![]() |
|
以作者查詢圖書館館藏 、以作者查詢臺灣博碩士 、以作者查詢全國書目 、勘誤回報 、線上人數:68 、訪客IP:18.220.35.89
姓名 陳長志(Chang-Chih Chen) 查詢紙本館藏 畢業系所 應用地質研究所 論文名稱 台灣西南部曾文溪一帶跨越西部麓山帶山麓前緣的活動構造及全新世變形速率
(Active structures and Holocene deformation rates across the piedmont of the Western Foothills, Tsengwen River, southwestern Taiwan)相關論文
★ 利用台灣西南部二仁溪之階地分析探討全新世構造運動 ★ 利用曾文溪沿岸階地及碳14定年法分析臺灣西南部崙後斷層及口宵里斷層之活動特性 ★ 台灣西南部滾水坪的構造活動性和泥火山機制 ★ 台灣西南部二仁溪緯度一帶活躍變形的西部麓山帶的構造分析 ★ 利用航空影像關聯和DSM時間序列測量 台灣西南部車瓜林斷層和旗山斷層之間的地表變形 檔案 [Endnote RIS 格式]
[Bibtex 格式]
[相關文章]
[文章引用]
[完整記錄]
[館藏目錄]
[檢視]
[下載]
- 本電子論文使用權限為同意立即開放。
- 已達開放權限電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。
- 請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。
摘要(中) 在台灣西南部曾文溪一帶,GPS水平速度從烏山頭背斜東側的25毫米/年急劇減少至海岸平原東側約4毫米/年。因此,在造山帶前緣預期應有活動構造存在。然而,以往的研究並未清楚探討構造的幾何形貌和活動情況。為了進行地震危害評估,了解該區域的幾何形貌和變形速率可能非常重要。本研究旨在通過地質剖面、變形全新世沉積物和大地測量來確定地質結構的幾何形貌和全新世變形速率。在本研究中,我使用曾文溪露頭和海岸平原東側已發表的淺層鑽孔資料來計算全新世變形速率,同時建立了地質剖面以確定構造的幾何形貌。
我使用我在曾文溪河階的觀察和相關的碳14定年結果,結合前人在曾文溪沿線進行的研究成果。此外,我還利用公開的淺層鑽孔資料,嘗試比較這兩個數據集。由於兩者沉積環境不同,我分別進行計算。我根據侵蝕速率、沉積速率、下盤的沉降速率來推估河階的抬升速率。因此,我使用大地測量數據和從淺層鑽孔中選擇的等年代線來決定相對穩定的地點進行沉積速率計算,並且我選擇靠近造山帶以西約10公里的總爺淺層鑽孔作為基礎,獲得河階的抬升速率。在海岸平原,我使用淺層鑽孔的碳14定年結果,並考慮海平面變化來獲得抬升速率。最終我結合河階和淺層鑽孔的抬升速率,得出一個與現代大地測量數據趨勢相似的剖面。抬升速率從變形帶西部到中部逐漸增加,在麓山帶持續上升直到烏山頭背斜和口宵里斷層。同時,我使用已發表的地表地質資料、超微化石地層學、深層鑽孔、深層反射震測線以及從淺層鑽孔中選擇的等年代線,在研究區北部和南部建立了剖面。此外,我利用剖面的結果來了解構造在不同緯度上的幾何形貌差異。我認為在麓山帶深度約3到4公里處可能為口宵里斷層向西延伸。此外,口宵里斷層可能是引起麓山帶全新世變形的主要構造並延伸至海岸平原形成了一個背斜。
我比較了全新世變形率和地質剖面的結果並將它們分成三個不同的區域:海岸平原、台南麓山帶和麓山帶前緣進行討論。在海岸平原,根據震測剖面及全新世抬升率的變化,可瞭解到在平原區有著正在活動之背斜之構造,且形成背斜之構造可能由麓山帶延伸至此。在台南麓山帶,我認為全新世變形可能是由口宵里斷層所引起的。在這個前提下,我利用斷層傾角和曾文溪河階的抬升速率,然後基於斷層彎曲褶皺模型估計斷層滑動速率。我得到的斷層滑動速率為26.2-27.9毫米/年。此外,根據現今的大地測量資料所示,變形速率的峰值在北側地區並不是在靠近口宵里斷層處,而是在靠近烏山頭背斜軸,此現象可能是由北方的高傾角地層限制了口宵里斷層的滑動,並將斷層滑動轉換成在烏山頭背斜處的褶皺作用。在麓山帶前緣,我利用了口宵里斷層在麓山帶的滑動速率和我所繪製剖面中的斷層傾角來確定抬升速率約為4.5-4.8毫米/年。因此,根據研究區域的結果,在海岸平原、麓山帶前緣和台南山麓帶的烏山頭褶皺帶的抬升速率變化分別為-4毫米/年、4.5-5.2毫米/年和19.3毫米/年。
現有的研究成果更多支持口宵里斷層向西延伸,且在西南側的研究區延伸至人口較多的沿海平原,並形成一個背斜。此類型正在活動且有著長變形帶的構造對地震危險性評估有著重要的影響。摘要(英) In Southwestern Taiwan, at the latitude of the TsengWen River, westward GPS horizontal velocities dramatically decrease from 25 mm/yr east of the WuShanTou anticline to about 4 mm/yr in the eastern coastal plain. Therefore, active structures are expected at the topographic front of the mountain belt. However, geometry and activity of structures are not very well addressed in the previous studies. It might be important to understand the geometry and the deformation rate in this area for seismic hazard assessment. This study aims to determine the geometry of the geological structures and to quantify the Holocene deformation rates based on geological cross-sections, deformed Holocene deposits, and geodesy. In this study, I use TsengWen River terraces and published shallow boreholes data in the eastern coastal plain to calculate the Holocene deformation rates. I also build the geological cross-sections to determine the geometry of the structures.
I use my TsengWen River terraces observation and the dating results and combine them with the previous studies along the TsengWen River. Further, I also take the published shallow boreholes data and try to compare these two data sets. Since the sedimentary environments are different, I do the calculations of the uplift rates separately. I estimate the uplift rates of the terraces based on the incision rates, sedimentation rates, and the footwall subsidence rate. I use geodesy data and the Isochrones selected from the shallow borehole to select a relatively stable location for sedimentation rates calculation. I choose the shallow boreholes in TsungYeh which is west of the deformation zone and around 10km away from the piedmont as the reference to obtain the terraces uplift rates. In the coastal plain, I take the dating results in the shallow boreholes and consider the sea level changes to obtain the uplift rates. Lastly, I combine the uplift rate from terraces and the shallow boreholes to obtain a profile that has a similar trend to the contemporary geodesy data. These uplift rates increase from the west to the middle of the deformation zone and keep rising in the foothills until the WuShanTou anticline and KouhSiaoLi fault. In parallel, I use the published surface geological data, nannostratigraphy, deep boreholes, seismic reflection lines that I did the depth-converted, and Isochrones which I selected from shallow boreholes to build the cross-sections at the north part and the south part of the study area. Further, I used the results of the profiles to understand the geometrical differences of the structures in different latitudes. I propose that at a depth of approximately 3 to 4 km in the foothills the KouhSiaoLi fault may extend westward. Furthermore, the KouhSiaoLi fault may be the main structure causing Holocene deformation in the foothills, and it extends to the coastal plain forming an anticline.
I compare the results from Holocene deformation rates and the geological cross-sections. Then, I separate them into three different areas; the coastal plain, the Tainan foothills, and the piedmont for discussion. In the coastal plain, it is an active anticline in the coastal plain area according to the seismic lines and variation of the Holocene uplift rate. The structure that forms the anticline may extend from the foothills. In the Tainan foothills, I propose that the Holocene deformation may be caused by the KouhSiaoLi Fault. Under this premise, I used the fault dip angles and the uplift rates of the TsengWen River terraces to estimate the fault slip rates based on the fault-bend fold model. The fault slip rates I obtained are 26.2-27.9 mm/yr. In addition, according to the current geodetic data, the peak of deformation rate in the northern region is not near the KouhSiaoLi fault but near the WuShanTou anticline fold axis, which may be due to the high-dip angle formations in the north restricting the slip of the KouhSiaoLi fault and transforming the fault slip into the folding at the WuShanTou anticline. At the piedmont, I determined the uplift rate to be about 4.5-4.8 mm/year based on the slip rate of the KouhSiaoLi fault in the foothills and the fault dip angle in the geological cross-sections I drew. Therefore, according to the results of the study area, the uplift rate changes in the coastal plain, to the piedmont, and to the WuShanTou fold belt in the Tainan foothills are -4 mm/yr, 4.5-5.2 mm/yr, and 19.3 mm/yr, respectively.
The research results support the westward extension of the KouhSiaoLi fault, which extends to the heavily populated coastal plain on the southwest side of the study area and forms an anticline. Such structures that are active and have a long deformation zone have a significant impact on seismic hazard assessment.關鍵字(中) ★ 曾文溪
★ 河階
★ 活動斷層
★ 全新世變形
★ 斷層相關褶皺關鍵字(英) ★ TsengWen River
★ river terrace
★ active fault
★ Holocene deformation
★ fault-related folding論文目次 摘要 vi
Abstract viii
Table of Contents x
List of Figures xii
List of Tables xv
Chapter 1. Introduction 1
1-1. Foreword and Motivation 1
1-2. Objectives and Workflow 4
Chapter 2. Geology of the Study Area 6
2-1. Geological History 6
2-2. Geological Setting 12
2-3. Geological Structures 16
2-2-1. Main Structures 16
2-2-2. Structures at the Piedmont 20
2-4. Holocene Geology 24
Chapter 3. Holocene Uplift Rates 32
3-1. Methods to Calculate the Uplift Rate 32
3-2. Method Used in the Terrace Field Survey 38
3-3. Radiocarbon Dating 42
3-4. Initial Results 44
3-4-1. TsengWen River Terraces Dating Results and Strath Elevation 44
3-4-2. TsengWen River Terraces Profile and Incision Profile 63
3-4-3. Holocene Uplift Rates 63
Chapter 4. Geological Cross-Sections 72
4-1. Seismic Reflection Lines Depth Conversion 75
4-2. Methods and Constraints of the Cross-Sections 81
4-2-1. Method Used in the Cross-Sections 81
4-2-2. Constraints of the Cross-sections 88
4-3. Geometry of the Structures 94
Chapter 5. Discussion 101
5-1. Holocene Deformation Development in the Eastern Coastal Plain 101
5-2. Holocene Deformation Rate and Structures Geometry in Foothills 107
5-3. Geometry and Deformation of the Structures in Piedmont 110
Chapter 6. Conclusions 111
References 112
Appendixes A 116
Appendixes B 120參考文獻 中國石油公司 (1989) 臺南地質圖,比例尺十萬分之一。中國石油公司臺灣油礦探勘總處。
石智偉 (2022) 利用曾文溪沿岸階地及碳14定年法分析臺灣西南部崙後斷層及口宵里斷層之活動特性。國立中央大學,碩士論文,共115頁。
何信昌、謝凱旋、高銘健、陳華玟 (2005) 新化地質圖幅及說明書,比例尺五萬分之一。經濟部中央地質調查所。
何春蓀 (1987) 台灣西部麓山帶地質。地工技師雜誌,第20期,第80-98頁。
吳榮章 (1982) 台南縣龜丹溪剖面之生物地層及其沉積環境。探採彙報,第5期,第33-51頁。
林啓文、盧詩丁、石同生、張徽正、石瑞銓 (2000) 從野外觀察探討臺灣西南部四條存疑性活動斷層的存在。經濟部中央地質調查所彙刊,第13號,第77~101頁。
林啟文、張徽正、盧詩丁、石同生、黃文正 (2000) 臺灣活動斷層概論第二版,五十萬分之一臺灣活動斷層分布圖說明。經濟部中央地質調查所特刊,第13號,共122頁。
原振維、黃旭燦、周定芳、吳榮章、盧東郎 (1987) 臺灣南部高壓層之研究。中國石油公司探採彙報,第10期,第1-27頁
張錫齡、鍾振東 (1957) 台南縣竹頭崎構造之地質。台灣石油地質討論會論文專輯,中國石油公司,第237-249 頁。
張徽正、林啟文、陳勉銘、盧詩丁(1998)臺灣活動斷層概論,五十萬分之一臺灣活動斷層分布圖說明書,經濟部中央地質調查所特刊,第10 號,共103 頁。
張麗旭、周敏、陳培源(1947)民國35年12月5日臺南之地震。臺灣省地質調查所彙刊,第1號,第11-18頁。
陳文山、宋時驊、吳樂群、徐浩德、楊小青 (2005) 末次冰期以來台灣海岸平原的海岸線變遷。考古人類學刊,第40-55 頁。
陳文山、游能梯、松多信尚、楊小青 (2008a) 地震地質與地變動潛勢分析計畫:斷層長期滑移速率與再現週期研究(1/4)。經濟部中央地質調查所,共86頁
陳文山、黃能偉、楊志成 (2011) 臺灣西南部更新世沈積層序特性 與前陸盆地演化。經濟部中央地質調查所特刊,第25號,第1-38頁。
陳思婷 (2018)晚更新世以來花東海岸南段的階地演化。國立台灣大學,碩士論文,共179頁
景國恩、胡植慶、陳宏宇、張午龍、鄭凱謙、莊昀叡 (2018) 斷層活動性觀測研究第四階段-地表變形觀測資料處理分析與斷層模型反演評估。經濟部中央地質調查所,共315頁。
黃旭燦、楊耿銘、吳榮章、丁信修、李長之、梅文威、徐祥宏 (2004) 台灣陸上斷層帶地質構造與地殼變形調查研究-台灣西部麓山帶地區地下構造綜合分析。經濟部中央地質調查所報告,93-13號。
黃姝琳 (2009) 台灣南部嘉義地區麓山帶構造型態轉換之研究。國立台灣大學,碩士論文,共101頁。
謝承恩、范書睿、林彥廷、黃文正和羅偉 (2016) 無人飛行載具搭載數 位相機於地質構造 判釋之應用。航測及遙測學刊,第21卷,第4期,257-269 頁。
Briais, A., P. Patriat, and P. Tapponnier (1993). Updated interpretation of magnetic anomalies and sea-floor spreading stages in the South China Sea: Implications for the Tertiary tectonics of Southeast Asia, J. Geophys. Res., 98, 6299–63283.
Bürgi, Paula, Judith Hubbard, Syed Humayun Akhter, and Dana E. Peterson. (2021). Geometry of the Décollement Below Eastern Bangladesh and Implications for Seismic Hazard. Journal of Geophysical Research: Solid Earth 126, no. 8.
Chen, W.-S., Yang, C.-Y., Chen, S.-T., Huang, Y.-C. (2020). New insights into Holocene marine terrace development caused by seismic and aseismic faulting in the Coastal Range, eastern Taiwan. Quaternary Science Reviews 240, 106369.
Chen, Wen-Shan, Kenneth D. Ridgway, Chorng-Shern Horng, Yue-Gau Chen, Kai-Shuan Shea, and Ming-Guan Yeh. (2001). Stratigraphic Architecture, Magnetostratigraphy, and Incised-Valley Systems of the Pliocene-Pleistocene Collisional Marine Foreland Basin of Taiwan. Geological Society of America Bulletin 113, no. 10, 1249–1271.
Chi, Wen-Rong. (1978). The late Neogene nannobiostratigraphy in the Tainan Foothills region, Southern Taiwan. Petroleum Geology of Taiwan 15, 89-125.
Chi, Wen-Rong. (1980). Calcareous nannoplankton biostratigraphic study and correlation of the late Neogene sequence in the Chiayi and Hsinying foothills, Southern Taiwan. Petroleum Geology of Taiwan 23.
Hsieh, M.L., Knuepfer, P. L. K. (2002). Synchroneity and morphology of Holocene river terraces in the southern Western Foothill, Taiwan: A guide to interpreting and correlating erosional river terraces across growing anticlines. Geological Society of America Special, Paper. 358, 55-74.
Hsieh, Meng-Long, Tzu-Hua Lai, Leh-Chun Wu, Wan-Chung Lu, Hsien-The Liu, and Ping-Mei Liew. (2006). Eustatic Sea-Level Change of 11 - 5 Ka in Western Taiwan, Constrained by Radiocarbon Dates of Core Sediments. Terrestrial, Atmospheric and Oceanic Sciences 17, no. 2, 353-370.
Hsieh, S. H. (1972). Subsurface geology and gravity anomalies of the Tainan and Chungchou structures of the Coastal Plain of southwestern Taiwan. Petroleum Geology of Taiwan, 10, 323–338.
J. Lave´, J. P. Avouac (2000). Active folding of fluvial terraces across the Siwaliks Hills, Himalayas of central Nepal. Journal of Geophysical Research, 105, 5735–5770.
John H. Shaw, Christopher Connors, and John Suppe (2004). Fault-related folds Part1. AtlasAAPG.
Le Béon, M., Marc, O., Suppe, J., Huang, M.‐H., Huang, S.‐T., & Chen, W.‐S. (2019). Structure and deformation history of the rapidly growing Tainan anticline at the deformation front of the Taiwan mountain belt. Tectonics, 38, 3311–3334.
Lin, A. T. (2001) Cenozoic stratigraphy and tectonic development of the west Taiwan basins, Ph.D. thesis, 246 pp., Univ. of Oxford, Oxford, UK.
Lin, A. T., and A. B. Watts. (2002). Origin of the West Taiwan Basin by Orogenic Loading and Flexure of a Rifted Continental Margin: TAIWAN FORELAND FLEXURE. Journal of Geophysical Research: Solid Earth 107, no. B9, ETG 2-1-ETG, 2-19.
Mouthereau, F, O Lacombe, B Deffontaines, J Angelier, and S Brusset. (2001). Deformation History of the Southwestern Taiwan Foreland Thrust Belt: Insights from Tectono-Sedimentary Analyses and Balanced Cross-Sections. Tectonophysics 333, no. 1–2, 293–322.
Pathier, E., Hu, J. C., Doin, M. P., Liao, Y. T., Johann, C. (2015). Present-day deformation of anticlines in an active foreland fold-and-thrust belt measured from ALOS-1 InSAR and GPS: The Southwestern Taiwan case. ESA Fringe 2015, Advances in the Science and Applications of SAR interferometry and Sentinel-1 InSAR workshop, ESA-ESRIN, Frascati, Italy, 23-27.
Reimer, P., Austin, W., Bard, E., Bayliss, A., Blackwell, P., Bronk Ramsey, C., Butzin, M., Cheng, H., Edwards, R., Friedrich, M., Grootes, P., Guilderson, T., Hajdas, I., Heaton, T., Hogg, A., Hughen, K., Kromer, B., Manning, S., Muscheler, R., Palmer, J., Pearson, C., van der Plicht, J., Reimer, R., Richards, D., Scott, E., Southon, J., Turney, C., Wacker, L., Adolphi, F., Büntgen, U., Capano, M., Fahrni, S., Fogtmann-Schulz, A., Friedrich, R., Köhler, P., Kudsk, S., Miyake, F., Olsen, J., Reinig, F., Sakamoto, M., Sookdeo, A., & Talamo, S. (2020). The IntCal20 Northern Hemisphere radiocarbon age calibration curve (0–55 cal kBP). Radiocarbon, 62.
Shyu, J. Bruce H., Yi-Rung Chuang, Ya-Lin Chen, Yi-Rui Lee, and Chin-Tung Cheng. (2016). A New On-Land Seismogenic Structure Source Database from the Taiwan Earthquake Model (TEM) Project for Seismic Hazard Analysis of Taiwan. Terrestrial, Atmospheric and Oceanic Sciences 27, no. 3, 311-323.
Shyu, J. Bruce H., Yu-Hsuan Yin, Cheng-Hung Chen, Yi-Rung Chuang, and Sze-Chieh Liu. (2020). Updates to the On-Land Seismogenic Structure Source Database by the Taiwan Earthquake Model (TEM) Project for Seismic Hazard Analysis of Taiwan. Terrestrial, Atmospheric and Oceanic Sciences 31, no. 4: 469–78.
Suppe, John. (1980). Imbricated structure of Western Foothills belt, Southcentral Taiwan. Petroleum Geology of Taiwan 17, 1-16.
Wang, S. (1976). ERTS-1 satellite imagery and its application in the regional geologic study of southwestern Taiwan: Petrol. Geol. Taiwan 13, 37-57.
Yue, Li-Fan, John Suppe, and Jih-Hao Hung. (2011). Two contrasting kinematic styles of active folding above thrust ramps, western Taiwan, in K. McClay, J. Shaw, and J. Suppe, eds., Thrust fault-related folding. AAPG Memoir 94, 153 – 186.指導教授 波玫琳(Maryline Le Béon) 審核日期 2023-5-3 推文 plurk
funp
live
udn
HD
myshare
netvibes
friend
youpush
delicious
baidu
網路書籤 Google bookmarks
del.icio.us
hemidemi
myshare