與方法..........................................51
2.1微結構實驗設備及方法...........................................51
2.2微結構量測接觸角實驗使用設備及設計方法.........................54
第三章 結果與討論..................................................55
3.1金字塔微結構製造...............................................55
3.2金字塔微結構產生疏水性效果.....................................62
第四章 結論........................................................65
第五章 未來展望....................................................65
參考文獻...........................................................66
圖目錄
Figure (1)Using etching fabrication metal microchannel. ......................2
Figure (2)Using electric discharge machining fabrication metal microchannel. ....3
Figure (3)Fabrication of microchannels using laser machining. .................4
Figure (4)Three types of material removal mechanisms in micro-milling.[30] .....5
Figure (5)Milling schematic diagram.[36] .................................6
Figure (6)Schematic diagram of burr formation.[38] .........................6
Figure (7)Review of parameters and burr used in micro-milling. ................8
Figure (8)Micro-milling process for manufacturing metal microchannels. ........9
Figure (9)Using CNC five-axis processing machine (Hartford 5A-25R) .........11
Figure (10)Measuring edge using equipment.(Nikon Optical Microscope) .......12
Figure (11)Surface Roughness Measurement Equipment (Bruker Dektak XT) ....13
Figure (12)Manufacturing microchannel and microchannel mold process. .......15
Figure (13)Compare extra length and ordinary 0.8mm end-mill. ...............16
Figure (14)Milling parameter stability. (a) Unstable parameters. (b)stable parameters. ........................................................17
Figure (15)Micro-milling schematic diagram.(adapt[59]) ....................17
Figure (16)Extend length end-mill with 0.8mm diameter (titanium silicon coating) cutter edge radius diagram. ............................................18
Figure (17)Diagram illustrating the relationship between each pass milling depth(a_p) and minimum chip thickness(h_min). .....................................18
Figure (18)Single-pass and multiple-pass milling schematic diagram. ..........19
Figure (19)Schematic diagram for calculating Average burr width at the microchannel. ......................................................19
Figure (20)Use a extra length 0.8mm diameter end-mill (titanium silicon coating). ...........................................................21
Figure (21)Schematic diagram of the influence of material grain position on micro-milling process. (adapt[62]) ...........................................22
Figure (22)Compare extra length and ordinary 0.4、0.3mm end-mill. ..........23
Figure (23)Extra length end-mill tool radius (r_e) diagram. ...................23
Figure (24)Conditions with aspect ratio 13:1 microchannel wall thickness of 0.15mm, depth of 2mm (upper image), and 0.10mm (lower image). ...................23
Figure (25)Diagram of per tooth feed rate (f_z). ............................24
Figure (26)f_z to r_e ratio (Single pass milling). ............................26
Figure (27)Diagram of per tooth feed rate. (a)Smaller f_z. (b)Bigger f_z..........26
Figure (28)Using extra length a 0.3mm diameter end-mill (Titanium Silicon Coating). ..........................................................28
Figure (29)Using extra length a 0.4mm diameter end-mill (Titanium Silicon Coating). ..........................................................29
Figure (30)Schematic diagram for calculating surface roughness. ..............30
Figure (31)Tool marks on the bottom of microchannels after milling at different spindle speeds. ......................................................31
Figure (32)Surface roughness experiment with extra length 0.8mm diameter end-mill (Titanium Silicon Coating). ............................................33
Figure (33)Schematic Diagram of scallop height generated using a ball-end-mill.(adapt[66]) .....................................................34
Figure (34)Difference between theoretical and actual values of scallop height for extended ball-end-mill. ...............................................35
Figure (35)Extra length 0.8、0.7、0.6mm ball-end-mill (Titanium Silicon Coating) cutter face image and tool edge radius diagram. ............................36
Figure (36)Schematic diagram of ball-end-mill milling in the shear area and ploughing effect area.(adapt[70, 71]) ....................................36
Figure (37)Experimental diagram of surface roughness using ball-end-mill with spacing between tool paths. ............................................37
Figure (38)Schematic diagram of the influence of ball-end-mill path spacing on scallop height and surface roughness. ....................................37
Figure (39)Surface roughness control experiment with extra length 0.8mm diameter ball-end-mill. .......................................................39
Figure (40)Surface roughness control experiment with extra lenght 0.7mm diameter ball-end-mill. .......................................................40
Figure (41)Surface roughness control experiment with extra length 0.6mm diameter ball-end-mill. .......................................................41
Figure (42)Microchannel heat sink. .....................................42
Figure (43)Microchannel mold. ........................................43
Figure (44)Etching process to create microstructure. ........................46
Figure (45)The picture of workpiece deformation and recast layer. .............47
Figure (46)Manufacturing microstructures using laser processing. .............48
Figure (47)The the 3D chip geometry of a micro ball-end mill feed in the horizontal direction when the angle is set to zero. ...................................49
Figure (48)Area of cut in ball-end milling considering the shearing and ploughing areas. .............................................................50
Figure (49)Fabrication of metal microstructures with micro-milling process. .....50
Figure (50)Using CNC five-axis processing machine (Hartford 5A-25R) ........52
Figure (51)Extra-length ball-end mill with diameters of 0.8mm、0.7mm、0.6mm. ............................................................52
Figure (52)Horizontal and vertical tool path milling direction. ................52
Figure (53)The measurement of pyramid shapes was conducted using equipment.(Scanning Electron Microscope , SEM) .........................53
Figure (54)Experimental equipment used for measuring pyramid shapes. ........53
Figure (55)Experimental equipment used for measuring pyramid shapes. (Bruker Dektak XT) ........................................................53
Figure (56)Schematic diagram of contact angle measurement. ................54
Figure (57)Contact angle measurement equipment. .........................54
Figure (58)Schematic simulation of cross milling path with a ball-end-mill. ......56
Figure (59)Schematic diagram of generating pyramid-shaped structures using ball-end-mill. ..........................................................56
Figure (60)Intentional generation of pyramid structures using a ball-end-mill.....57
Figure (61)Schematic diagram of measuring pyramid height using Dektak XT....57
Figure (62)Manufacturing pyramid height using a extra length 0.8mm diameter ball-end-mill. ..........................................................58
Figure (63)Manufacturing pyramid height using a extra length 0.7mm diameter ball-end-mill. ..........................................................59
Figure (64)Manufacturing pyramid height using a extra length 0.6mm diameter ball-end-mill. ..........................................................59
Figure (65)Copper、AL6061 pyramid microstructures.(SEM、Dektak XT) .....61
Figure (66)Schematic diagram of hydrophobic effect generated by pyramid microstructures. .....................................................63
Figure (67)Unprocessed copper and aluminum 6061 contact angle. ............63
Figure (68)Experiment for generating hydrophobic contact angles with pyramid shapes. ............................................................64
表目錄
Table (1)Experimental data for average burr of 0.8mm end-mill. ..............12
Table (2)Experimental data for average burr of 0.3mm and 0.4mm end-mill minimum wall thickness. ......................................................13
Table (3)Surface roughness experiment using a 0.8mm end-mill. ..............14
Table (4)Experimental data for surface roughness of 0.8、0.7、0.6mm ball-end-mill. ..............................................................15
Table (5)Data for 0.3mm and 0.4mm end-mill. ............................25
Table (6)Experimental data for pyramid generation using 0.8mm、0.7mm、0.6mm ball-end-mill on copper and aluminum 6061. ..............................54
Table (7)Yield Strength table for materials.(Copper、Aluminum 6061) .........55
參考文獻 1. He, Z., Y. Yan, and Z. Zhang, Thermal management and temperature uniformity enhancement of electronic devices by micro heat sinks: A review. Energy, 2021. 216.
2. Deshmukh, S.S., et al., Investigation of replication accuracy of embossed micro-channel through hot embossing using laser patterned copper mold. Materials Today: Proceedings, 2022. 60: p. 2222-2229.
3. Dr. Liz Katherine Rincon, A., et al., Micro-Milling Process for Manufacturing of Microfluidic Moulds, in Proceedings of the 23rd ABCM International Congress of Mechanical Engineering. 2015.
4. Cheng K, H.D., Micro-cutting: fundamentals and applications. 2013.
5. Prakash, S. and S. Kumar, Fabrication of microchannels: A review. Proceedings of the Institution of Mechanical Engineers, Part B: Journal of Engineering Manufacture, 2014. 229(8): p. 1273-1288.
6. Behravesh, E., et al., Microreactor coating with Au/Al2O3 catalyst for gas-phase partial oxidation of ethanol: Physico-chemical characterization and evaluation of catalytic properties. Chemical Engineering Journal, 2019. 378.
7. Saleh, M., et al., Milling Microchannels in Monel 400 Alloy by Wire EDM: An Experimental Analysis. Micromachines (Basel), 2020. 11(5).
8. Rajurkar, A. and S. Chinchanikar, Experimental Investigation on Laser-Processed Micro-Dimple and Micro-Channel Textured Tools during Turning of Inconel 718 Alloy. Journal of Materials Engineering and Performance, 2022. 31(5): p. 4068-4083.
9. Chen, L., et al., Burr formation and surface roughness characteristics in micro-milling of microchannels. The International Journal of Advanced Manufacturing Technology, 2020. 111(5-6): p. 1277-1290.
10. Brousseau, E.B., S.S. Dimov, and D.T. Pham, Some recent advances in multi-material micro- and nano-manufacturing. The International Journal of Advanced Manufacturing Technology, 2009. 47(1-4): p. 161-180.
11. Murshed, S.M.S., Introductory Chapter: An Overview of Advances in Microfluidics and Nanofluids Technologies. 2021.
12. Giri, V.K. and R.K. Patel, Computing algorithms with applications in engineering. 2019.
13. Nguyen, T.-Q., J. Mah, and S. Lee, Rapid and versatile micromold fabrication using micromilling and nanopolishing for microfluidic devices. ASME, 2019.
14. Asim, M., et al., Comparative study of the parameters affecting the performance of microchannels′ heat exchangers: Latest advances review. Energy Science & Engineering, 2023.
15. Rahul, M., Fabrication of microchannels on SS-304 and copper by wet chemical etching and comparison of topographies. International conference on Advances in Thermal Systems, Materials and Design Engineering., 2017.
16. Mondal, B., S. Pati, and P.K. Patowari, Serpentine square wave microchannel fabrication with WEDM and soft lithography. Materials Today: Proceedings, 2021. 46: p. 8513-8518.
17. Kar, S. and P.K. Patowari, Experimental Investigation of Machinability and Surface Characteristics in Microelectrical Discharge Milling of Titanium, Stainless Steel and Copper. Arabian Journal for Science and Engineering, 2019. 44(9): p. 7843-7858.
18. Sreeraj, P., et al., Surface roughness analysis of micro channels produced by wire-electrical discharge machining. Materials Today: Proceedings, 2021. 44: p. 391-400.
19. Parlak, M., A. Özsunar, and A. Koşar, High aspect ratio microchannel heat sink optimization under thermally developing flow conditions based on minimum power consumption. Applied Thermal Engineering, 2022. 201.
20. Ahmed, N., et al., High Aspect Ratio Thin-Walled Structures in D2 Steel through Wire Electric Discharge Machining (EDM). Micromachines (Basel), 2020. 12(1).
21. Dong, S., et al., Fabrication of Micro-Ball Sockets in C17200 Beryllium Copper Alloy by Micro-Electrical Discharge Machining Milling. Materials (Basel), 2022. 16(1).
22. Pham, D.T., S.S. Dimov, and P.V. Petkov, Laser milling of ceramic components. International Journal of Machine Tools and Manufacture, 2007. 47(3-4): p. 618-626.
23. Delgado, T., D. Nieto, and M.T. Flores-Arias, Fabrication of microlens arrays on soda-lime glass using a laser direct-write technique and a thermal treatment assisted by a CO2 laser. Optics and Lasers in Engineering, 2015. 73: p. 1-6.
24. Deng, D., et al., Investigations on laser micromilling of circular micro pin fins for heat sink cooling systems. The International Journal of Advanced Manufacturing Technology, 2016. 87(1-4): p. 151-164.
25. Niranjan, R.S., Optimization of process parameters for laser fiber micromachining of microchannels on stainless steel. International Journal of Engineering Research and General Science, 2017. 5(6): p. 2091-2730.
26. Heng, Q., C. Tao, and Z. Tie-chuan, Surface roughness analysis and improvement of micro-fluidic channel with excimer laser. Microfluidics and Nanofluidics, 2006. 2(4): p. 357-360.
27. Lei, C., et al., Influence of processing parameters on the structure size of microchannel processed by femtosecond laser. Optics & Laser Technology, 2018. 106: p. 47-51.
28. Sahu, A.K. and S. Jha, Microchannel fabrication and metallurgical characterization on titanium by nanosecond fiber laser micromilling. Materials and Manufacturing Processes, 2020. 35(3): p. 279-290.
29. Deng, D.-X., et al., Fabrication of micro pin fins on inclined V-shaped microchannel walls via laser micromilling. Advances in Manufacturing, 2022. 10(2): p. 220-234.
30. Chen, W., et al., An improved cutting force model for micro milling considering machining dynamics. The International Journal of Advanced Manufacturing Technology, 2017. 93(9-12): p. 3005-3016.
31. Yuan, Y., et al., Modeling of cutting forces in micro end-milling. Journal of Manufacturing Processes, 2018. 31: p. 844-858.
32. de Oliveira, F.B., et al., Size effect and minimum chip thickness in micromilling. International Journal of Machine Tools and Manufacture, 2015. 89: p. 39-54.
33. Liu, X., et al., The Mechanics of Machining at the Microscale: Assessment of the Current State of the Science. Contributed by the Manufacturing Engineering Division for publication in the JOURNAL OF MANUFACTURING SCIENCE AND ENGINEERING. , 2004. 126.
34. Chen, N., et al., Research on the ploughing force in micro milling of soft-brittle crystals. International Journal of Mechanical Sciences, 2019. 155: p. 315-322.
35. Geier, N. and T. Szalay, Optimisation of process parameters for the orbital and conventional drilling of uni-directional carbon fibre-reinforced polymers (UD-CFRP). Measurement, 2017. 110: p. 319-334.
36. Balázs, B.Z., et al., A review on micro-milling: recent advances and future trends. The International Journal of Advanced Manufacturing Technology, 2020. 112(3-4): p. 655-684.
37. Chen, Y., T. Wang, and A.G. Zhang, Research on Parameter Optimization of Micro-Milling Al7075 Based on Edge-Size-Effect. Micromachines (Basel), 2020. 11(2).
38. Aurich, J.C., et al., Burrs—Analysis, control and removal. CIRP Annals, 2009. 58(2): p. 519-542.
39. B, B., Latest trends in abrasive flow machining process. J Adv Res Prod Indust Eng., 2017. 4(1&2): p. 20-25.
40. Kadam, S.P. and S. Mitra, Electrochemical deburring - A comprehensive review. Materials Today: Proceedings, 2021. 46: p. 141-148.
41. Kumar, A.S., S. Deb, and S. Paul, Ultrasonic-assisted abrasive micro-deburring of micromachined metallic alloys. Journal of Manufacturing Processes, 2021. 66: p. 595-607.
42. Ahmed, F., et al., Development of cryogenic assisted machining strategy to reduce the burr formation during micro-milling of ductile material. Journal of Manufacturing Processes, 2023. 85: p. 43-51.
43. Bajpai, V. and R.K. Singh, Burr formation and surface quality in high speed micromilling of titanium alloy. (ti6ai4v). International Manufacturing Science and Engineering Conference., 2013.
44. Chen, Z., et al., Investigation on the Exit Burr Formation in Micro Milling. Micromachines (Basel), 2021. 12(8).
45. Saha, S., et al., An investigation on the top burr formation during Minimum Quantity Lubrication (MQL) assisted micromilling of copper. Materials Today: Proceedings, 2020. 26: p. 1809-1814.
46. Yadav, R., N.D. Chakladar, and S. Paul, Modelling and experimental validation of burr control in micro milling of metals. Materials Today Communications, 2023. 35.
47. Zhao, K., et al., Burr Control for Removal of Metal Coating from Plastics Substrate by Micro-Milling. Materials and Manufacturing Processes, 2015. 31(5): p. 641-647.
48. Hajiahmadi, S., Burr size investigation in micro milling of stainless steel 316L. International Journal of Lightweight Materials and Manufacture, 2019. 2(4): p. 296-304.
49. Garcia-Gonzalez, J.C., W. Moscoso-Kingsley, and V. Madhavan, Tool Rake Face Temperature Distribution When Machining Ti6Al4V and Inconel 718. Procedia Manufacturing, 2016. 5: p. 1369-1381.
50. Lu, X., Measurement-based modelling of cutting forces in micro-milling of Inconel 718. Int. J. Nanomanuf, 2017. 13: p. 1–11.
51. Kovvuri, V.R., Experimental Study of Built-Up-Edge Formation in Micro Milling. 2015.
52. Rahman, M.A., Effects on vibration and surface roughness in high speed micro end-milling of lnconel 718 with minimum quantity lubrication. 2017: p. 25–27 July 2016.
53. Kumar, A.S., A study on micro-milling of aluminium 6061 and copper with respect to cutting forces, surface roughness and burr formation. ASME, 2018.
54. Lu, X., et al., Prediction model of the surface roughness of micro-milling single crystal copper. Journal of Mechanical Science and Technology, 2019. 33(11): p. 5369-5374.
55. Bhattacharyya, S., H. Chelladurai, and M.Z. Ansari, Effect of Micro-milling Parameters on Surface Roughness of Soft Metal Cutting and Their Regression Models, in Recent Advances in Manufacturing, Automation, Design and Energy Technologies. 2022. p. 221-228.
56. Sorgato, M., R. Bertolini, and S. Bruschi, On the correlation between surface quality and tool wear in micro–milling of pure copper. Journal of Manufacturing Processes, 2020. 50: p. 547-560.
57. Zhang, X., et al., Study on the burr formation process in micro-milling of high aspect ratio structures. The International Journal of Advanced Manufacturing Technology, 2021. 115(1-2): p. 433-447.
58. Deng, D., et al., Investigation on burr formation characteristics in micro milling of Ω-shaped reentrant microchannels. Journal of Manufacturing Processes, 2022. 80: p. 754-764.
59. Yun, H.T., et al., Ploughing detection in micromilling processes using the cutting force signal. International Journal of Machine Tools and Manufacture, 2011. 51(5): p. 377-382.
60. BASURAY, P.K., Transition from ploughing to cutting during machining. Wear, 1977. 43: p. 341 - 349.
61. Aramcharoen, A. and P.T. Mativenga, Size effect and tool geometry in micromilling of tool steel. Precision Engineering, 2009. 33(4): p. 402-407.
62. Balázs, B.Z. and M. Takács, Experimental investigation and optimisation of the micro milling process of hardened hot-work tool steel. The International Journal of Advanced Manufacturing Technology, 2020. 106(11-12): p. 5289-5305.
63. Ertekin, Y.M., Y. Kwon, and T.-L. Tseng, Identification of common sensory features for the control of CNC milling operations under varying cutting conditions. International Journal of Machine Tools and Manufacture, 2003. 43(9): p. 897-904.
64. Denkena, B., et al., Kinematic and Stochastic Surface Topography of Machined TiAl6V4-Parts by means of Ball Nose End Milling. Procedia Engineering, 2011. 19: p. 81-87.
65. By Chen, J.-S., Y.-K. Huang, and M.-S. Chen, Feedrate optimization and tool profile modification for the high-efficiency ball-end milling process. International Journal of Machine Tools and Manufacture, 2005. 45(9): p. 1070-1076.
66. Feng, H.-Y. and H. Li, Constant scallop-height tool path generation for three-axis sculptured surface machining. Computer-Aided Design, 2002. 34: p. 647-654.
67. Wojciechowski, S., P. Twardowski, and M. Wieczorowski, Surface Texture Analysis after Ball End Milling with Various Surface Inclination of Hardened Steel. Metrology and Measurement Systems, 2014. 21(1): p. 145-156.
68. Sriyotha, P., et al., Geometrical Modelling of a Ball-End Finish Milling Process for a Surface Finish. Proceedings of the Institution of Mechanical Engineers, Part B: Journal of Engineering Manufacture, 2006. 220(4): p. 467-477.
69. Wojciechowski, S., M. Wiackiewicz, and G.M. Krolczyk, Study on metrological relations between instant tool displacements and surface roughness during precise ball end milling. Measurement, 2018. 129: p. 686-694.
70. Wojciechowski, S., et al., Study on ploughing phenomena in tool flank face – workpiece interface including tool wear effect during ball-end milling. Tribology International, 2023. 181.
71. Wu, X., et al., Experimental research on the top burr formation in micro milling. The International Journal of Advanced Manufacturing Technology, 2021. 117(11-12): p. 3477-3486.
72. Kuram, E. and B. Ozcelik, Multi-objective optimization using Taguchi based grey relational analysis for micro-milling of Al 7075 material with ball nose end mill. Measurement, 2013. 46(6): p. 1849-1864.
73. Uhlmann, E., S. Piltz, and K. Schauer, Micro milling of sintered tungsten–copper composite materials. Journal of Materials Processing Technology, 2005. 167(2-3): p. 402-407.
74. Zhang, X., et al., A Highly Sensitive and Cost‐Effective Flexible Pressure Sensor with Micropillar Arrays Fabricated by Novel Metal‐Assisted Chemical Etching for Wearable Electronics. Advanced Materials Technologies, 2019. 4(9).
75. Gao, P., et al., Fabrication of a Micro-Lens Array Mold by Micro Ball End-Milling and Its Hot Embossing. Micromachines (Basel), 2018. 9(3).
76. Yang, L., et al., Fabrication of micro-lens array on convex surface by meaning of micro-milling, in 7th International Symposium on Advanced Optical Manufacturing and Testing Technologies: Advanced Optical Manufacturing Technologies. 2014.
77. Bai, Z. and J. Zhu, A Facile Preparation Method for Corrosion-Resistant Copper Superhydrophobic Surfaces with Ordered Microstructures by Etching. Coatings, 2023. 13(7).
78. Uhlmann, E., S. Piltz, and U. Doll, Machining of micro/miniature dies and moulds by electrical discharge machining—Recent development. Journal of Materials Processing Technology, 2005. 167(2-3): p. 488-493.
79. Lee, K. and D.A. Dornfeld, An Experimental Study on Burr Formation in Micro Milling Aluminum and Copper. 2002: Society of Manufacturing Engineers.
80. Shin, H.S., et al., Electrochemical etching of stainless steel through laser masking. Journal of Micromechanics and Microengineering, 2010. 20(5).
81. Chen, X., et al., Reduction of undercutting in electrochemical micro-machining of micro-dimple arrays by utilizing oxygen produced at the anode. Surface and Coatings Technology, 2015. 277: p. 44-51.
82. Shin, H.-S., Deep Electrochemical Etching of Stainless Steel Using a Deposited Copper Layer. Applied Sciences, 2022. 12(23).
83. Shin, H.-S., Selective Electrochemical Etching of Stainless Steel Using a Laser-Patterned Copper Layer. International Journal of Precision Engineering and Manufacturing, 2019. 20(5): p. 711-716.
84. Ho, K.H. and S.T. Newman, State of the art electrical discharge machining (EDM). International Journal of Machine Tools and Manufacture, 2003. 43(13): p. 1287-1300.
85. Kumar, A., V. Kumar, and J. Kumar, Microstructure Analysis and Material Transformation of Pure Titanium and Tool Wear Surface after Wire Electric Discharge Machining Process. Machining Science and Technology, 2014. 18(1): p. 47-77.
86. Zhang, Y., et al., Study on thermal deformation behavior and microstructural characteristics of wire electrical discharge machining thin-walled components. Journal of Manufacturing Processes, 2018. 31: p. 9-19.
87. Mahdieh, M.S., Recast layer and heat-affected zone structure of ultra-fined grained low-carbon steel machined by electrical discharge machining. Proceedings of the Institution of Mechanical Engineers, Part B: Journal of Engineering Manufacture, 2019. 234(5): p. 933-944.
88. Bédard, F., et al., Microstructural damage during electrical discharge machining of a high silicon aluminum alloy for space applications. The International Journal of Advanced Manufacturing Technology, 2023. 128(5-6): p. 2311-2317.
89. Ventola, L., et al., Micro-structured rough surfaces by laser etching for heat transfer enhancement on flush mounted heat sinks. Conference Series, 2014. 525: p. 012017.
90. Wang, D., et al., Mechanisms and characteristics of spatter generation in SLM processing and its effect on the properties. Materials & Design, 2017. 117: p. 121-130.
91. Jiang Guochen., et al., Ultrafast Laser Fabricated Drag Reduction Micro-nano Structures and Their Corrosion Resistance. Chinese Journal of Lasers, 2020. 47(8).
92. Papautsky, I., et al., High-precision micromilling for low-cost fabrication of metal mold masters, in Microfluidics, BioMEMS, and Medical Microsystems IV. 2006.
93. Luo, S., et al., Numerical simulation of chip ploughing volume in micro ball-end mill machining. International Journal of Precision Engineering and Manufacturing, 2017. 18(7): p. 915-922.
94. Popov, K.B., et al., Micromilling: Material microstructure effects. Proceedings of the Institution of Mechanical Engineers, Part B: Journal of Engineering Manufacture, 2006. 220(11): p. 1807-1813.
95. Yanling, W., Y. Jian, and Y. Huadong, Superhydrophobic surface prepared by micro-milling and WEDM on aluminum alloy. Materials Research Express, 2018. 5(6).
96. Zhang, X., et al., Preparation of Superhydrophobic Surface on Titanium Alloy via Micro-milling, Anodic Oxidation and Fluorination. Micromachines (Basel), 2020. 11(3).
97. Kumar, A.S., S. Deb, and S. Paul, Burr removal from high-aspect-ratio micro-pillars using ultrasonic-assisted abrasive micro-deburring. Journal of Micromechanics and Microengineering, 2022. 32(5).
98. Du, H., et al., Feasibility study on ultraprecision micro-milling of the additively manufactured NiTi alloy for generating microstructure arrays. Journal of Materials Research and Technology, 2023. 25: p. 55-67.
99. Kutz, M., Mechanical Engineers’ Handbook Fourth Edition Materials and Engineering Mechanics. 2015.
100. Graham, E., C.I. Park, and S.S. Park, Fabrication of micro-dimpled surfaces through micro ball end milling. International Journal of Precision Engineering and Manufacturing, 2013. 14(9): p. 1637-1646.
101. Liu, H., et al., Material removal mechanism of FCC single-crystalline materials at nano-scales: Chip removal & ploughing. Journal of Materials Processing Technology, 2021. 294.
指導教授 曹嘉文(Chia-Wen,Tsao) 審核日期 2023-11-21
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明