博碩士論文 110323058 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:37 、訪客IP:3.148.117.62
姓名 謝孟倫(Meng-Lun Hsieh)  查詢紙本館藏   畢業系所 機械工程學系
論文名稱 碳化矽晶圓超快雷射隱形切層之改質研究
(Study on Ultrashort Pulsed Laser Stealth Modification on Silicon Carbide Wafers)
相關論文
★ 超快雷射薄石英晶圓微鑽孔研究★ 新型光學式自動聚焦顯微鏡的設計與其性能分析
★ 以田口法作微型動壓軸承最佳化設計與性能評價★ 開發以 ANSYS-Fluent 為架構之數值模擬法探 討行星式 MOCVD 反應腔體內之三維氣體流場
★ 使用擴散片降低雷射幾何擾動方法之最佳化設計與實驗驗證★ 雷射直寫技術應用於金屬網格軟性透明電極製作
★ 多功能崁入式金屬網格透明電極技術開發★ 結合雷射直寫與無電鍍技術應用於嵌入式金屬網格透明電極製作
★ 雷射直寫自還原金屬複合墨水製作高抗氧化銅鎳合金網格透明電極★ 以雷射碳化靜電紡絲碳奈米纖維製作超級電容電極
★ 航太用鋁合金板熱處理爐設施之研究★ 雷射加工機應用於微米元件轉印製程之研究
★ 連續與脈衝式近紅外光雷射對無鹼玻璃之改質與雙面微透鏡陣列加工★ 使用濕式蝕刻後處理輔助之雷射藍寶石通孔研究
★ 鋰離子電池模組之產熱模型建立與熱傳模擬分析★ 脈衝雷射切割無定向矽鋼片及人工智能質量預測的實驗研究
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   至系統瀏覽論文 (2029-1-4以後開放)
摘要(中) 碳化矽(Silicon carbide, SiC)為第三代半導體的關鍵材料,相較於目前使用量最高的矽晶圓,有更優異物理特性與化學穩定性,其中更高的熱導率與更寬能隙,使它在高功率與高頻元件上更具優勢。然而,SiC晶圓的製造成本卻一直居高不下,主要挑戰來自: (1) 前段長晶製程的困難耗時,因此不易獲得質精、量大的晶錠;以及,(2)後段加工製程的修邊、切片、研磨、與拋光等過程耗時長且高耗能。此兩瓶頸導致SiC晶圓的製作成本一直居高不下,也是SiC晶圓製造亟需突破的關鍵。晶圓薄型化與晶圓更高效的切、磨、拋技術研發,是SiC晶圓製造業者積極應對高材料成本的研發方向。 其中超快雷射隱形切片(Stealth slicing)技術可切割更薄晶圓且同時微小化切割面的表面材料損傷,薄型化可大幅提高材料的使用率,低表面損傷則可有效地降低後續研磨、拋光的時間與耗材消耗。
本研究以飛秒雷射探討N型4H-SiC的隱形切割技術,發現經由改變雷射的處理參數與雷射光在晶圓內部的聚焦深度,可在晶圓內部形成單一改質或雙改質切層,且兩切層的寬度與形貌並不相同。實驗發現,在脈衝能量(Pulse energy, Ep) 8.56 µJ 與脈衝重疊率(Pulse overlap, OP) 70.8%時,可以獲得穩定且均勻的單一改質切層,其位置,如預期地,在雷射光聚焦平面;而在相同的脈衝能量下,若將脈衝重疊率提高到OP = 85.4%時,則首度發現除了可在可在原聚焦平面獲得改質的切層外,也會在其上方(沿入射光的方向)形成第二個的改質切層,也就是,同時形成雙改質切層。實驗也發現,此一現象可重複出現,且發生在特定的雷射處理參數範圍內;此外,本研究也發現,經由改變雷射參數,此兩改質切層間的距離也會有變動。
對於此第二改質層的形成,本研究提出其形成機理,認為是因為在脈衝頻率提升的情況下,在其入射光的路徑上因材料熱累積溫升所導致非線性材料吸收率變化所引起,因此,當非焦平面位置的雷射能量密度達到SiC改質的閾值後,即可形成第二個改質層,故其成因並非是「雷射燈絲現象」(Laser filamentation),而本研究也經由實驗,驗證此一機理。據此機理,當改變雷射脈衝能量時,可變化此雙改質切層之間的距離,本研究也實驗驗證當雷射脈衝能量增加時,雙改質切層之間的距離即隨之增加。經由横切面的研磨與蝕刻,本研究進一步觀察此兩改質層的結構,在本研究目前的參數下,第二改質層雖不在焦平面上,但其被改質範圍卻大於在焦平面的第一改質層。
工程應用上,此同時形成雙質切層技術,除了加倍SiC切片效率外,也可直接達成厚度小於100 µm的SiC晶圓切片。
摘要(英) Silicon carbide (SiC) is a key material for third-generation semiconductors. Compared to the most widely used silicon wafers, SiC exhibits superior physical properties and chemical stability. Its higher thermal conductivity and wider bandgap provide it advantages in high-power and high-frequency devices. However, the manufacturing cost of SiC wafers has remained high due to two main challenges: (1) the difficulty and time-consuming nature of the initial SiC crystal growth process, resulting in limited availability of high-quality and large-volume ingots; and (2) the time-consuming and energy-intensive processes in the later stages of edge trimming, slicing, grinding, and polishing. These bottlenecks have kept the production costs of SiC wafers consistently high, posing a critical challenge for the SiC wafer manufacturing industry. The development of technologies for wafer thinning and more efficient cutting, grinding, and polishing processes has become a proactive research direction for SiC wafer manufacturers in response to the high material costs. Among these, the ultrafast laser stealth slicing technology enables the cutting of thinner wafers while minimizing surface material damage. Thinning wafers significantly increase material utilization, and reduced surface damage effectively lowers the time and consumables required for subsequent grinding and polishing processes.
Experimental findings indicate that with a pulse energy (E_p) of 8.56 µJ and a pulse overlap (OP) of 70.8%, a stable and uniform single modified layer is achievable, forming at the expected laser focus plane. Remarkably, under the same pulse energy, an increase in pulse overlap to OP = 85.4% led to the discovery that not only a single modified layer was formed at the original focus plane but also a second modified layer above it (along the direction of incident light), resulting in the simultaneous creation of a double modified layer. The study further notes that this phenomenon can be replicated within specific ranges of laser processing parameters. Moreover, alterations to the laser parameters were observed to cause variations in the distance between these two modified layers.
Regarding the formation of this second modified layer, this study proposes its formation mechanism, suggesting that it is due to the increase in pulse frequency. The non-linear change in absorption coefficient caused by the cumulative temperature rise along the path of incident light is believed to be the cause. Therefore, when the laser energy density at the non-focal plane position reaches the threshold for SiC modification, the second modified layer can be formed. Consequently, its origin is different from the "Laser filamentation" phenomenon, and this mechanism has been experimentally validated in this study. Based on this mechanism, variations in the pulse energy of the laser can change the distance between these double modified layers. The study also experimentally verifies that as the laser pulse energy increases, the distance between these two layers also increases. Through grinding and etching of the cross-sectional surface, this study further observes the structure of these two modified layers. Under the current studied parameters, although the second modified layer is not at the focal plane, its modified range is greater than that of the first modified layer at the focal plane.
In practical applications, the technology of simultaneously forming double modified layers not only doubles the efficiency of SiC slicing but also allows for the direct achievement of SiC wafer slices with a thickness of less than 100 µm.
關鍵字(中) ★ 碳化矽
★ 雷射隱形切片
★ 薄型化切片技術
★ 飛秒雷射
★ 單改質切層
★ 雙改質切層
關鍵字(英) ★ Silicon Carbide
★ Laser Stealth Slicing
★ Thin Slicing Technique
★ Femtosecond Laser
★ Single Modified Layer
★ Double Modified Layer
論文目次 摘要 i
Abstract iii
誌謝 v
目錄 vii
圖目錄 x
表目錄 xvi
Chapter 1、 緒論 1
1-1 前言 1
1-2 研究動機與目的 4
Chapter 2、 文獻回顧 5
2-1 碳化矽性質探討 5
2-2 碳化矽切片技術 10
2-2-1 接觸式切片方法 11
2-2-2 非接觸式切片方法 17
2-3 傳承與創新 28
Chapter 3、 實驗方法 29
3-1 實驗架構及流程 29
3-2 試片樣品備製 30
3-2-1 試片備製 30
3-2-2 雷射加工與後續觀察步驟 31
3-2-3 試片鑲埋處理與機械研磨 32
3-2-4 化學蝕刻 34
3-3 雷射實驗細節 34
3-3-1 雷射實驗裝置 35
3-3-2 雷射加工參數 36
3-4 檢測流程與儀器介紹 37
3-4-1 雷射共軛焦顯微鏡 37
3-4-2 場發射掃描式電子顯微鏡(Scanning Electron Microscope, SEM) 38
3-4-3 光學聚焦成形法 39
Chapter 4、 結果與討論 40
4-1 內部改質層的觀察 40
4-2 單層內部改質層結果 44
4-2-1 不同掃描線間距之單層改質結果 44
4-2-2 不同雷射能量之單層改質結果 46
4-2-3 單層改質之研磨與蝕刻結果觀察 47
4-3 雙層內部改質層的形成 55
4-3-1 雙改質層形成機制探討 56
4-3-2 不同雷射能量之雙層改質結果 61
4-3-3 雙層改質之研磨與蝕刻結果觀察 67
4-4 光學聚焦成型法觀察結果 76
Chapter 5、 結論 79
Reference 80
碩士論文口試教授問題集 84
參考文獻 [1] R. Tomaszewski, "Citations to chemical resources in scholarly articles: CRC Handbook of Chemistry and Physics and The Merck Index," Scientometrics, vol. 112, no. 3, pp. 1865-1879, 2017.
[2] P. Patnaik, Handbook of inorganic chemicals. McGraw-Hill New York, 2003.
[3] E. G. Acheson, "Carborundum: Its history, manufacture and uses," Journal of the Franklin Institute, vol. 136, no. 4, pp. 279-289, 1893.
[4] N. P. Hung, Z. W. Zhong, and C. H. Zhong, "Grinding of Metal Matrix Composites Reinforced with Silicon-Carbide Particles," Materials and Manufacturing Processes, vol. 12, no. 6, pp. 1075-1091, 1997/11/01 1997, doi: 10.1080/10426919708935205.
[5] S. P, H. K. Natarajan, and P. K. J, "Study of silicon carbide-reinforced aluminum matrix composite brake rotor for motorcycle application," The International Journal of Advanced Manufacturing Technology, vol. 94, no. 1, pp. 1461-1475, 2018/01/01 2018, doi: 10.1007/s00170-017-0969-7.
[6] A. Harley-Trochimczyk, A. Rao, H. Long, A. Zettl, C. Carraro, and R. Maboudian, "Low-power catalytic gas sensing using highly stable silicon carbide microheaters," Journal of Micromechanics and Microengineering, vol. 27, 02/01 2017, doi: 10.1088/1361-6439/aa5d70.
[7] P. Kwasnicki, "Evaluation of doping in 4H-SiC by optical spectroscopies," Université Montpellier II-Sciences et Techniques du Languedoc, 2014.
[8] J. Jian and J. Sun, "A review of recent progress on silicon carbide for photoelectrochemical water splitting," Solar RRL, vol. 4, no. 7, p. 2000111, 2020.
[9] M. Stockmeier, S. A. Sakwe, P. Hens, P. J. Wellmann, R. Hock, and A. Magerl, "Thermal expansion coefficients of 6H silicon carbide," in Materials Science Forum, 2009, vol. 600: Trans Tech Publ, pp. 517-520.
[10] A. Elasser and T. P. Chow, "Silicon carbide benefits and advantages for power electronics circuits and systems," Proceedings of the IEEE, vol. 90, no. 6, pp. 969-986, 2002.
[11] X. Y. Wang, Y. Li, and S. J. Li, "Study on the impact of the cutting process of wire saw on sic wafers," Applied Mechanics and Materials, vol. 120, pp. 593-597, 2012.
[12] G. Chen et al., "Surface modulation to enhance chemical mechanical polishing performance of sliced silicon carbide Si-face," Applied Surface Science, vol. 536, p. 147963, 2021.
[13] Y. Zhou, G. Pan, X. Shi, S. Zhang, H. Gong, and G. Luo, "Effects of ultra-smooth surface atomic step morphology on chemical mechanical polishing (CMP) performances of sapphire and SiC wafers," Tribology international, vol. 87, pp. 145-150, 2015.
[14] W. Wang et al., "Chemical–Mechanical Polishing of 4H Silicon Carbide Wafers," Advanced Materials Interfaces, p. 2202369, 2023.
[15] G. Chen et al., "One-step fabrication of fine surfaces via femtosecond laser on sliced SiC," Materials Science in Semiconductor Processing, vol. 132, p. 105926, 2021.
[16] X. Yang, X. Yang, K. Kawai, K. Arima, and K. Yamamura, "Highly efficient planarization of sliced 4H–SiC (0001) wafer by slurryless electrochemical mechanical polishing," International Journal of Machine Tools and Manufacture, vol. 144, p. 103431, 2019.
[17] A. Luque and S. Hegedus, Handbook of photovoltaic science and engineering. John Wiley & Sons, 2011.
[18] A. Bidiville, K. Wasmer, M. Van der Meer, and C. Ballif, "Wire-sawing processes: parametrical study and modeling," Solar Energy Materials and Solar Cells, vol. 132, pp. 392-402, 2015.
[19] K. O. Dohnke, K. Kaspar, and D. Lewke, "Comparison of different novel chip separation methods for 4H-SiC," in Materials Science Forum, 2015, vol. 821: Trans Tech Publ, pp. 520-523.
[20] S. Lee, Y. Tani, T. Enomoto, and H. Sato, "Development of a dicing blade with photopolymerizable resins for improving machinability," CIRP annals, vol. 54, no. 1, pp. 293-296, 2005.
[21] W. Peng, X. Xu, and L. Zhang, "Improvement of a dicing blade using a whisker direction-controlled by an electric field," Journal of Materials Processing Technology, vol. 129, no. 1-3, pp. 377-379, 2002.
[22] H. Wang et al., "Influence of Surface Preprocessing on 4H-SiC Wafer Slicing by Using Ultrafast Laser," Crystals, vol. 13, no. 1, p. 15, 2022.
[23] W. Clark, A. Shih, C. Hardin, R. Lemaster, and S. McSpadden, "Fixed abrasive diamond wire machining—part I: process monitoring and wire tension force," International Journal of Machine Tools and Manufacture, vol. 43, no. 5, pp. 523-532, 2003.
[24] W. I. Clark, A. J. Shih, R. L. Lemaster, and S. B. McSpadden, "Fixed abrasive diamond wire machining—part II: experiment design and results," International Journal of Machine Tools and Manufacture, vol. 43, no. 5, pp. 533-542, 2003.
[25] C. W. Hardin, J. Qu, and A. J. Shih, "Fixed abrasive diamond wire saw slicing of single-crystal silicon carbide wafers," Materials and manufacturing processes, vol. 19, no. 2, pp. 355-367, 2004.
[26] H. Maeda, R. Takanabe, A. Takeda, S. Matsuda, and T. Kato, "High-speed slicing of SiC ingot by high-speed multi wire saw," in Materials Science Forum, 2014, vol. 778: Trans Tech Publ, pp. 771-775.
[27] W. Natsu, Y. Ito, M. Kunieda, K. Naoi, and N. Iguchi, "Effects of support method and mechanical property of 300 mm silicon wafer on sori measurement," Precision engineering, vol. 29, no. 1, pp. 19-26, 2005.
[28] M. R. Marks, Z. Hassan, and K. Y. Cheong, "Characterization methods for ultrathin wafer and die quality: A review," IEEE Transactions on components, packaging and manufacturing technology, vol. 4, no. 12, pp. 2042-2057, 2014.
[29] S. Wang et al., "4H‐SiC: a new nonlinear material for midinfrared lasers," Laser & Photonics Reviews, vol. 7, no. 5, pp. 831-838, 2013.
[30] E. Kim, Y. Shimotsuma, M. Sakakura, and K. Miura, "4H-SiC wafer slicing by using femtosecond laser double-pulses," Optical Materials Express, vol. 7, no. 7, pp. 2450-2460, 2017.
[31] S. Han et al., "Laser slicing of 4H-SiC wafers based on picosecond laser-induced micro-explosion via multiphoton processes," Optics & Laser Technology, vol. 154, p. 108323, 2022.
[32] L. Wang, C. Zhang, F. Liu, H. Zheng, and G. J. Cheng, "Process mechanism of ultrafast laser multi-focal-scribing for ultrafine and efficient stealth dicing of SiC wafers," Applied Physics A, vol. 128, no. 10, p. 872, 2022.
[33] S. Chin et al., "The propagation of powerful femtosecond laser pulses in opticalmedia: physics, applications, and new challenges," Canadian journal of physics, vol. 83, no. 9, pp. 863-905, 2005.
[34] Y. Zhang, X. Xie, Y. Huang, W. Hu, and J. Long, "Internal modified structure of silicon carbide prepared by ultrafast laser for wafer slicing," Ceramics International, vol. 49, no. 3, pp. 5249-5260, 2023.
[35] L. Jiang and H.-L. Tsai, "Improved two-temperature model and its application in ultrashort laser heating of metal films," 2005.
[36] L. V. Zhigilei, Z. Lin, and D. S. Ivanov, "Atomistic modeling of short pulse laser ablation of metals: connections between melting, spallation, and phase explosion," The Journal of Physical Chemistry C, vol. 113, no. 27, pp. 11892-11906, 2009.
[37] Y. Yamada, T. Ikeda, and J. Ikeno, "Precision laser slicing technology for single crystal SiC wafer 1st report: Study on slicing method considering kerf-loss," Journal of the Japan Society of Grinding Engineers, vol. 64, no. 12, pp. 635-642, 2020.
指導教授 何正榮(Jeng-Rong Ho) 審核日期 2024-1-5
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明