參考文獻 |
[1] Gleeson, T., Befus, K. M., Jasechko, S., Luijendijk, E., & Cardenas, M. B. (2016). The global volume and distribution of modern groundwater. Nature Geoscience, 9(2), 161-167.
[2] Gleeson, T., Wada, Y., Bierkens, M. F., & Van Beek, L. P. (2012). Water balance of global aquifers revealed by groundwater footprint. Nature, 488(7410), 197-200.
[3] Jasechko, S., Perrone, D., Befus, K. M., Bayani Cardenas, M., Ferguson, G., Gleeson, T., ... & Kirchner, J. W. (2017). Global aquifers dominated by fossil groundwaters but wells vulnerable to modern contamination. Nature Geoscience, 10(6), 425-429.
[4] Wada, Y., Van Beek, L. P., Van Kempen, C. M., Reckman, J. W., Vasak, S., & Bierkens, M. F. (2010). Global depletion of groundwater resources. Geophysical research letters, 37(20).
[5] Alley, W. M., Healy, R. W., LaBaugh, J. W., & Reilly, T. E. (2002). Flow and storage in groundwater systems. science, 296(5575), 1985-1990.
[6] Taylor, R. G., Scanlon, B., Döll, P., Rodell, M., Van Beek, R., Wada, Y., ... & Treidel, H. (2013). Ground water and climate change. Nature climate change, 3(4), 322-329.
[7] Famiglietti, J. S. (2014). The global groundwater crisis. Nature Climate Change, 4(11), 945-948.
[8] Foster, S. S. D., & Chilton, P. J. (2003). Groundwater: the processes and global significance of aquifer degradation. Philosophical Transactions of the Royal Society of London. Series B: Biological Sciences, 358(1440), 1957-1972.
[9] Galloway, D. L., & Burbey, T. J. (2011). Regional land subsidence accompanying groundwater extraction. Hydrogeology Journal, 19(8), 1459-1486.
[10] Werner, A. D., Bakker, M., Post, V. E., Vandenbohede, A., Lu, C., Ataie-Ashtiani, B., ... & Barry, D. A. (2013). Seawater intrusion processes, investigation and management: recent advances and future challenges. Advances in water resources, 51, 3-26.
[11] Aeschbach-Hertig, W., & Gleeson, T. (2012). Regional strategies for the accelerating global problem of groundwater depletion. Nature Geoscience, 5(12), 853-861.
[12] Bierkens, M. F. (2015). Global hydrology 2015: State, trends, and directions. Water Resources Research, 51(7), 4923-4947.
[13] Young, A. (1913). Tidal phenomena at inland boreholes near Cradock. Transactions of the Royal Society of South Africa, 3(1), 61-106.
[14] Bredehoeft, J. D. (1967). Response of well‐aquifer systems to earth tides. Journal of Geophysical Research, 72(12), 3075-3087.
[15] Cutillo, P. A., & Bredehoeft, J. D. (2011). Estimating aquifer properties from the water level response to earth tides. Groundwater, 49(4), 600-610.
[16] Jørgensen, B. B. (1980). Seasonal oxygen depletion in the bottom waters of a Danish fjord and its effect on the benthic community. Oikos, 68-76.
[17] Narasimhan, C. (1984). A price discrimination theory of coupons. Marketing Science, 3(2), 128-147.
[18] Jacob, C. E. (1940). On the flow of water in an elastic artesian aquifer. Eos, Transactions American Geophysical Union, 21(2), 574-586.
[19] Ferris, J. G. (1952). Cyclic fluctuations of water level as a basis for determining aquifer transmissibility (No. Note 1). US Geological Survey.
[20] Cooper Jr, H. H., Bredehoeft, J. D., Papadopulos, I. S., & Bennett, R. R. (1965). The response of well‐aquifer systems to seismic waves. Journal of Geophysical Research, 70(16), 3915-3926.
[21] van der Kamp, G., & Schmidt, R. (2017). Moisture loading—the hidden information in groundwater observation well records. Hydrogeology Journal, 25(8), 2225-2233.
[22] Veatch, A. C. (1906). Geology and underground water resources of northern Louisiana and southern Arkansas (No. 46). US Government Printing Office.
[23] Peck, A. J. (1960). The water table as affected by atmospheric pressure. Journal of Geophysical Research, 65(8), 2383-2388.
[24] Turk, L. J. (1975). Diurnal fluctuations of water tables induced by atmospheric pressure changes. Journal of Hydrology, 26(1-2), 1-16.
[25] Weeks, E. P. (1979). Barometric fluctuations in wells tapping deep unconfined aquifers. Water Resources Research, 15(5), 1167-1176.
[26] Domenico, P. A., & Schwartz, F. W. (1998). Physical and chemical hydrogeology (Vol. 506). New York: Wiley.
[27] McMillan, T. C., Rau, G. C., Timms, W. A., & Andersen, M. S. (2019). Utilizing the impact of Earth and atmospheric tides on groundwater systems: A review reveals the future potential. Reviews of Geophysics, 57(2), 281-315.
[28] Taiwan Provincial Water Conservancy Bureau (TPWCB) (1994) Compilation and analysis of existing groundwater and subsidence data of Taiwan, II, the Pingtung Plain (in Chinese). TPWCB, Taipei, Taiwan.
[29] Taiwan Provincial Water Conservancy Bureau (TPWCB) (1998) Study on the improvement of the Groundwater Monitoring 913 System in the Pingtung Plain, Taiwan (in Chinese). TPWCB, Taipei, Taiwan.
[30] Hsu, H. H., & Chen, C. T. (2002). Observed and projected climate change in Taiwan. Meteorology and Atmospheric Physics, 79(1), 87-104.
[31] Wang, C. H. (1960). Precipitation changes and their impacts on the water resources management in Taiwan. intervals, 1941, 1981-2000.
[32] Allen, D. M., Mackie, D. C., & Wei, M. J. H. J. (2004). Groundwater and climate change: a sensitivity analysis for the Grand Forks aquifer, southern British Columbia, Canada. Hydrogeology journal, 12(3), 270-290.
[33] The Research Project on Monitoring the Hydrology and Water Quality of Donggang River Watershed (in Chinese).
[34] Melchior, P. (1983). The tides of the planet Earth. Oxford.
[35] Clark, W. E. (1967). Computing the barometric efficiency of a well. Journal of the Hydraulics Division, 93(4), 93-98.
[36] Chapman, S., & Malin, S. R. C. (1970). Atmospheric tides, thermal and gravitational: nomenclature, notation and new results. Journal of the Atmospheric Sciences, 27(5), 707-710.
[37] Chapman, S., & Lindzen, R. S. (1969). Atmospheric tides: thermal and gravitational (Vol. 15). Springer Science & Business Media.
[38] Todd, D. K., & Mays, L. W. (2004). Groundwater hydrology. John Wiley & Sons.
[39] Landmeyer, J. E. (1996). Aquifer response to record low barometric pressures in the southeastern United States. Groundwater, 34(5), 917-924.
[40] Ferris, J. G., Knowles, D. B., Brown, R. H., & Stallman, R. W. (1962). Theory of aquifer tests (pp. 69-174). Washington: US Government Printing Office.
[41] Freeze, R. A., & Cherry, J. A. (1979). Ground~ ater. Prentice-hall.
[42] Kruseman, G. P., De Ridder, N. A., & Verweij, J. M. (1970). Analysis and evaluation of pumping test data (Vol. 11, p. 200). Wageningen, The Netherlands: International institute for land reclamation and improvement.
[43] Rasmussen, T. C., & Crawford, L. A. (1997). Identifying and removing barometric pressure effects in confined and unconfined aquifers. Groundwater, 35(3), 502-511.
[44] Batu, V. (1998). Aquifer hydraulics: a comprehensive guide to hydrogeologic data analysis. John Wiley & Sons.
[45] Price, J. S., Edwards, T. W., Yi, Y., & Whittington, P. N. (2009). Physical and isotopic characterization of evaporation from Sphagnum moss. Journal of Hydrology, 369(1-2), 175-182.
[46] Davis, S. N., & De Wiest, R. J. (1966). Hydrogeology (Vol. 463). New York: Wiley.
[47] Darwin, G. H. (1899). The Tides and Kindred Phenomena in the Solar System: The Substance of Lectures Delivered in 1897 at the Lowell Institute, Boston, Mass. Houghton, Mifflin & Company.
[48] Munk, W. H., & MacDonald, G. J. (1960). The rotation of the earth; a geophysical discussion. Cambridge [Eng.] University Press.
[49] Agnew, D. C. (2010). 6 Earth Tides. Treatise on Geophysics, Volume 3: Geodesy, 163.
[50] Huang, N. E., Shen, Z., Long, S. R., Wu, M. C., Shih, H. H., Zheng, Q., ... & Liu, H. H. (1998). The empirical mode decomposition and the Hilbert spectrum for nonlinear and non-stationary time series analysis. Proceedings of the Royal Society of London. Series A: mathematical, physical and engineering sciences, 454(1971), 903-995.
[51] Rilling, G., Flandrin, P., & Goncalves, P. (2003, June). On empirical mode decomposition and its algorithms. In IEEE-EURASIP workshop on nonlinear signal and image processing (Vol. 3, No. 3, pp. 8-11). Grado: IEEER.
[52] Huang, N. E. (2014). Hilbert-Huang transform and its applications (Vol. 16). World Scientific.
[53] Peng, Z. K., Peter, W. T., & Chu, F. L. (2005). An improved Hilbert–Huang transform and its application in vibration signal analysis. Journal of sound and vibration, 286(1-2), 187-205.
[54] Cartwright, D. E. (1999). Book Review: Tides: a scientific history/Cambridge U Press, 1998. Journal of the British Astronomical Association, 109, 291.
[55] Reference: Southern Region Water Resources Office, WRA (2014). Study on Donggang River Ground Water & Hyporheic Flow. Final report.
[56] Uliana, M. M. (2005). Storage coefficient. Water Encyclopedia, 5, 480-483.
[57] Liu, H., Dong, H., Liu, Z., & Ge, J. (2018). Application of Hilbert-Huang decomposition to reduce noise and characterize for NMR FID signal of proton precession magnetometer. Instruments and Experimental Techniques, 61(1), 55-64.
|