參考文獻 |
[1] IARC, “Number of new cases and deaths in 2020, both sexes, all ages,” Globocan 2020, WHO, 2020.
[2] 國民健康署,癌症登記報告,中華民國衛生福利部,2004-2022
[3] 國衛院癌症研究組台灣癌症臨床研究合作組織,“乳癌診斷與治療共識,” 國家衛生研究院,pp. 1-2, 2004.
[4] Vandeweyer, E., & Hertens, D. (2002). Quantification of glands and fat in breast tissue: an experimental determination. Annals of Anatomy-Anatomischer Anzeiger, 184(2), 181-184.
[5] Woodard, H. Q., & White, D. R. (1986). The composition of body tissues. The British journal of radiology, 59(708), 1209-1218.
[6] Varjonen, M. (2006). Three-dimensional digital breast tomosynthesis in the early diagnosis and detection of breast cancer. In Digital Mammography: 8th International Workshop, IWDM 2006, Manchester, UK, June 18-21, 2006. Proceedings 8 (pp. 152-159). Springer Berlin Heidelberg.
[7] Humphrey, L. L., Helfand, M., Chan, B. K., & Woolf, S. H. (2002). Breast cancer screening: a summary of the evidence for the US Preventive Services Task Force. Annals of internal medicine, 137(5_Part_1), 347-360.
[8] Komen, S. G. for the Cure, Types of Breast Cancer Tumors (Susan G. Komen for the Cure, 2008), pp. 806-369.
[9] De Silva, F., & Alcorn, J. (2022). A tale of two cancers: A current concise overview of breast and prostate cancer. Cancers, 14(12), 2954.
[10] Wang, L., Ho, P. P., Liu, C., Zhang, G., & Alfano, R. R. (1991). Ballistic 2-D imaging through scattering walls using an ultrafast optical Kerr gate. Science, 253(5021), 769-771.
[11] Wang, L., Liang, X., Galland, P., Ho, P. P., & Alfano, R. R. (1995). True scattering coefficients of turbid matter measured by early-time gating. Optics letters, 20(8), 913-915.
[12] Du, S., Yang, J., Zhang, H., Zhang, B., & Su, Z. (2021). FVSR-net: an end-to-end finger vein image scattering removal network. Multimedia Tools and Applications, 80(7), 10705-10722.
[13] Garcia, J. V., Zhang, F., & Ford, P. C. (2013). Multi-photon excitation in uncaging the small molecule bioregulator nitric oxide. Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences, 371(1995), 20120129.
[14] Kumarasamy, U., Shrichandran, G. V., & Srivatson, A. V. (2021). Diffuse Optical Tomography System in Soft Tissue Tumor Detection. In Digital Image Processing Applications. IntechOpen.
[15] Cerussi, A., Hsiang, D., Shah, N., Mehta, R., Durkin, A., Butler, J., & Tromberg, B. J. (2007). Predicting response to breast cancer neoadjuvant chemotherapy using diffuse optical spectroscopy. Proceedings of the National Academy of Sciences, 104(10), 4014-4019.
[16] Arridge, S. R., & Lionheart, W. R. (1998). Nonuniqueness in diffusion-based optical tomography. Optics letters, 23(11), 882-884.
[17] Corlu, A., Choe, R., Durduran, T., Lee, K., Schweiger, M., Arridge, S. R., ... & Yodh, A. G. (2005). Diffuse optical tomography with spectral constraints and wavelength optimization. Applied optics, 44(11), 2082-2093.
[18] Gaudette, R. J., Brooks, D. H., DiMarzio, C. A., Kilmer, M. E., Miller, E. L., Gaudette, T., & Boas, D. A. (2000). A comparison study of linear reconstruction techniques for diffuse optical tomographic imaging of absorption coefficient. Physics in Medicine & Biology, 45(4), 1051.
[19] Calamante, F., Gadian, D. G., & Connelly, A. (2003). Quantification of bolus‐tracking MRI: improved characterization of the tissue residue function using Tikhonov regularization. Magnetic Resonance in Medicine: An Official Journal of the International Society for Magnetic Resonance in Medicine, 50(6), 1237-1247.
[20] Intes*¶, X., & Chance, B. (2005). Multi-frequency diffuse optical tomography. Journal of Modern Optics, 52(15), 2139-2159.
[21] Unlu, M. B., Birgul, O., Shafiiha, R., Gulsen, G., & Nalcioglu, O. (2006). Diffuse optical tomographic reconstruction using multifrequency data. Journal of Biomedical Optics, 11(5), 054008.
[22] Hu, L., Wang, H., Zhao, B., & Yang, W. (2007). A hybrid reconstruction algorithm for electrical impedance tomography. Measurement Science and Technology, 18(3), 813.
[23] Rubæk, T., Meaney, P. M., Meincke, P., & Paulsen, K. D. (2007). Nonlinear microwave imaging for breast-cancer screening using Gauss–Newton′s method and the CGLS inversion algorithm. IEEE Transactions on Antennas and Propagation, 55(8), 2320-2331.
[24] Abascal, J. F. P., Arridge, S. R., Bayford, R. H., & Holder, D. S. (2008). Comparison of methods for optimal choice of the regularization parameter for linear electrical impedance tomography of brain function. Physiological measurement, 29(11), 1319.
[25] Goharian, M., Soleimani, M., & Moran, G. R. (2009). A trust region subproblem for 3D electrical impedance tomography inverse problem using experimental data. Progress In Electromagnetics Research, 94, 19-32.
[26] Okawa, S., Hoshi, Y., & Yamada, Y. (2011). Improvement of image quality of time-domain diffuse optical tomography with lp sparsity regularization. Biomedical optics express, 2(12), 3334-3348.
[27] Hamilton, S. J., Lionheart, W. R. B., & Adler, A. (2019). Comparing D-bar and common regularization-based methods for electrical impedance tomography. Physiological measurement, 40(4), 044004.
[28] Gong, C., & Zeng, L. (2019). Adaptive iterative reconstruction based on relative total variation for low-intensity computed tomography. Signal Processing, 165, 149-162.
[29] Ge, Y., Su, T., Zhu, J., Deng, X., Zhang, Q., Chen, J., ... & Liang, D. (2020). ADAPTIVE-NET: deep computed tomography reconstruction network with analytical domain transformation knowledge. Quantitative Imaging in Medicine and Surgery, 10(2), 415.
[30] Shi, J., Hara, D., Tao, W., Dogan, N., Pollack, A., & Ford, J. C. (2020). Reconstruction of x-ray fluorescence computed tomography from sparse-view projections via L1-norm regularized EM algorithm. IEEE access, 8, 211576-211584.
[31] Milovic, C., Prieto, C., Bilgic, B., Uribe, S., Acosta‐Cabronero, J., Irarrazaval, P., & Tejos, C. (2021). Comparison of parameter optimization methods for quantitative susceptibility mapping. Magnetic resonance in medicine, 85(1), 480-494.
[32] Yuan, Q., Zhang, L., Shen, H., & Li, P. (2010). Adaptive multiple-frame image super-resolution based on U-curve. IEEE Transactions on Image Processing, 19(12), 3157-3170.
[33] Chamorro-Servent, J., Aguirre, J., Ripoll, J., Vaquero, J. J., & Desco, M. (2011). Feasibility of U-curve method to select the regularization parameter for fluorescence diffuse optical tomography in phantom and small animal studies. Optics express, 19(12), 11490-11506.
[34] Chamorro Servent, J. (2013). Using state-of-the-art inverse problem techniques to develop reconstruction methods for fluorescence diffuse optical.
[35] Chen, M., Su, H., Zhou, Y., Cai, C., Zhang, D., & Luo, J. (2016). Automatic selection of regularization parameters for dynamic fluorescence molecular tomography: a comparison of L-curve and U-curve methods. Biomedical Optics Express, 7(12), 5021-5041.
[36] Wang, L., Zhao, X., & Gao, H. (2018). A method for determining the regularization parameter and the relative weight ratio of the seismic slip distribution with multi-source data. Journal of Geodynamics, 118, 1-10.
[37] Chen, L. Y., Pan, M. C., & Pan, M. C. (2012). Implementation of edge-preserving regularization for frequency-domain diffuse optical tomography. Applied Optics, 51(1), 43-54.
[38] Chen, L. Y., "Reconstruction and Evaluation of Diffuse Optical Imaging," Doctoral thesis of National Central University, 2013.
[39] Chen, L. Y., Pan, M. C., & Pan, M. C., "Flexible near-infrared diffuse optical tomography with varied weighting functions of edge-preserving regularization," Applied optics, vol. 52, no. 6, pp. 1173-1182, 2013.
[40] 游釗銘,「頻域式擴散光學造影之乳房掃描暨量測系統研究」,博士論文,國立中央大學光機電工程研究所,2015。
[41] 劉沛霆,「外型輪廓順應量測之擴散光學成像比較研究」,碩士論文,國立中央大學光機電工程研究所,2020。
[42] 甘弘暐,「多頻率同步驅動光源之三維頻域式擴散光學斷層造影數值計算研究」,碩士論文,國立中央大學機械工程學系,2020。
[43] 許彥揚,「多頻同步驅動光源之頻域式擴散光學造影研究」,碩士論文,國立中央大學生醫科學與工程學系,2020。
[44] 李柏廷,「DOpIm: 擴散光學軟體造影系統」,碩士論文,國立中央大學機械工程學系,2021。
[45] 張皓喆,「俯臥式擴散光學造影仿體驗證— 彈性光通道/雙波長/同步多頻」,碩士論文,國立中央大學機械工程學系,2022。
[46] 嚴中成,「三維近紅外光擴散光學斷層影像重建之數值計算研究」,碩士論文,國立中央大學機械工程學系,2016。
[47] Mudeng,V. V. H. "Computation of Three-Dimensional Diffuse Optical Image Reconstruction with Arbitrary Surface Models," 碩士論文, 國立中央大學光機電工程研究所, 2017.
[48] Chen, L. Y., Pan, M. C., Yan, C. C., & Pan, M. C. (2016). Wavelength optimization using available laser diodes in spectral near-infrared optical tomography. Applied optics, 55(21), 5729-5737.
[49] Chen, L. Y., Pan, M. C., & Pan, M. C. (2013). Visualized numerical assessment for near infrared diffuse optical tomography with contrast-and-size detail analysis. Optical review, 20, 19-25.
[50] Pan, M. C., Chen, C. H., Chen, L. Y., Pan, M. C., & Shyr, Y. M. (2008). Highly resolved diffuse optical tomography: a systematic approach using high-pass filtering for value-preserved images. Journal of biomedical optics, 13(2), 024022-024022.
[51] Wang, L. V., & Wu, H. I. (2012). Biomedical optics: principles and imaging. John Wiley & Sons.
[52] Ambrocio, E. (2008). A Self-Consistent Obstacle Scattering Theory for the Diffusion Approximation of the Radiative Transport Equation. Applied Mathematics. University of California, Merced. Master of Science.
[53] Paulsen, K. D., & Jiang, H. (1995). Spatially varying optical property reconstruction using a finite element diffusion equation approximation. Medical Physics, 22(6), 691-701.
[54] Egan, W. (2012). Optical properties of inhomogeneous materials: applications to geology, astronomy chemistry, and engineering. Elsevier.
[55] S. R. Arridge, "Optical tomography in medical imaging," Inverse problems, vol. 15, no. 2, p. R41, 1999.
[56] Hansen, P. C., & O’Leary, D. P. (1993). The use of the L-curve in the regularization of discrete ill-posed problems. SIAM journal on scientific computing, 14(6), 1487-1503.
[57] Krawczyk-Stańdo, D., & Rudnicki, M. (2007). Regularization parameter selection in discrete ill-posed problems—the use of the U-curve. International Journal of Applied Mathematics and Computer Science, 17(2), 157-164.
[58] McBride, T. O. (2001). Spectroscopic reconstructed near infrared tomographic imaging for breast cancer diagnosis. Dartmouth College.
[59] Chen, L. Y., Pan, M. C., & Pan, M. C. (2013). Visualized numerical assessment for near infrared diffuse optical tomography with contrast-and-size detail analysis. Optical review, 20, 19-25.
[60] Culver, J. P., Choe, R., Holboke, M. J., Zubkov, L., Durduran, T., Slemp, A., ... & Yodh, A. G. (2003). Three‐dimensional diffuse optical tomography in the parallel plane transmission geometry: Evaluation of a hybrid frequency domain/continuous wave clinical system for breast imaging. Medical physics, 30(2), 235-247.
[61] Jagannath, R. P. K., & Yalavarthy, P. K. (2012). Minimal residual method provides optimal regularization parameter for diffuse optical tomography. Journal of biomedical optics, 17(10), 106015-106015. |