博碩士論文 110323072 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:32 、訪客IP:13.58.79.186
姓名 沈韋助(Wei-Chu Shen)  查詢紙本館藏   畢業系所 機械工程學系
論文名稱 高壓氨/氫/空氣預混燃氣之層紊流燃燒速度量測與其正規化分析
(Experimental Measurements and Normalization Analyses of Laminar and Turbulent Burning Velocities in High-Pressure Ammonia/Hydrogen/Air Premixed Combustion)
相關論文
★ 蚶線形滑轉板轉子引擎設計與實作★ 實驗分析預混紊焰表面密度傳輸方程式及Bray-Moss-Libby模式
★ 低紊流強度預混焰之傳播及高紊流強度預混焰之熄滅★ 預混火焰與尾流交相干涉之實驗研究
★ 自由傳播預混焰與紊流尾流交互作用﹔火焰拉伸率和燃燒速率之量測★ 重粒子於泰勒庫頁提流場之偏好濃度與下沈速度實驗研究
★ 潔淨能源:高效率天然氣加氫燃燒技術與污染排放物定量量測★ 預混焰與紊流尾流交互作用時非定常應變率、曲率和膨脹率之定量量測
★ 實驗方式產生之均勻等向性紊流場及其於兩相流之應用★ 液態紊流噴流動能消散率場與微尺度間歇性 之定量量測
★ 預混焰和紊流尾流交互作用:拉伸率與輻射熱損失效應量測★ 四維質點影像測速技術與微尺度紊流定量量測
★ 潔淨能源:超焓燃燒器研發★ 小型熱再循環觸媒燃燒器之實驗研究及應用
★ 預混紊流燃燒:碎形特性、當量比 和輻射熱損失效應★ 預混甲烷紊焰拉伸量測,應用高速PIV
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   至系統瀏覽論文 (2024-12-31以後開放)
摘要(中) 本論文在已建立的三維十字型風扇擾動雙腔體燃燒器,它可於中央實驗區產生一近似等向性紊流場,實驗使用氨/氫/空氣預混燃氣來探討在不同燃氣當量比(u′ = 0.8、1.0 和 1.2)下之氫氣添加量對常溫常壓氨/氫/空氣層流燃燒速度的影響。此外,由於在 p = 1 atm 和 T = 300K 條件下,化學計量(equivelence ratio = 1.0)的甲烷/空氣層流燃燒速度(SL)為0.37 m/s,介於氫氣添加量在 40% ~ 50%的氨/氫/空氣 SL值之間;由實驗量測結果顯示,在相同條件下(equivelence ratio = 1.0, p = 1 atm, T = 300 K),當氫氣添加量 45%時,氨/氫/空氣的 SL ≈ 0.34 m/s,與甲烷SL ≈ 0.37 m/s 相近。因此,本文進一步對氫氣添加量 45%之氨/氫/空氣預混燃氣進行了一系列量測,探討燃氣當量比(equivelence ratio = 0.5~1.5)、紊流(u′ = 0.7~2.8 m/s)和壓力(p = 1~5 atm)對 SL和紊流燃燒速度(ST)的影響,並利用先前各研究團隊所提出的正規化紊流燃燒速度之一般通式,進行了比較和分析。研究結果包含以下五點:(1)對於在本研究燃氣當量比( = 0.8, 1.0, 1.2)之氨/氫/空氣預混燃氣而言,層流燃燒速度均會隨氫氣添加量增加而呈指數型增加,其提升幅度在富油條件( = 1.2)下最為明顯。(2)氫氣添加量 45%之氨/氫/空氣預混燃氣在 p = 1 atm 和 T = 300 K 條件下,其 SL值在貧油(0.5 ≤  < 1.0)和化學計量( = 1.0)都與甲烷/空氣 SL值相近,但在富油(1.0 <  ≤ 1.5)條件下,其SL值高於甲烷/空氣 SL值,這可能是因為氫/空氣燃氣在 = 1.8 有最高之 SL值。(3)氫氣添加量 45%之化學計量氨/氫/空氣燃氣之 SL 值與壓力的冪次關係為 SL ~ p-0.40,其冪次與化學計量甲烷/空氣燃氣之 SL ~ p-0.43相近。(4)利用紊流可大幅提升氨/氫/空氣之燃燒速度,常溫常壓下,在方均根紊流擾動速度 u = 2.8 m/s 時,可使 = 1.0 之氫氣添加量 45%氨/氫/空氣預混燃氣燃燒速度(ST,c̅=0.5)達 3.05 m/s,約是相同條件下 SL ≈ 0.34 m/s 的 9 倍。(5)利用先前 Kobayashi et al. (1998)、Bradely et al. (2005)、Chaudhuri et al. (2012)、Shy et al. (2019)、Wang et al. (2020)及Lhuillier et al. (2021)等團隊所提出之六個一 般 通 式 進 行 正 規 化 分 析 , 所 得 之 關 係 式 依 序 如 下 : ST,c̅=0.5/SL = 2.71[(u/SL)(p/p0)Le-1]0.39; ST,c̅=0.5/u = 0.65(KLe)-0.31; ST,c̅=0.5/SL = 0.33(ReT,flameLe1)0.5; ST,c̅=0.5/u = 0.33(DaLe-1)0.5; ST,c̅=0.5/SL-1 = 0.23(ReT,flameLe-2)0.53 及
ST,c̅=0.5/SL*1/Da=0.1Ka1.02,六種一般通式分析之結果均具有不錯的自我相似性(吻合度R2 > 0.7) , 尤 以 ST,c̅=0.5/SL = 0.33(ReT,flameLe-1)0.5, ST,c̅=0.5/SL-1 =
0.23(ReT,flameLe-2)0.53 和ST,c̅=0.5/SL*1/Da=0.1Ka1.02為更佳,其 R2 值分別為 0.84、0.91和 0.94。前述氨/氫/空氣之高壓層紊流燃燒速度的量測結果,應可提供未來引擎使用無碳氫/氨混合燃料有用的基礎知識。
摘要(英) This thesis investigates the impact of hydrogen addition on the laminar burning velocity of ammonia/hydrogen/air premixed combustion in a preestablished three-dimensional cross-shaped fan-stirred dual-chamber burner. The experimental setup facilitates the creation of a near-isotropic turbulent flow field in the central test region of the cruciform burner. Experiments are conducted using ammonia/hydrogen/air premixed mixtures to explore the effect of hydrogen addition percentages at different equivalence ratios ( = 0.8, 1.0, 1.2) on the laminar burning velocity under standard temperature and pressure conditions. Furthermore, it should be noted that under conditions of p = 1 atm and T = 300 K, the stoichiometric methane/air laminar burning velocity (SL) is about 0.37 m/s. This falls within the range of hydrogen addition percentages between 40% and
50% for values of SL of ammonia/hydrogen/air mixtures. Experimental results at the same conditions ( = 1.0, p = 1 atm, T = 300 K) reveal that with a 45% hydrogen addition, SL of ammonia/hydrogen/air is approximately 0.34 m/s, which
is closely matching that of methane fuel. Therefore, this study further conducts a series of measurements on ammonia/hydrogen/air premixed combustion with a 45% hydrogen addition. It explores the effects of  (= 0.5-1.5), r.m.s. turbulent fluctuation velocity (u = 0.7-2.8 m/s), and pressure (p = 1-5 atm) on both SL and turbulent burning velocity (ST). Several general correlations for normalizing
turbulent flame speeds, as proposed by various research teams in the past, are utilized for comparative analyses and in-depth exploration. The research findings encompass the following five key points. (1) For ammonia/hydrogen/air premixed combustion at various  investigated in this study ( = 0.8, 1.0, 1.2), values of SL reveal an exponential increase with the addition of hydrogen. This increase is most pronounced at  = 1.2. (2) For ammonia/hydrogen/air mixtures with a 45% hydrogen addition under conditions of p = 1 atm and T = 300 K, values of SL are closely matching with those of methane/air mixtures for both lean (0.5 ≤  < 1.0) and stoichiometric ( = 1.0) conditions; however, values of SL at rich conditions (1.0 <  ≤ 1.5) are larger than those of methane/air mixtures. This phenomenon may be attributed to the fact that hydrogen/air combustion exhibits the highest SL at  = 1.8. (3) The relationship between SL of the stoichiometric ammonia/hydrogen/air mixture with a 45% hydrogen addition and pressure follows a power-law relationship SL ~ p-0.40, which closely approximates SL ~ p
-0.43 observed for the stoichiometric methane/air mixture. (4) The study demonstrates that turbulence significantly enhances the burning velocity of ammonia/hydrogen/air. Under standard temperature and pressure conditions, when u′ = 2.8 m/s, the burning velocity (ST,c̅=0.5) of ammonia/hydrogen/air with a 45% hydrogen addition at  = 1.0 reaches 3.05 m/s, about nine times higher than SL≈0.34 m/s under the same conditions. (5) Using six general correlations previously proposed by different research groups including Kobayashi et al.(1998), Bradely et al. (2005), Chaudhuri et al. (2012), Shy et al. (2019), Wang et al. (2020), and Lhuillier et al. (2021), this thesis performs relevant normalization
analyses. The resulting relationships are presented below in sequence of the aforesaid six research groups. ST,c̅=0.5/SL = 2.71[(u/SL)(p/p0)Le-1]0.39; ST,c̅=0.5/u = 0.65(KLe)-0.31; ST,c̅=0.5/SL = 0.33(ReT,flameLe-1)0.5; ST,c̅=0.5/u = 0.33(DaLe-1)0.5;ST,c̅=0.5/SL-1 = 0.23(ReT,flameLe-2)0.53
and ST,c̅=0.5/SL*1/Da=0.1Ka1.02. All six general correlation analyses exhibit reasonably good self-similarity where the goodness R2 > 0.7, with ST,c̅=0.5/SL = 0.33(ReT,flameLe-1)0.5
, ST,c̅=0.5/SL-1 = 0.23(ReT,flameLe-2)0.53 and ST,c̅=0.5/SL*1/Da=0.1Ka1.02 being particularly good, where the corresponding values of R2 are 0.84, 0.91, and 0.94, respectively. Finally, the present high-pressure SL and ST results for ammonia/hydrogen/air mixtures provide valuable fundamental knowledge for future engine applications utilizing carbon-free hydrogen/ammonia fuel blends.
關鍵字(中) ★ 無碳燃料
★ 氨/氫/空氣預混燃燒
★ 層流燃燒速度
★ 紊流燃燒速度
★ 正規化分析
關鍵字(英) ★ Zero-carbon fuels
★ Ammonia/hydrogen premixed combustion
★ Laminar burning velocity
★ Turbulent burning velocity
★ Normalization analysis
論文目次 摘要 I
Abstract III
誌謝 VI
目錄 VII
圖目錄 XI
表目錄 XVI
符號說明 XVII
第一章 前言 1
1.1 研究動機 1
1.2 探討問題 2
1.3 解決方法 3
1.4 論文架構 4
第二章 文獻回顧 6
2.1 臨界火焰半徑及火核發展延遲時間 6
2.2 火焰傳遞 8
2.2.1 量測方法 8
2.2.2 預混火焰 9
2.2.3 層流燃燒與拉伸 10
2.3 紊流燃燒 11
2.3.1 紊流燃燒狀態圖(Borghi diagram) 11
2.3.2 紊流燃燒速度 13
2.4 火焰不穩定性 15
2.4.1 流力不穩定性(hydrodynamic instability) 15
2.4.2 熱擴散不穩定性(Thermal-diffusion instability) 17
2.4.3 浮力不穩定性(buoyancy instability) 19
2.5 紊流燃燒速度的一般通式 20
2.5.1 Kobayashi et al.之一般通式 21
2.5.2 Bradely et al.之一般通式 22
2.5.3 Chaudhuri et al.之一般通式 23
2.5.4 Shy et al.之一般通式 24
2.5.5 Wang et al.之一般通式 25
2.5.6 Lhuillier et al.之一般通式 26
2.6 近年之氨燃燒技術回顧 27
2.6.1 促進引燃 28
2.6.2 提升熱釋放率 32
2.6.3 減少燃燒後氮氧化物 37
第三章 實驗設備及方法 40
3.1 實驗設備介紹 40
3.1.1 高溫高壓預混雙腔體 40
3.1.2 影像擷取系統 41
3.2 實驗與分析方法 42
3.2.1 實驗條件計算方法 42
3.2.2 實驗操作方法 44
3.2.3 數據分析方法 46
第四章 結果與討論 48
4.1 層流燃燒 48
4.1.1 氫添加量與氨/氫層流燃燒速度之關係 48
4.1.2 添加氫氣對於層流火焰結構之影響 53
4.1.3 燃氣當量比對於氨/氫/空氣預混燃氣層流燃燒速度的影響 55
4.2 紊流燃燒 56
4.2.1 高壓條件下的火焰結構 56
4.2.2 高壓條件下的層/紊流燃燒速度 58
4.3 紊流燃燒速度正規化分析 60
4.3.1 Kobayashi et al.一般通式正規化分析 60
4.3.2 Bradely et al.一般通式正規化分析 62
4.3.3 Chaudhuri et al.一般通式正規化分析 63
4.3.4 Shy et al.一般通式正規化分析 65
4.3.5 Wang et al.一般通式正規化分析 66
4.3.6 Lhuillier et al.一般通式正規化分析 67
第五章 結論與未來工作 70
5.1 結論 70
5.2 未來工作 71
參考文獻 72
參考文獻 [1] United Nations, Paris Agreement, 2015.
[2] 國家發展委員會等,臺灣 2050 淨零排放路淨及策略總說明,2022 年。
[3] H. Kobayashi, A. Hayakawa, K.D.K.A. Somarathne, E.C. Okafor, Science and technology of ammonia combustion, Proc. Combust. Inst. 37 (2019) 109-133.
[4] M. Aziz, A.T. Wijayanta, A.B.D. Nandiyanto, Ammonia as Effective Hydrogen Storage: A Review on Production, Storage and Utilization, Energies 13 (2020) 3062.
[5] S. Wang, Z. Wang, A.M. Elbaz, X. Han, Y. He, M. Costa, A.A. Konnov, W.L. Roberts, Experimental study and kinetic analysis of the laminar burning velocity of NH3/syngas/air, NH3/CO/air and NH3/H2/air premixed flames at elevated pressures, Combust. Flame 221 (2020) 270–287.
[6] J. Li, H. Huang, N. Kobayashi, Z. He, Y. Osaka, T. Zeng, Research on Combustion and Emission Characteristics of Ammonia under Preheating Conditions, J. Chem. Eng. Japan 49 (2016) 641-648.
[7] K.N. Vinod, T. Fang, Experimental characterization of spark ignited ammonia combustion under elevated oxygen concentrations, Proc. Combust. Inst. 39 (2023) 4319-4326.
[8] S. Wang, A.M. Elbaz, Z. Wang, W.L. Roberts, The effect of oxygen content on the turbulent flame speed of ammonia/oxygen/nitrogen expanding flames under elevated pressures, Combust. Flame 232 (2021) 111521.
[9] Z. Wang, C. Ji, D. Wang, R. Hou, T. Zhang, S. Wang, Experimental and numerical study on premixed partially dissociated ammonia mixtures. Part II: Numerical study of premixed combustion characteristics, Fuel 306 (2021)
121660.
[10]B. Mei, J. Zhang, X. Shi, Z. Xi, Y. Li, Enhancement of ammonia combustion with partial fuel cracking strategy: Laminar flame propagation and kinetic modeling investigation of NH3/H2/N2/air mixtures up to 10 atm, Combust. Flame. 231 (2021) 111472.
[11]X. Han, Z. Wang, Y. He, Y. Zhu, R. Lin, A.A. Konnov, Uniqueness and similarity in flame propagation of pre-dissociated NH3 + air and NH3 + H2 + air mixtures: An experimental and modelling study, Fuel 327 (2022) 125159.
[12]X. Chen, Q. Liu, W. Zhao, R. Li, Q. Zhang, Z. Mou, Experimental and chemical kinetic study on the flame propagation characteristics of ammonia/hydrogen/air mixtures, Fuel 334 (2023) 126509.
[13]H. Li, H. Xiao, J. Sun, Laminar burning velocity, Markstein length, and cellular instability of spherically propagating NH3/H2/Air premixed flames at moderate pressures, Combust. Flame 241 (2022) 112079.
[14]V. Pessina, F. Berni, S. Fontanesi, A. Stagni, M. Mehl, Laminar flame speed correlations of ammonia/hydrogen mixtures at high pressure and temperature for combustion modeling applications, Int. J. Hydrog. Energy 47 (2022)
25780-25794.
[15]B.Z. Jin, Y.F. Deng, G.X. Li, H.M. Li, Experimental and numerical study of the laminar burning velocity of NH3/H2/air premixed flames at elevated pressure and temperature, Int. J. Hydrog. Energy 47 (2022) 36046-36057.
[16]A.P. Kelly, G. Jomaas, C.K. Law, Critical Radius for Sustained Propagation of Spark-ignited Spherical Flames, Combust. Flame 156 (2009) 1006-1013.
[17]Z. Chen, M.P. Burke, Y. Ju, On the Critical Flame Radius and Minimum Ignition Energy for Spherical Flame Initiation, Proc. Combust. Inst. 33 (2011) 1219-1226.
[18]H.H. Kim, S.H. Won, J. Santner, Z. Chen, Y. Ju, Measurements of the critical initiation radius and unsteady propagation of n-decane/air premixed flames, Proc. Combust. Inst. 34 (2013) 929-936.
[19]Y. Xie, J. Li, J. Yang, R. Cracknell, Laminar burning velocity blending laws using particle imaging velocimetry, Appl. Energy Combust. Sci. 13 (2023) 100114.
[20]S.S. Shy, C.C. Liu, J.Y. Lin, L.L. Chen, A.N. Lipatnikov, S.I. Yang, Correlations of high-pressure lean methane and syngas turbulent burning velocities: Effects of turbulent Reynolds, Damkohler, and Karlovitz numbers,
Proc. Combust. Inst. 35 (2015) 1509-1516.
[21]A.N. Lipatnikov, Y.R. Chen, S.S. Shy, An experimental study of the influence of Lewis number on turbulent flame speed at different pressures, Proc. Combust. Inst. 39 (2023) 2339-2347.
[22]D. Bradley, M. Lawes, M.E. Morsy, Flame speed and particle image velocimetry measurements of laminar burning velocities and Markstein numbers of some hydrocarbons, Fuel 243 (2019) 423-432.
[23]D. Bradley, P.H. Gaskell, X.J. Gu, Burning velocities, Markstein lengths, and flame quenching for spherical methane-air flames: A computational study, Combust. Flame 104 (1996) 176-198.
[24]C.K. Law, Combustion Physics, Cambridge University Press, New York, 2006.
[25]S.R. Turns, An Introduction to Combustion: Concepts and Applications, Third Edition, The McGraw-Hill Education, New York, 2012.
[26]P. Clavin, Dynamic behavior of premixed flame fronts in laminar and turbulent flows, Prog. Energy Combust. Sci. 11 (1985) 1-59.
[27]D. Bradley, R.A. Hicks, M. Lawes, C.G.W. Sheppard, R. Woolley, The measurement of laminar burning velocities and Markstein numbers for isooctane/air and iso-octane/n-heptane/air mixtures at elevated temperatures and pressures in an explosion bomb, Combust. Flame 115 (1998) 126-144.
[28]R. Borghi, On the structure and morphology of turbulent premixed flames, in: C. Casci, C. Bruno (Eds.), Recent advances in the aerospace sciences, Plenum Press, New York, 1985, pp. 117-138.
[29]N. Peters, Laminar flamelet concepts in turbulent combustion, Proc. Combust. Inst. 21 (1988) 1231-1250.
[30]R.G. Abdel-Gayed, D. Bradley, Dependence of turbulent burning velocity on turbulent Reynolds number and ratio of laminar bruning velocity to r.m.s. turbulent velocity, Proc. Combust. Inst. 16 (1977) 1725-1735.
[31]K.N.C. Bray, Turbulent flows with premixed reactants, in: P.A. Libby, F.A. Williams (Eds.), Turbulent reacting flows, Springer-Verlag Berlin, Heidelberg, 1980, pp. 115-183.
[32]N. Peters, Turbulent combustion, Cambridge University Press, New York, 2006.
[33]D. Bradley, M. Lawes, M.S. Mansour, Correlation of turbulent burning velocities of ethanol–air, measured in a fan-stirred bomb up to 1.2 MPa, Combust. Flame 158 (2011) 123-138.
[34]C.C. Liu, S.S. Shy, M.W. Peng, C.W. Chiu, Y.C. Dong, High-pressure burning velocities measurements for centrally-ignited premixed methane/air flames interacting with intense near-isotropic turbulence at constant Reynolds numbers, Combust. Flame 159 (2012) 2608-2619.
[35]D. Bradley, Instabilities and flame speeds in large-scale premixed gaseous explosions, Philos. Trans. Royal Soc. A 357 (1999) 3567-3581.
[36]R. Yu, X.S. Bai, V. Bychkov, Fractal flame structure due to the hydrodynamic Darrieus-Landau instability, Phys. Rev. E 92 (2015) 063028.
[37]F. Oppong, Z. Luo, X. Li, Y. Song, C. Xu, Intrinsic instability of different fuels spherically expanding flames: A review, Fuel Process. Technol. 234 (2022) 107325.
[38]M. Matalon, The Darrieus-Landau instability of premixed flames, Fluid Dyn. Res. 50 (2018) 051412.
[39]S. Kwon, L.K. Tseng, G.M. Feath, Laminar burning velocities and transition to unstable flames in H2/O2/N2 and C3H8/O2/N2 mixtures, Combust. Flame 90 (1992) 230-246.
[40]R.J. Blint, The relationship of the laminar flame width to flame speed, Combust. Sci. Technol. 49 (1986) 79-92.
[41]O.C. Kwon, G. Rozenchan, C.K. Law, Cellular instabilities and selfacceleration of outwardly propagating spherical flames, Proc. Combust. Inst. 29 (2002) 1775-1783.
[42]P. Clavin, F.A. Williams, Effects of molecular diffusion and of thermal expansion on the structure and dynamics of premixed flames in turbulent flows of large scale and low intensity, J. Fluid Mech. 116 (1982) 251-282.
[43]F. Dinkelacker, B. Manickam, S.P.R. Muppala, Modelling and simulation of lean premixed turbulent methane/hydrogen/air flames with an effective Lewis
number approach, Combust. Flame 158 (2011) 1742-1749.
[44]S.P.R. Muppala, M. Nakahara, N.K. Aluri, H. Kido, J.X. Wen, M.V. Papalexandris, Experimental and analytical investigation of the turbulent burning velocity of two-component fuel mixtures of hydrogen, methane and propane, Int. J. Hydrog. Energy 34 (2009) 9258-9265.
[45]C.K. Law, G. Jomaas, J.K. Bechtold, Cellular instabilities of expanding hydrogen/propane spherical flames at elevated pressures: theory and experiment, Proc. Combust. Inst. 30 (2005) 159-167.
[46]L. Rayleigh, Investigation of the character of the equilibrium of an incompressible heavy fluid of variable density, Proc. London Math. Soc. 14 (1883) 170-177.
[47]G. Taylor, The instability of liquid surfaces when accelerated in a direction perpendicular to their planes I, Proc. Math. Phys. Eng. Sci. 201 (1950) 192-196.
[48]D.J. Lewis, The instability of liquid surfaces when accelerated in a direction perpendicular to their planes II, Proc. Math. Phys. Eng. Sci. 202 (1950) 81-96.
[49]H.J. Kull, Theory of the Rayleigh-Taylor instability, Phys. Rep. 206 (1991) 197-325.
[50]M.A. Liberman, Combustion Physics: Flames, Detonations, Explosions, Astrophysical Combustion and Inertial Confinement Fusion, Springer Nature, Switzerland, 2021.
[51]H. Kobayashi, Y. Kawabata, K. Maruta, Experimental Study on General Correlation of Turbulent Burning Velocity at High Pressure, Proc. Combust. Inst. 27 (1998) 941-948.
[52]D. Bradley, P.H. Gaskell, X.J. Gu, A. Sedaghat, Premixed Flamelet Modelling: Factors Influencing the Turbulent Heat Release Rate Source Term and the Turbulent Burning Velocity, Combust. Flame 143 (2005) 227-245.
[53]S. Chaudhuri, F. Wu, D. Zhu, C.K. Law, Flame Speed and Self-Similar Propagation of Expanding Turbulent Premixed Flames, Phys. Rev. Lett. 108 (2012) 044503.
[54]H. Kobayashi, T. Tamura, K. Maruta, T. Niioka, F.A. Williams, Burning velocity of turbulent premixed flames in a high-pressure environment, Proc. Combust. Inst. 26 (1996) 389-396.
[55]H. Kobayashi, K. Seyama, H. Hagiwara, Y. Ogami, Burning velocity correlation of methane/air turbulent premixed flames at high pressure and high temperature, Proc. Combust. Inst. 30 (2005) 827-834.
[56]M.T. Nguyen, D.W. Yu, S.S. Shy, General Correlations of High Pressure Turbulent Burning Velocities with the Consideration of Lewis Number Effect, Proc. Combust. Inst. 37 (2019) 2391-2398.
[57]X. Cai, J. Wang, Z. Bian, H. Zhao, M. Zhang, Z. Huang, Self-similar propagation and turbulent burning velocity of CH4/H2/air expanding flames: Effect of Lewis number, Combust. Flame 212 (2020) 1-12.
[58]C. Lhuillier, P. Brequigny, F. Contino, C. Mounaïm-Rousselle, Experimental investigation on ammonia combustion behavior in a spark-ignition engine by means of laminar and turbulent expanding flames, Proc. Combust. Inst. 38
(2021) 5859-5868.
[59]Liquefied natural gas (LNG) properties, ELGAS, 2021, Discover Liquefied Natural Gas Uses and Properties (elgas.com.au).
[60]E. Fernández-Tarrazo, R. Gómez-Miguel, M. Sánchez-Sanz, Minimum ignition energy of hydrogen–ammonia blends in air, Fuel 337 (2023) 127128.
[61]J. Li, H. Huang, N. Kobayashi, C. Wang, H. Yuan, Numerical study on laminar burning velocity and ignition delay time of ammonia flame with hydrogen addition, Energy 126 (2017) 796-809.
[62]J. Choe, W. Sun, T. Ombrello, C. Carter, Plasma assisted ammonia combustion: Simultaneous NOx reduction and flame enhancement, Combust. Flame 228 (2021) 430-432.
[63]Y. Tang, D. Xie, B. Shi, N. Wang, S. Li, Flammability enhancement of swirling ammonia/air combustion using AC powered gliding arc discharges, Fuel 313 (2022) 122674.
[64]S.S. Shy, V.T. Mai, Y.R. Chen, H.Y. Hsieh, Nanosecond repetitively pulsed discharges and conventional sparks of ammonia-air mixtures in a fan-stirred cruciform burner: Flammability limits and ignition transition, Appl. Energy
Combust. Sci. 15 (2023) 100164.
[65]A.M. Elbaz, S. Wang, T.F. Guiberti, W.L. Roberts, Review on the recent advances on ammonia combustion from the fundamentals to the applications, Fuel Communications 10 (2022) 100053.
[66]J.H. Lee, J.H. Kim, J.H. Park, O.C. Kwon, Studies on properties of laminar premixed hydrogen-added ammonia/air flames for hydrogen production, Int. J. Hydrog. Energy 35 (2010) 1054-1064.
[67]X. Han, Z. Wang, M. Costa, Z. Sun, Y. He, K. Cen, Experimental and kinetic modeling study of laminar burning velocities of NH3/air, NH3/H2/air, NH3/CO/air and NH3/CH4/air premixed flames, Combust. Flame 206 (2019)
214-226.
[68]A. Hayakawa, T. Goto, R. Mimoto, Y. Arakawa, T. Kudo, H. Kobayashi, Laminar burning velocity and Markstein length of ammonia/air premixed flames at various pressures, Fuel 159 (2019) 98-106.
[69]G.J. Gotama, A. Hayakawa, E.C. Okafor, R. Kanoshima, M. Hayashi, T. Kudo, H. Kobayashi, Measurement of the laminar burning velocity and kinetics study of the importance of the hydrogen recovery mechanism of ammonia/hydrogen/air premixed flames, Combust. Flame 236 (2022) 111753.
[70]C. Lhuillier, P. Brequigny, N. Lamoureux, F. Contino, C. Mounaïm-Rousselle, Experimental investigation on laminar burning velocities of ammonia/hydrogen/air mixtures at elevated temperatures, Fuel 263 (2020) 116653.
[71]K.P. Shrestha, C. Lhuillier, A.A. Barbosa, P. Brequigny, F. Contino, C. Mounaïm-Rousselle, L. Seidel, F. Mauss, An experimental and modeling study of ammonia with enriched oxygen content and ammonia/hydrogen laminar flame speed at elevated pressure and temperature, Proc. Combust. Inst. 38 (2021) 2163-2174.
[72]R. Kanoshima, A. Hayakawa, T. Kudo, E.C. Okafor, S. Colson, A. Ichikawa, T. Kudo, H. Kobayashi, Effects of initial mixture temperature and pressure on laminar burning velocity and Markstein length of ammonia/air premixed
laminar flames, Fuel 310 (2022) 122149.
[73]J. Cheng, B. Zhang, Analysis of explosion and laminar combustion characteristics of premixed ammonia-air/oxygen mixtures, Fuel 351 (2023) 128860.
[74]S. Wang, A.M. Elbaz, O.Z. Arab, W.L. Roberts, Turbulent flame speed measurement of NH3/H2/air and CH4/air flames and a numerical case study of NO emission in a constant volume combustion chamber (C.V.C.C.), Fuel 332 (2023) 126152.
[75]H. Dai, J. Wang, X. Cai, S. Su, H. Zhao, Z. Huang, Lewis number effects on laminar and turbulent expanding flames of NH3/H2/air mixtures at elevated pressures, Proc. Combust. Inst. 39 (2023) 1689-1697.
[76]X. Cai, Q. Fan, X.S. Bai, J. Wang, M. Zhang, Z. Huang, M. Alden, Z. Li, Turbulent burning velocity and its related statistics of ammonia-hydrogen-air jet flames at high Karlovitz number: Effect of differential diffusion, Proc.
Combust. Inst. 39 (2023) 4215-4226.
[77]S. Zitouni, P. Brequigny, C. Mounaїm-Rousselle, Turbulent flame speed and morphology of pure ammonia flames and blends with methane or hydrogen, Proc. Combust. Inst. 39 (2023) 2269-2278.
[78]Selective catalytic reduction (SCR) system, Mitsubishi Power, 2022, Mitsubishi Power | Selective Catalytic Reduction (SCR) System (mhi.com).
[79]W.R. Laster, R. Schilp, D.J. Wiebe, Device to lower NOx in a gas turbine engine combustion system, Siemens Energy, Patent US 8959888 B2, 2015.
[80]A. Hayakawa, Y. Arakawa, R. Mimoto, K.D.K.A. Somarathne, T. Kudo, H. Kobayashi, Experimental investigation of stabilization and emission characteristics of ammonia/air premixed flames in a swirl combustor, Int. J. Hydro. Energy 42 (2017) 14010-14018.
[81]E.C. Okafor, K.D.K.A. Somarathne, R. Ratthanan, A. Hayakawa, T. Kudo, O. Kurata, N. Iki, T. Tsujimura, H. Furutani, H. Kobayashi, Control of NOx and other emissions in micro gas turbine combustors fuelled with mixtures of
methane and ammonia, Combust. Flame 211 (2020) 406-416.
[82]A. Ichikawa, A. Hayakawa, Y. Kitagawa, K.D.K.A. Somarathne, T. Kudo, H. Kobayashi, Laminar burning velocity and Markstein length of ammonia/hydrogen/air premixed flames at elevated pressures, Int. J. Hydro. Energy 40 (2015) 9570-9578.
[83]S. Zitouni, P. Brequigny, C. Mounaїm-Rousselle, Influence of hydrogen and methane addition in laminar ammonia premixed flame on burning velocity, Lewis number and Markstein length, Combust. Flame 253 (2023) 112786.
[84]C.M. Vagelopoulos, F.N. Egolfopoulos, Direct xperimental determination of laminar flame speeds, Proc. Combust. Inst. 27 (1998) 513-519.
[85]C.W. Chiu, Y.C. Dong, S.S. Shy, High-pressure hydrogen/carbon monoxide syngas turbulent burning velocities measured at constant turbulent Reynolds numbers, Int. J. Hydro. Energy 37 (2012) 10935-10946.
[86]龔泰宇,高壓高紊流貧油預混甲烷混氫或混氨之球狀火焰速度量測及其一般通式,國立中央大學機械工程研究所,碩士論文,2022 年 12 月。
[87]伊莎蕊,高壓高溫甲苯汽油替代燃料與乙醇混合物之層紊流燃燒速度和廢氣排放量測,國立中央大學機械工程研究所,碩士論文,2021 年 1 月。
指導教授 施聖洋(Shy, Shenqyang (Steven)) 審核日期 2023-12-28
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明