博碩士論文 109323029 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:37 、訪客IP:3.139.237.94
姓名 吳唸督(Nian-Du Wu)  查詢紙本館藏   畢業系所 機械工程學系
論文名稱 最佳化正則參數於擴散光造影反算及驗證
相關論文
★ TFT-LCD前框卡勾設計之衝擊模擬分析與驗證研究★ TFT-LCD 導光板衝擊模擬分析及驗證研究
★ 數位機上盒掉落模擬分析及驗證研究★ 旋轉機械狀態監測-以傳動系統測試平台為例
★ 發射室空腔模態分析在噪音控制之應用暨結構聲輻射效能探討★ 時頻分析於機械動態訊號之應用
★ VKF階次追蹤之探討與應用★ 火箭發射多通道主動噪音控制暨三種線上鑑別方式
★ TFT-LCD衝擊模擬分析及驗證研究★ TFT-LCD掉落模擬分析及驗證研究
★ TFT-LCD螢幕掉落破壞分析驗證與包裝系統設計★ 主動式火箭發射噪音控制使用可變因子演算法
★ 醫學/動態訊號處理於ECG之應用★ 光碟機之動態研究與適應性尋軌誤差改善
★ 具新型菲涅爾透鏡之超音波微噴墨器分析與設計★ 醫用近紅外光光電量測系統之設計與驗証
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   至系統瀏覽論文 (2026-4-1以後開放)
摘要(中) 擴散光斷層造影(Diffuse optical imaging, DOI),是將近紅外光入射生理組織,由光偵測器蒐集離開組織光資訊,進行組織光學係數分佈影像重建,影像重建分為前向計算與逆向反算兩個部分。前向計算藉有限元素法(Finite element method, FEM)求解擴散方程式呈現光在組織中傳遞情形,獲得不同位置的光資訊;逆向反算則通過牛頓法進行疊代,藉著將量測資料與前向計算的差值最小化,重建組織光學係數分佈,進而判斷腫瘤大小及位置。逆向反算因屬於非線性且病態的問題,故加入Tikhonov正則化限制縮小解的範圍,而正則化項用來穩定重建結果。
在重建DOI圖像時,不易在迭帶計算過程手動調整正則參數,而其選定影響圖像品質。本論文透過單頻率及多頻率電源驅動光源,以不同置入物的個數大小、離心距及光學係數對比度的仿體進行數值模擬和實驗,然後對所選擇固定的正則參數以及L曲線和U曲線準則獲得的正則參數,進行圖像重建影像評估與分析。而從實驗結果可得知L曲線準則在計算時,有最小的解範數及殘差範數為最佳正則參數,但兩者為最小值不一定為平衡的狀態,以至於在下一次迭代時,L曲線呈現倒置L型,無法獲取最佳正則參數,導致呈現過擬合的狀態;U曲線準則無論在模擬或實驗結果,基本都能重建出置入物的位置,且能有效地抑制雜訊,在重建過程中U曲線準則能以較少的運算時間及迭代次數達到設定的誤差閥值。在固定正則參數的圖像重建中,正則參數為0.02時,經常會發生過擬合的現象,而正則參數為50時,則是會發生欠擬合的現象,正則參數為1時,大致能重建出置入物的位置。使用CSD分析模擬及實驗資料影像可得知,U曲線準則在模擬結果中,有3例獲得最佳吸收係數解析度,有7例獲得最佳散射係數解析度,而實驗結果中,有1例獲得最佳吸收係數解析度,有2例獲得最佳散射係數解析度,U曲線準則均能從吸收或散射係數解析度其一得到較好的結果。
摘要(英) Diffuse optical tomography (DOT), in which laser light enters the tissue, and the light information is collected by detector. There are two parts in the image reconstruction: forward calculation and inverse reconstruction. The forward calculation uses the finite element method (FEM) to solve the diffusion equation to present the light transmission in the tissue and obtain the light information at different positions; The inverse calculation was performed by Newton′s method to minimize the difference between the measured data and the forward calculation, to reconstruct the tissue optical coefficient distribution, and to determine the size and location of the tumor. Since the inverse calculation is a non-linear and ill-conditioned problem, Tikhonov′s regularization is added to limit the range of solutions, and the regularization term is used to stabilize the reconstruction results.
In the reconstruction of DOI images, it is not easy to manually adjust the regularization parameters during the iterative band calculation, and the selection affects the image quality. In this paper, we conduct numerical simulations and experiments with different imitations of object size, centroid distance, and optical coefficient contrast by driving the light source with single frequency and multi-frequency power sources, and then evaluate and analyze the image reconstruction with the selected fixed regularization parameters and the regularization parameters obtained from the L-curve and U-curve method. The L-curve method has the minimum solution and residual norm as the optimal regular parameter, but the minimum value of both is not necessarily balanced, so that the L-curve shows an inverted L-shape in the next iteration, and the optimal regular parameter cannot be obtained, resulting in an overfitting state; The U-curve method is able to reconstruct the position of the object in both simulation and experimental results, and can effectively suppress noise. In the image reconstruction with fixed regular parameters, overfitting often occurs when the regular parameter is 0.02, underfitting occurs when the regular parameter is 50, and the position of the object can be reconstructed roughly when the regular parameter is 1. Using CSD to analyze the simulated and experimental data images, it was found that the U curve method obtained the best absorption coefficient resolution in 3 cases and the best scattering coefficient resolution in 7 cases in the simulated results, while the experimental results obtained the best absorption coefficient resolution in 1 case and the best scattering coefficient resolution in 2 cases, and the U curve method obtained better results from either absorption or scattering coefficient resolution.
關鍵字(中) ★ 擴散光學斷層造影
★ 有限元素法
★ Tikhonov正則化
★ 影像重建
★ 正則參數
★ L曲線
★ U曲線
關鍵字(英) ★ Diffuse optical tomography
★ finite element method
★ Tikhonov regularization
★ image reconstruction
★ regular parameter
★ L curve
★ U curve
論文目次 摘要 I
Abstract II
致謝 III
目錄 IV
圖目錄 VI
表目錄 VIII
第一章 緒論.......... 1
1-1 研究動機與目的........................... 1
1-2 乳房組織光學特性與醫學影像造影..... 2
1-2-1 乳房組織光學特性......................... 2
1-2-2 醫學影像造影................................. 5
1-3 文獻回顧........................................ 6
1-3-1 正則參數最佳化......................... 6
1-3-2 實驗室先前基礎........................ 7
1-4 論文架構................................ 8
第二章 理論基礎............................... 10
2-1 擴散光學理論.......................... 10
2-1-1 擴散方程式............................ 10
2-1-2 邊界條件......................... 13
2-2 前向計算..................................... 14
2-3 影像重建逆向問題...................... 16
2-3-1 Jacobian矩陣.............................. 16
2-3-2 Jacobian正規化(normalization)....... 18
2-4 Tikhonov正則化 ........................ 18
第三章 基於L曲線/U曲線準則之正則化參數最佳化 ...... 20
3-1 SVD的運用................................... 20
3-2 L曲線準則與其特性 ................ 21
3-3 U曲線準則與其特性.................... 22
3-4 L曲線/U曲線準則應用於DOpIm ..................... 23
3-4-1 DOpIm概述..................................... 23
3-4-2 介面修改與功能介紹...................... 24
第四章 數值模擬驗證................................................ 26
4-1 模擬仿體設計................................. 26
4-2 影像重建.......................................... 29
4-3 模擬資料驗證............................. 29
4-4 影像評估與分析........................... 46
4-5 運算效率比較............................. 50
第五章 影像重建實驗驗證................................ 55
5-1 實驗系統架構.............................. 55
5-2 實驗仿體設計.............................. 56
5-3 影像重建.......................................... 56
5-3-1 單頻率光資訊................................ 56
5-3-2 多頻率光資訊.................................. 62
第六章 結論與未來展望.................................... 65
6-1 結論................................................. 65
6-2 未來展望............................................. 65
參考文獻 66
參考文獻 [1] IARC, “Number of new cases and deaths in 2020, both sexes, all ages,” Globocan 2020, WHO, 2020.
[2] 國民健康署,癌症登記報告,中華民國衛生福利部,2004-2022
[3] 國衛院癌症研究組台灣癌症臨床研究合作組織,“乳癌診斷與治療共識,” 國家衛生研究院,pp. 1-2, 2004.
[4] Vandeweyer, E., & Hertens, D. (2002). Quantification of glands and fat in breast tissue: an experimental determination. Annals of Anatomy-Anatomischer Anzeiger, 184(2), 181-184.
[5] Woodard, H. Q., & White, D. R. (1986). The composition of body tissues. The British journal of radiology, 59(708), 1209-1218.
[6] Varjonen, M. (2006). Three-dimensional digital breast tomosynthesis in the early diagnosis and detection of breast cancer. In Digital Mammography: 8th International Workshop, IWDM 2006, Manchester, UK, June 18-21, 2006. Proceedings 8 (pp. 152-159). Springer Berlin Heidelberg.
[7] Humphrey, L. L., Helfand, M., Chan, B. K., & Woolf, S. H. (2002). Breast cancer screening: a summary of the evidence for the US Preventive Services Task Force. Annals of internal medicine, 137(5_Part_1), 347-360.
[8] Komen, S. G. for the Cure, Types of Breast Cancer Tumors (Susan G. Komen for the Cure, 2008), pp. 806-369.
[9] De Silva, F., & Alcorn, J. (2022). A tale of two cancers: A current concise overview of breast and prostate cancer. Cancers, 14(12), 2954.
[10] Wang, L., Ho, P. P., Liu, C., Zhang, G., & Alfano, R. R. (1991). Ballistic 2-D imaging through scattering walls using an ultrafast optical Kerr gate. Science, 253(5021), 769-771.
[11] Wang, L., Liang, X., Galland, P., Ho, P. P., & Alfano, R. R. (1995). True scattering coefficients of turbid matter measured by early-time gating. Optics letters, 20(8), 913-915.
[12] Du, S., Yang, J., Zhang, H., Zhang, B., & Su, Z. (2021). FVSR-net: an end-to-end finger vein image scattering removal network. Multimedia Tools and Applications, 80(7), 10705-10722.
[13] Garcia, J. V., Zhang, F., & Ford, P. C. (2013). Multi-photon excitation in uncaging the small molecule bioregulator nitric oxide. Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences, 371(1995), 20120129.
[14] Kumarasamy, U., Shrichandran, G. V., & Srivatson, A. V. (2021). Diffuse Optical Tomography System in Soft Tissue Tumor Detection. In Digital Image Processing Applications. IntechOpen.
[15] Cerussi, A., Hsiang, D., Shah, N., Mehta, R., Durkin, A., Butler, J., & Tromberg, B. J. (2007). Predicting response to breast cancer neoadjuvant chemotherapy using diffuse optical spectroscopy. Proceedings of the National Academy of Sciences, 104(10), 4014-4019.
[16] Arridge, S. R., & Lionheart, W. R. (1998). Nonuniqueness in diffusion-based optical tomography. Optics letters, 23(11), 882-884.
[17] Corlu, A., Choe, R., Durduran, T., Lee, K., Schweiger, M., Arridge, S. R., ... & Yodh, A. G. (2005). Diffuse optical tomography with spectral constraints and wavelength optimization. Applied optics, 44(11), 2082-2093.
[18] Gaudette, R. J., Brooks, D. H., DiMarzio, C. A., Kilmer, M. E., Miller, E. L., Gaudette, T., & Boas, D. A. (2000). A comparison study of linear reconstruction techniques for diffuse optical tomographic imaging of absorption coefficient. Physics in Medicine & Biology, 45(4), 1051.
[19] Calamante, F., Gadian, D. G., & Connelly, A. (2003). Quantification of bolus‐tracking MRI: improved characterization of the tissue residue function using Tikhonov regularization. Magnetic Resonance in Medicine: An Official Journal of the International Society for Magnetic Resonance in Medicine, 50(6), 1237-1247.
[20] Intes*¶, X., & Chance, B. (2005). Multi-frequency diffuse optical tomography. Journal of Modern Optics, 52(15), 2139-2159.
[21] Unlu, M. B., Birgul, O., Shafiiha, R., Gulsen, G., & Nalcioglu, O. (2006). Diffuse optical tomographic reconstruction using multifrequency data. Journal of Biomedical Optics, 11(5), 054008.
[22] Hu, L., Wang, H., Zhao, B., & Yang, W. (2007). A hybrid reconstruction algorithm for electrical impedance tomography. Measurement Science and Technology, 18(3), 813.
[23] Rubæk, T., Meaney, P. M., Meincke, P., & Paulsen, K. D. (2007). Nonlinear microwave imaging for breast-cancer screening using Gauss–Newton′s method and the CGLS inversion algorithm. IEEE Transactions on Antennas and Propagation, 55(8), 2320-2331.
[24] Abascal, J. F. P., Arridge, S. R., Bayford, R. H., & Holder, D. S. (2008). Comparison of methods for optimal choice of the regularization parameter for linear electrical impedance tomography of brain function. Physiological measurement, 29(11), 1319.
[25] Goharian, M., Soleimani, M., & Moran, G. R. (2009). A trust region subproblem for 3D electrical impedance tomography inverse problem using experimental data. Progress In Electromagnetics Research, 94, 19-32.
[26] Okawa, S., Hoshi, Y., & Yamada, Y. (2011). Improvement of image quality of time-domain diffuse optical tomography with lp sparsity regularization. Biomedical optics express, 2(12), 3334-3348.
[27] Hamilton, S. J., Lionheart, W. R. B., & Adler, A. (2019). Comparing D-bar and common regularization-based methods for electrical impedance tomography. Physiological measurement, 40(4), 044004.
[28] Gong, C., & Zeng, L. (2019). Adaptive iterative reconstruction based on relative total variation for low-intensity computed tomography. Signal Processing, 165, 149-162.
[29] Ge, Y., Su, T., Zhu, J., Deng, X., Zhang, Q., Chen, J., ... & Liang, D. (2020). ADAPTIVE-NET: deep computed tomography reconstruction network with analytical domain transformation knowledge. Quantitative Imaging in Medicine and Surgery, 10(2), 415.
[30] Shi, J., Hara, D., Tao, W., Dogan, N., Pollack, A., & Ford, J. C. (2020). Reconstruction of x-ray fluorescence computed tomography from sparse-view projections via L1-norm regularized EM algorithm. IEEE access, 8, 211576-211584.
[31] Milovic, C., Prieto, C., Bilgic, B., Uribe, S., Acosta‐Cabronero, J., Irarrazaval, P., & Tejos, C. (2021). Comparison of parameter optimization methods for quantitative susceptibility mapping. Magnetic resonance in medicine, 85(1), 480-494.
[32] Yuan, Q., Zhang, L., Shen, H., & Li, P. (2010). Adaptive multiple-frame image super-resolution based on U-curve. IEEE Transactions on Image Processing, 19(12), 3157-3170.
[33] Chamorro-Servent, J., Aguirre, J., Ripoll, J., Vaquero, J. J., & Desco, M. (2011). Feasibility of U-curve method to select the regularization parameter for fluorescence diffuse optical tomography in phantom and small animal studies. Optics express, 19(12), 11490-11506.
[34] Chamorro Servent, J. (2013). Using state-of-the-art inverse problem techniques to develop reconstruction methods for fluorescence diffuse optical.
[35] Chen, M., Su, H., Zhou, Y., Cai, C., Zhang, D., & Luo, J. (2016). Automatic selection of regularization parameters for dynamic fluorescence molecular tomography: a comparison of L-curve and U-curve methods. Biomedical Optics Express, 7(12), 5021-5041.
[36] Wang, L., Zhao, X., & Gao, H. (2018). A method for determining the regularization parameter and the relative weight ratio of the seismic slip distribution with multi-source data. Journal of Geodynamics, 118, 1-10.
[37] Chen, L. Y., Pan, M. C., & Pan, M. C. (2012). Implementation of edge-preserving regularization for frequency-domain diffuse optical tomography. Applied Optics, 51(1), 43-54.
[38] Chen, L. Y., "Reconstruction and Evaluation of Diffuse Optical Imaging," Doctoral thesis of National Central University, 2013.
[39] Chen, L. Y., Pan, M. C., & Pan, M. C., "Flexible near-infrared diffuse optical tomography with varied weighting functions of edge-preserving regularization," Applied optics, vol. 52, no. 6, pp. 1173-1182, 2013.
[40] 游釗銘,「頻域式擴散光學造影之乳房掃描暨量測系統研究」,博士論文,國立中央大學光機電工程研究所,2015。
[41] 劉沛霆,「外型輪廓順應量測之擴散光學成像比較研究」,碩士論文,國立中央大學光機電工程研究所,2020。
[42] 甘弘暐,「多頻率同步驅動光源之三維頻域式擴散光學斷層造影數值計算研究」,碩士論文,國立中央大學機械工程學系,2020。
[43] 許彥揚,「多頻同步驅動光源之頻域式擴散光學造影研究」,碩士論文,國立中央大學生醫科學與工程學系,2020。
[44] 李柏廷,「DOpIm: 擴散光學軟體造影系統」,碩士論文,國立中央大學機械工程學系,2021。
[45] 張皓喆,「俯臥式擴散光學造影仿體驗證— 彈性光通道/雙波長/同步多頻」,碩士論文,國立中央大學機械工程學系,2022。
[46] 嚴中成,「三維近紅外光擴散光學斷層影像重建之數值計算研究」,碩士論文,國立中央大學機械工程學系,2016。
[47] Mudeng,V. V. H. "Computation of Three-Dimensional Diffuse Optical Image Reconstruction with Arbitrary Surface Models," 碩士論文, 國立中央大學光機電工程研究所, 2017.
[48] Chen, L. Y., Pan, M. C., Yan, C. C., & Pan, M. C. (2016). Wavelength optimization using available laser diodes in spectral near-infrared optical tomography. Applied optics, 55(21), 5729-5737.
[49] Chen, L. Y., Pan, M. C., & Pan, M. C. (2013). Visualized numerical assessment for near infrared diffuse optical tomography with contrast-and-size detail analysis. Optical review, 20, 19-25.
[50] Pan, M. C., Chen, C. H., Chen, L. Y., Pan, M. C., & Shyr, Y. M. (2008). Highly resolved diffuse optical tomography: a systematic approach using high-pass filtering for value-preserved images. Journal of biomedical optics, 13(2), 024022-024022.
[51] Wang, L. V., & Wu, H. I. (2012). Biomedical optics: principles and imaging. John Wiley & Sons.
[52] Ambrocio, E. (2008). A Self-Consistent Obstacle Scattering Theory for the Diffusion Approximation of the Radiative Transport Equation. Applied Mathematics. University of California, Merced. Master of Science.
[53] Paulsen, K. D., & Jiang, H. (1995). Spatially varying optical property reconstruction using a finite element diffusion equation approximation. Medical Physics, 22(6), 691-701.
[54] Egan, W. (2012). Optical properties of inhomogeneous materials: applications to geology, astronomy chemistry, and engineering. Elsevier.
[55] S. R. Arridge, "Optical tomography in medical imaging," Inverse problems, vol. 15, no. 2, p. R41, 1999.
[56] Hansen, P. C., & O’Leary, D. P. (1993). The use of the L-curve in the regularization of discrete ill-posed problems. SIAM journal on scientific computing, 14(6), 1487-1503.
[57] Krawczyk-Stańdo, D., & Rudnicki, M. (2007). Regularization parameter selection in discrete ill-posed problems—the use of the U-curve. International Journal of Applied Mathematics and Computer Science, 17(2), 157-164.
[58] McBride, T. O. (2001). Spectroscopic reconstructed near infrared tomographic imaging for breast cancer diagnosis. Dartmouth College.
[59] Chen, L. Y., Pan, M. C., & Pan, M. C. (2013). Visualized numerical assessment for near infrared diffuse optical tomography with contrast-and-size detail analysis. Optical review, 20, 19-25.
[60] Culver, J. P., Choe, R., Holboke, M. J., Zubkov, L., Durduran, T., Slemp, A., ... & Yodh, A. G. (2003). Three‐dimensional diffuse optical tomography in the parallel plane transmission geometry: Evaluation of a hybrid frequency domain/continuous wave clinical system for breast imaging. Medical physics, 30(2), 235-247.
[61] Jagannath, R. P. K., & Yalavarthy, P. K. (2012). Minimal residual method provides optimal regularization parameter for diffuse optical tomography. Journal of biomedical optics, 17(10), 106015-106015.
指導教授 潘敏俊(Min-Chun Pan) 審核日期 2023-3-23
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明