博碩士論文 109624610 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:48 、訪客IP:3.139.81.212
姓名 阮國桃(Ngoc-Thao Nguyen)  查詢紙本館藏   畢業系所 應用地質研究所
論文名稱 台灣西南部滾水坪的構造活動性和泥火山機制
(Tectonic activity and mud volcanism at Gunshuiping, Southwestern Taiwan)
相關論文
★ 利用台灣西南部二仁溪之階地分析探討全新世構造運動★ 利用曾文溪沿岸階地及碳14定年法分析臺灣西南部崙後斷層及口宵里斷層之活動特性
★ 台灣西南部二仁溪緯度一帶活躍變形的西部麓山帶的構造分析★ 台灣西南部曾文溪一帶跨越西部麓山帶山麓前緣的活動構造及全新世變形速率
★ 利用航空影像關聯和DSM時間序列測量 台灣西南部車瓜林斷層和旗山斷層之間的地表變形
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   [檢視]  [下載]
  1. 本電子論文使用權限為同意立即開放。
  2. 已達開放權限電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。
  3. 請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。

摘要(中) 泥火山常見於世界各地的聚合構造中,在台灣南部沿岸平原及西部麓山帶的斷層軸線或背斜軸軸部亦常發現泥火山的蹤跡,且主要以晚中新世至更新世的古亭坑層泥岩為主,厚度約3-5公里。下部古亭坑層泥岩為鬆軟的沉積岩層且富含過壓流體,可解釋活動泥火山出現的原因。InSAR(合成孔徑雷達干涉)和GPS(全球定位系統)觀測結果表明全新世沿海平原存在著一條西南走向的右移斷層,因此我們推斷其斷層跡應與地形崖和滾水坪穹頂狀泥火山(高雄鹽巢區)的位置有關。現今穹頂狀的地貌被地形崖切穿向右錯移,可能與斷層活動有關。此外,泥火山的噴泥口均座落於東南側且沿斷層跡方向,此現象促使我們研究導向於探討活動斷層的運動學機制以及斷層與泥火山形成的關係。 本研究考慮了兩種可能形成泥火山的機制:泥漿通過斷層或裂隙向上遷移,或者透過韌性“貫入”的方式。我們將利用 19 個淺井的鑽探資料、放射性碳定年法 (14C) 、鈾釷 (U-Th) 定年法和地電阻影像剖面法 (RIP) 去調查全新世地層的變形情況,並沿推測的斷層跡的兩側岩層做地層對比。於垂直斷層的剖面結果顯示東南側基岩層沿斷層被抬升,其斷面傾向東南70度,且全新世上部地層亦沿斷層發生變形。同時,平行斷層剖面顯示被掩埋的4,700年地層呈近水平分佈,與穹頂狀地貌形成明顯對比,意謂著該地形最早始於4,700年。由岩心紀錄觀察到4,700年的岩層為泥漿侵入的海相沉積物。此外,在此岩層以上的地層岩性為含泥流的粉砂質黏土層,此岩層底部的定年結果為4100年。因此,我們提出形成穹頂狀地貌的主因是泥漿經由裂隙或斷層流經年代4700年的岩層遷移至地表並在地表流動的結果。再者,由沉積物從海相到泥漿侵入的岩性變化之結果以及穹頂狀地貌的形成表示距今4,700年前左右曾發生海退。藉由斷層兩側的形貌比對配合,我們估計自4100年以來的平均水平偏移量為 54.4 ± 6.0 公尺,斷層的水平滑移速率為每年 13.2 ± 1.6毫米。利用斷層上不同層的垂直偏移量可導出自一萬年以來斷層的垂直滑移率為每年 4.4 ± 1.9毫米。本研究估算的水平滑移速率較2015-2018年GPS估算值來得小。由垂直斷層剖面中生長地層的位移也暗示發生了破裂事件,即滾水坪可能曾發生過地震。然而,上部的生長地層也暗示著可能存在部分的潛移斷層。
摘要(英) Mud volcanoes are commonly found in tectonically compressed environments all around the world. In southwestern Taiwan, mud volcanoes are common near the axis of faults and anticlines in the Coastal Plain and Western Foothills, where the geology is dominated by the 3-5 km-thick Gutingkeng mudstone formation, which is late Miocene to Pleistocene in age. The Lower Gutingkeng mudstone formation was described as a weak sedimentary rock formation, rich in overpressured fluids that could explain the presence of active mud volcanoes. InSAR and GPS observations suggest the existence of a southwest striking right-lateral strike-slip fault in the Holocene Coastal Plain. The inferred fault trace is associated with a topographic scarp and with the presence of the Gunshuiping mud volcano (Yanchao district, Kaohsiung), which displays a dome-shaped topography. The dome-shaped topography is cut by the scarp and appears to be right-laterally shifted, which might be related to the fault activity. In addition, the vents of mud volcano are all located on the southeast block and along the fault trace. This leads us to investigate the kinematics of the active fault and its relation with the formation of the mud volcano. We consider two possible scenarios for the formation of mud volcanoes: mud migrating upwards through faults or fractures or through ductile “piercement”. We investigated the deformation of buried Holocene strata using 19 shallow boreholes, radiocarbon (14C) dating, U-Th dating and Resistivity Image Profiling (RIP) data for stratigraphic correlation across and along the inferred fault. The fault-perpendicular cross-sections show that the bedrock unit and Holocene strata have been uplifting on the southeast block along a fault dipping 70o to the southeast. Meanwhile, the fault-parallel cross-sections show the 4.7 ka buried layers lying sub-horizontally, in contrast to the dome-shaped topography, indicating that the maximum age of the topography is 4.7 ka. The core observations show the 4.7 ka layer as the marine sediments with mud intrusions. Moreover, the layer above it consists of silty clay layers with mud flows, the base of this layer is dated 4.1 ka. Hence, we proposed that the dome-shaped topography is the result of mud flows at the surface with mud-fluid migrating through fractures or faults in 4.7 ka layer. The change in lithology from marine sediments to mud-intruded sediments and the formation of the dome-shaped topography indicate the marine regression around 4.7 ka. By matching the morphology on both sides of the inferred fault, we estimated an average horizontal offset of 54.4 ± 6.0 m and a horizontal fault slip rate of 13.2 ± 1.6 mm/yr since 4.1 ka. Using the vertical offset of distinct layers across the fault leads to a vertical fault slip rate of 4.4 ± 1.9 mm/yr since 10 ka. The horizontal slip rate in our study is slightly smaller than the horizontal slip rate from GPS estimate of 15-20 mm/yr in period of 2015 to 2018. Growth strata visible on the fault-perpendicular profiles, suggest that earthquake events could have occurred at the Gunshuiping site. The growth strata in the upper layer, however suggest the possibility of a recent creeping fault.
關鍵字(中) ★ 活動構造
★ 斷層滑移速率
★ 古亭坑層
★ 全新世
★ 泥火山
關鍵字(英) ★ Active tectonics
★ fault slip rates
★ mud volcanoes
★ Gutingkeng formation
★ Holocene
論文目次 Abstract i
摘要 iii
Acknowledgments iv
Table of content v
List of figures vii
List of tables x
Chapter 1: Introduction 1
1-1 Background to the research 1
1-2 Review of tectonics in Southwestern foothills Taiwan 2
1-3 Geodetic observations 6
1-4 Geological setting 13
1-5 Geomorphology 17
1-6 Review of mud volcanoes in Southwestern Taiwan 19
1-7 Near surface geophysics 21
1-8 Previous study of Sinotech consulting project report 24
1-9 Aims of this study 25
Chapter 2: Near-surface three-dimensional geometry of Holocene deposits and vertical deformation 26
2-1 Stratigraphic correlation 26
2-1-1 Lithostratigraphic correlation and unit subdivision 28
2-1-2 Chronostratigraphic correlation 40
2-1-3, Bio-stratigraphic correlation 47
2-1-4 Stratigraphic correlation transects 49
2-2 Near-surface 3D geometry of Holocene deposits 63
2-3 The evolution of Holocene layer 64
2-4 Near-surface vertical displacement and vertical slip rate 68
Chapter 3: Surface strike-slip horizontal deformation 70
3-1 Geomorphologic marker 70
3-2 Swath topographic profiles 70
3-3 Horizontal slip rate 76
Chapter 4: Discussion 77
4-1 Geometry of near-surface strata and their relation to tectonic structure 77
4-2 Holocene strata depositional environment 81
4-3 The formation of Gunshuiping mud volcano 83
4-4 Estimate of the kinematics of Chegualin fault 85
Chapter 5: Conclusions 86
References 87
Appendices 92

參考文獻 References
Angelier, J., Lee, J.C., Chu, H.T., Lu, C.Y., Fournier, M., Hu, J.C., Lin, N.T., Deffontaines, B., Delcaillau, B., Lacombe, O., Lee, T.Q., (1995). Crustal extension in an active orogen: Taiwan. In: Tsien, H.-H. (Ed.), ACT Int. Conf., Extended. Abstr. Geol. Soc. China Spec. Publ., Taipei, Taiwan, pp. 25–32.
Barrier, E. and Angelier, J. (1986) Active collision in eastern Taiwan: the coastal Range. Tectonophysics 125, 39–72.
Chao, H. C., You, C. F., Liu, H. C. and Chung, C. H. (2013) The origin and migration of mud volcano fluids in Taiwan: Evidence from hydrogen, oxygen, and strontium isotopic compositions. Geochimica Et Cosmochimica Acta, 114, 29–51, doi: 10.1016/j.gca.2013.03.035
Chen, W.S., Lee, K.J., Lee, L.S., Ponti, D.J., Prentice,,C., Chen,,Y.G., Chang,H.C. and Lee,Y.H. (2004) Paleoseismology of the Chelungpu Fault during the past 1900 years. Quaternary International, 115–116, 167–176.
Chi, W.R. (1979) Biostraitigraphic study of the late Neogene sediments in the Kaohsiung area based on calcareous nannofossils. Proceedings of the geological society of China, No. 22, 121-144.
Ching, K. E., Gourley, J. R., Lee, Y. H., Hsu, S. C., Chen, K. H. and Chen, C. L. (2016) Rapid deformation rates due to development of diapiric anticline in southwestern Taiwan from geodetic observations. Tectonophysics, 692, 241–251, doi: 10.1016/j.tecto.2015.07.020
Ching, K. E., Rau, R. J., Lee, J. C. and Hu, J. C. (2007) Contemporary deformation of tectonic escape in SW Taiwan from GPS observations, 1995–2005. Earth and Planetary Science Letters, 262(3–4), 601–619, doi: 10.1016/j.epsl.2007.08.017
Chou, J.T. (1971) A Sedimentologic and Paleogeographic study of the Neogene formations in the Taichung region, western Taiwan. Petroleum Geology of Taiwan 9, 43-66.
Heaton, T. J., Köhler, P., Butzin, M., Bard, E., Reimer, R. W., Austin, W. E. N., . . . Skinner, L. C. (2020) Marine20—The Marine Radiocarbon Age Calibration Curve (0–55,000 cal BP). Radiocarbon, 62(4), 779–820, doi: 10.1017/rdc.2020.68
Hedberg, H.D. (1980) Methane generation and petroleum migration. In: Roberts III, W.H., Cordell, R.J. (eds.), Problems of petroleum migration, AAPG Studies in Geology 10, 179- 206
Hsieh, M.L., Lai, T.H., Wu, L.C., Lu, W.C., Liu, H.T. and Liew, P.M. (2006) Eustatic sea-level change of 11–5 ka in western Taiwan, constrained by radiocarbon dates of core sediments. Terr. Atmos. Ocean. Sci. 17 (2), 353–370
Hsieh, S.H. (1972) Subsurface geology and gravity anomalies of the Tainan and Chungchou structures of the coastal plain of southwestern Taiwan. Petroleum geology of Taiwan, No 10, P323-338.
Ho, C.S (1986) A synthesis of the geologic evolution of Taiwan. Tectonophysics 125, 1–16
Ho, C.S. (1988) An introduction to the geology of Taiwan: explanatory text of the geological map of Taiwan, 2nd ed., Central Geol. Surv., 192pp
Hua, Q., Barbetti, M., & Rakowski, A. Z. (2013) Atmospheric Radiocarbon for the Period 1950–2010. Radiocarbon, 55(4), 2059–2072, doi:10.2458/azu_js_rc.v55i2.16177
Kopf, A. J. (2002) SIGNIFICANCE OF MUD VOLCANISM. Reviews of Geophysics, 40(2), 2–1, doi: 10.1029/2000rg000093
Kopf, A., Deyhle, A., Lavrushin,V.Y., Polyak, B.G., Gieskes, J.M., Buachidze,G.I., Wallmann, K. and Eisenhauer, A (2003) Isotopic evidence (He, B, C) for deep fluid and mud mobilization from mud volcanoes in the Caucasus continental collision zone. International Journal of Earth Sciences, 92, 407–425.
Lao, H.G., Shan, Y.X., Wang, Y.S. and Wu,Z.H. (2020) Characteristics of growth fault architecture and its evolution in mudstone T strata: Evidence from the core of Bohai Bay basin. Marine and Petroleum Geology, 119.
Lin, A.T. and Watts, A.B. (2002) Origin of the West Taiwan Basin by orogenic loading and flexure of a rifted continental margin. J. Geophys. Res. 107, 2185, doi: 10.1029/2001JB000669.
Lin, A.T., Watts, A.B. and Hesselbo, S.P. (2003) Cenozoic stratigraphy and subsidence history of the South China Sea margin in the Taiwan region. Basin Res. 15, 453–478, doi: 10.1046/j.1365-2117.2003.00215.x
Lin, A. T., Yang, C.-C., Wang, M.-H., & Wu, J.-C. (2021). Oligocene-Miocene sequence stratigraphy in the northern margin of the South China Sea: An example from Taiwan. Journal of Asian Earth Sciences, 213, 104765, doi:10.1016/j.jseaes.2021.104765
Lin, C. C. (1965) The naming of the Akungtien Formation, with discussion of the origin of the fossils in the mud ejected from the Kunshuip’ing Mud-Volcanoes near Ch’iao-t’ou, Kaohsiunghsien, Taiwan. Dr. Sun Yat-Sen’s 100th birthday jabilee volume, No. 4 . P., 107-145.
Liu, C. C., Jean, J. S., Nath, B., Lee, M. K., Hor, L. I., Lin, K. H. and Maity, J. P. (2009) Geochemical characteristics of the fluids and muds from two southern Taiwan mud volcanoes: Implications for water–sediment interaction and groundwater arsenic enrichment. Applied Geochemistry, 24(9), 1793–1802, doi:10.1016/j.apgeochem.2009.06.002
Lu, C.Y., Jeng, F.S., Chang, K.J. and Jian,W.T. (1998) Impact of basement high on the structure and kinematics of western Taiwan thrust wedge: insights from sandbox models. Terr. Atmos. Ocean Sci. 9, 533–550.
Lu, C.Y. and Malavieille, J. (1994) Oblique convergence, indentation and rotation tectonics in the Taiwan Mountain Belt: insights from experimental modeling. Earth Planet. Sci. Lett. 121, 477–494.
Milkov, A. (2000) Worldwide distribution of submarine mud volcanoes and associated gas hydrates. Marine Geology, 167(1–2), 29–42, doi: 10.1016/s0025-3227(00)00022-0
Milkov, A. V. and Sassen, R. (2002) Economic geology of offshore gas hydrate accumulations and provinces. Marine and Petroleum Geology, 19(1), 1–11, doi: 10.1016/s0264-8172(01)00047-2
Mouthereau, F., Lacombe, O., Deffontaines, B., J. Angelier, J. and Brusset, S. (2001) Deformation history of the southwestern Taiwan foreland thrust belt: insights from tectono-sedimentary analyses and balanced cross-sections. Tectonophysics, 333, 293-322
Mouthereau, F., Deffontaines, B., Lacombe, O. and Angelier, J. (2002). Variation along the strike of the Taiwan thrust belt: basement control on structural style, wedge geometry, and kinematics. In: Byrne, T.B., Liu, C.-S. (Eds.), Geology and Geophysics of an Arc– Continent Collision, Taiwan. Geol. Soc. Am. Special Papers 358, pp. 31–54
Pathier, E., Fruneau, B., Doin, M. P., Liao, Y. T., Hu, J. C. and Champenois, J. (2014) What are the tectonic structures accommodating the present-day tectonic deformation in South-Western Taiwan? A new interpretation from ALOS-1 InSAR and GPS interseismic measurements. Geodynamics and Environment in East-Asia. 7th France-Taiwan Earth Sciences Symposium, Hualien, Taiwan
Reimer, P. J., Austin, W. E. N., Bard, E., Bayliss, A., Blackwell, P. G., Bronk Ramsey, C., Butzin, M., Cheng, H., Edwards, R. L., Friedrich, M., Grootes, P. M., Guilderson, T. P., Hajdas, I., Heaton, T. J., Hogg, A. G., Hughen, K. A., Kromer, B., Manning, S. W., Muscheler, R., . . . Talamo, S. (2020) The IntCal20 Northern Hemisphere Radiocarbon Age Calibration Curve (0–55 cal kBP). Radiocarbon, 62(4), 725–757, doi: doi.org/10.1017/rdc.2020.41
Shih, T.T. (1967) A survey of active mud volcanoes in Taiwan and a study of their types and the character of the mud. Petroleum Geology of Taiwan, No.3, 250-311.
Soto, J. I., Hudec, M. R., Mondol, N. H., and Heidari, M. (2021) Shale transformations and physical properties—Implications for seismic expression of mobile shales. Earth-Science Reviews, 220, 103746, doi: 10.1016/j.earscirev.2021.103746
Sun, C. H., Chang, S. C., Kuo, C. L., Wu, J. C., Shao, P. H. and Oung, J. N. (2010) Origins of Taiwan’s mud volcanoes: Evidence from geochemistry. Journal of Asian Earth Sciences, 37(2), 105–116, doi: 10.1016/j.jseaes.2009.02.007
Sung, Q. C., Chang, H. C., Liu, H. C. and Chen, Y. C. (2010) Mud volcanoes along the Chishan fault in Southwestern Taiwan: A release bend model. Geomorphology, 118(1–2), 188–198, doi: 10.1016/j.geomorph.2009.12.018
Tapponnier, P., Peltzer, G., Dain, A. Y. L., Armijo, R., & Cobbold, P. (1982) Propagating extrusion tectonics in Asia: New insights from simple experiments with plasticine. Geology ,10, 611-616, doi: 10.1130/0091-7613(1982)102.0.CO;2
Wang, Y., Lin, Y. N., Ota, Y., Chung, L., Shyu, J. B. H., Chiang, H., . . . Shen, C. (2022). Mud Diapir or Fault‐Related Fold? On the Development of an Active Mud‐Cored Anticline Offshore Southwestern Taiwan. Tectonics, 41(9), doi: 10.1029/2022tc007234
Yen, N. T., Lin, T. L., Liao, L. R., Chang, P. Y. and Mittal, H. (2020) Illustrate mud-fluid conduits and their variety using resistivity image profiling method in Southwest Taiwan. Terrestrial, Atmospheric and Oceanic Sciences, 31(5), 523–537, doi: 10.3319/tao.2019.07.02.01.
You, C. F., Gieskes, J., Lee, T., Yui, T. F. and Chen, H. W. (2004) Geochemistry of mud volcano fluids in the Taiwan accretionary prism. Applied Geochemistry, 19(5), 695–707, doi: 10.1016/j.apgeochem.2003.10.004
Yu, S.B., Chen, H.Y., Kuo, L.C. (1997) Velocity field of GPS stations in the Taiwan area. Tectonophysics 274, 41–59.
Zehnder, A.T. and Allmendinger, R.W. (2000) Velocity field for the trishear model. Journal of Structural Geology 22, 1009-1014.
林啓文 (2013) 五萬分之一臺灣地質圖說明書。經濟部中央地質調查所,圖幅第五十六號旗山。
陳文山 ,宋時驊 ,吳樂群 ,徐澔德 ,楊小青(2004)末次冰期以來台灣海岸平原區的海岸線變遷。國立台灣大學人類考古學刊,卷62,第40-55頁。
陳新翰 (2021) 台灣西南部泥岩車瓜林斷層之岩石特徵與隱示。國立中央大學應用地質研究所碩士論文,共124頁。
張李群 (2014) 以大地測量資料進行龍船斷層與旗山斷層行為分析之研究。國立成功大學測量及空間資訊學系碩士論文,共125頁。
趙家賢 (2019) 以2015至2018年大地測量資料分析車瓜林斷層地表變形及橫跨斷層之高架橋結構位移。國立成功大學測量及空間資訊學系碩士論文,共90頁。
劉彥求,林啓文(2019)臺灣南部車瓜林斷層的構造特性研究。經濟部中央地質調查所特刊,第三十四號,第53-82頁。
劉彥求,林啓文(2022)車瓜林斷層。經濟部中央地質調查所特刊,第三十四號,附件。
指導教授 波玫琳(Maryline Le Béon) 審核日期 2023-2-2
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明