博碩士論文 104624606 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:19 、訪客IP:3.139.60.215
姓名 阮玄辛(Nguyen, Xuan Xinh)  查詢紙本館藏   畢業系所 應用地質研究所
論文名稱 平滑節理水力與力學內寬的量測-岩石節理之水力力學耦合行為
(Measuring the mechanical and hydraulic apertures of smooth, rock joints using porosimeter/permeameter—Viewpoints from hydromechanical couple behaviors)
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   [檢視]  [下載]
  1. 本電子論文使用權限為同意立即開放。
  2. 已達開放權限電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。
  3. 請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。

摘要(中) 流體流經岩體討論主題不論是對岩盤工程或地球科學都是非常重要。應力作用下單一岩石節理的水力內寬(e)是模擬流體流經受應力之岩體之關鍵變數,由於節理在不同正向應力下力學內寬(E)之預測模型已相當完備,因此承受不同應力節理之水力內寬可以很容易地利用E - e關係進行估算。然而,力學內寬試驗常使用正向位移法(normal displacement method,ND 法)加以量測,因而需要「估計」初始內寬。這種試驗方法導致量測結果之不確定性可以傳播到E - e關係式中。本研究使用原設計用來量測岩石孔隙率與滲透率之YOKO 2系統,在3至120 MPa的圍壓下,針對使用線鋸切割後拋光鋁製節理試體以及具葉理之板岩試體(均屬平滑節理),進行力學(節理體積量測法,JV法)/水力內寬(穩態法,SS法)室內量測。此外,本研究提出了一個新的脈衝衰減平衡方法(PDB法,暫態法),利用承受圍壓之同一顆試體同時量測岩石節理 e 和 E,為能達成此一目的,YOKO2系統採封閉系統,在高達60 MPa的圍壓(正向應力)下測量線鋸切割後拋光的板岩試體之e和E。根據壓力衰減曲線的分析確定水力內寬,而透過節理體積量測(JV法)確定平衡壓力以確定力學內寬。
本研究重要發現如下:(1)使用穩態法和節理體積法量測具有相同節理表面之線鋸切割後拋光平滑鋁製節理試體的 e 和 E,有很好的重複性,並可使用雙曲函數擬合e 和 E 的應力相依性;(2)本研究建議之PDB方法,可同時量測線鋸切割後拋光板岩平滑節理試體的 e 和 E,並可使用雙曲函數擬合e 和 E 的應力相依性;(3)節理體積(JV法)量測力學內寬,可降低利用量測節理閉合的ND法初始內寬估計所導致之不確定性,同時可提升E "- " e關係的可靠性。(4)當採用JV方法以降低初始內寬估計的影響時,需要注意的是,即使岩石節理試體完整岩石基質本身孔隙率小於0.1%,此一體積對力學內寬測量的貢獻也不容忽視。但是,低滲透性岩石的基質滲透率對於穩態法輛測之影響可以忽略不計; (5)忽略二次傅希海默(Forchheimer)項會導致低估水力內寬; (6)採用PDB暫態方法估計的水力內寬與穩態法試驗量測結果接近; (7)高正向應力下的平滑節理,暫態法壓力脈衝衰減分析使用簡化和嚴謹解析解估計獲得之水力內寬相當一致,然而,低正向應力下粗糙的岩石節理,則不宜忽略岩石節理的比儲蓄率,採簡化解析解引起的水力內寬估計誤差可能是不可忽視的; (8)透過YOKO2封閉系統PDB法可量測的水力內寬e為幾微米到幾十微米。雖然可量測的力學內寬E低於1微米,但E的最佳量測範圍約為1000到10000微米。為了協調水力和力學內寬最佳量測範圍,本研究建議使用常規之三軸試驗典型試體大小進行試體製備; (9)具有未開裂葉理板岩有效孔隙率和滲透率有顯著異向性,顯然平行未開裂頁理方向具有較高之滲透性; (10)根據E和e的應力相依性回歸函數,可描述應力作用下之 E - e 關係。若使用既有力學內寬閉合曲線推估節理受應力作用時之水力行為,本研究建議使用∆E"-" e關係進行水力耦合分析,避免由於基於ND方法的初始內寬估計而導致的誤差。本研究試驗結果顯示,對於光滑的節理而言,隨著e的降低,E/e呈下降趨勢,與現有的 (E/e)-e 關係矛盾。
摘要(英) Fluid flow through rock masses is a critical issue in rock engineering and geoscience in general, from shallow to great depths. The hydraulic aperture (e) of a single joint under stress is a key variable for simulating the fluid flow through stressed rock masses. Because prediction models for the mechanical aperture (E) of different rock joints under different normal stresses are available, the hydraulic aperture at different depths can be readily estimated using numerous E"-" e relations. However, experimental hydromechanical studies frequently use the normal displacement method (ND method) for determining the mechanical aperture, for which the initial aperture needs to be “estimated”. This uncertainty can propagate to the E"-" e relation. In this study, we conducted high-quality laboratory measurements of mechanical/hydraulic apertures of saw-cut, polished aluminum samples, saw-cut and foliated slate samples which are comparable to smooth rock joints, using the YOKO 2 system under confining stresses from 3 to 120 MPa. Moreover, a novel pulse-decay-balance (PDB) method was proposed to simultaneously measure e and E under stress. The YOKO2 system was modified into a closed system to measure the e and E of saw-cut and foliated slate samples under a confining (normal) stress of up to 60 MPa. The hydraulic aperture was determined based on analysis of the pressure decay curve, and the mechanical aperture was determined based on the joint volume measurement (JV method) by determining the balance pressure.
This study is divided into different parts: (1) e and E measurements of saw-cut smooth aluminum samples with an identical joint surface using steady-state and joint volume method, stress-dependent e and E fit well using a hyperbolic function; (2) A proposed novel PDB method is to measure simultaneously e and E of saw-cut and foliated slate samples, stress-dependent e and E fit well using a hyperbolic function; (3) Influences of measurement and analysis methods on rock apertures determination. We measured the mechanical aperture directly from the joint volume (JV method); this method differs from the widely adopted ND method for measuring joint closure. The experimental results show that the estimation uncertainty of initial aperture, which is required for converting the joint closure curves into mechanical aperture, reduces the reliability of the existing E"-" e relations. (4) When the JV method is used to reduce the influence of initial aperture estimation, it is important to note that the contribution of the matrix pore volume of intact rock to the mechanical aperture measurement is not negligible even when the porosity of the matrix is less than 0.1%. Contrary, the matrix permeability of impermeable rock is negligible for laboratory measurements; (5) Neglecting the quadratic Forchheimer term leads to an underestimation of hydraulic aperture; (6) The hydraulic aperture estimated using the proposed method was comparable to that measured in steady-state tests; (7) The hydraulic apertures of the saw-cut and foliated slate samples estimated using the simplified and general analytical solutions were in good agreement, especially for smooth joints under high normal stress. However, the error in the hydraulic aperture estimation, induced by neglecting the specific storage of the rock joint, is non-negligible for rough rock joints under low normal stress; (8) The measurable hydraulic aperture e via the close system—YOKO2 is several to several tens microns. Although the measurable mechanical aperture E is below 1 micron, the best measurement range of E is roughly 1,000 to 10,000 microns. To harmonize the optimum measurement range of hydraulic and mechanical apertures, using a typical sample size for a conventional triaxial test is suggested; (9) The effect of anisotropic behavior and open foliated joint on the matrix porosity and permeability of intact slate samples is significant; (10) A regression function based on the stress-dependent E and e fitted well with the experimental data to describe the E-e relationship. Our testing results, which show a decreasing trend in the E/e ratio with decreasing e, contradict the existing (E/e)-e relation, at least for smooth joints. Using ∆E"-" e relations for hydromechanical coupling analysis is suggested to avoid errors due to the initial aperture estimation based on the ND method.
關鍵字(中) ★ 節理水力與力學內寬
★ 高圍壓
★ YOKO2量測系統
★ 節理體積量測
★ 脈衝衰減法
★ 平滑、線鋸切割拋光節理試體
★ 鋁與板岩
★ 葉理
★ 異向性
關鍵字(英) ★ Hydraulic and mechanical apertures
★ High confining stress
★ YOKO2 system
★ Joint volume measurement
★ Steady-state test
★ Pulse-decay test
★ Smooth, saw-cut and polished aluminum
★ Saw-cut and foliated slate
★ Anisotropic behavior
論文目次 Chinese Abstract i
English Abstract iii
Acknowledgments v
Tables of Contents vi
List of Figures viii
List of Tables xiv
Explanation of Symbols xv
Chapter I Introduction 1
1-1 Importance of hydromechanical couple effects on fluid flow through rock joints 1
1-2 Definition of hydraulic and mechanical apertures of a single rock joint 1
1-3 Relation between hydraulic and mechanical apertures under stresses and aperture measurements 2
1-4 Uncertainty of joint aperture measurements relevant to hydromechanical couple behavior 11
1-5 Objectives and approaches of this study 15
Chapter II Methodology 18
2-1 Introduction of YOKO2 system 18
2-2 Hydraulic aperture measurement—Steady-state flow test (SS) method 19
2-3 Mechanical aperture measurement—Joint volume test (JV) method 20
2-4 A novel pulse-decay-balance (PDB) method to measure hydraulic and mechanical apertures simultaneously 22
2-4-1 Pressure pulse determination 25
2-4-2 Pressure balance determination 25
2-4-3 Hydraulic aperture determination (PDB test) 25
2-4-4 Mechanical aperture determination (PDB test) 27
2-5 Testing program and sample preparation 28
2-6 Stress-dependent models of Eand e (Hyperbolic function) 35
Chapter III Aperture measurements of saw-cut smooth aluminum joints using SS and JV methods 38
3-1 Hydraulic aperture measurement—SS test 38
3-2 Mechanical aperture measurement—JV test 40
3-3 Normal stress-dependent hydraulic and mechanical apertures—Hyperbolic function 45
Chapter IV Hydraulic and mechanical aperture measurements of saw-cut and foliated slate samples—PDB method 49
4-1 Smoothing raw data and determining pressure pulse (P_pul) and balance pressure (P_ba)—PDB test 49
4-2 Mechanical aperture E determined from balance pressure P_ba 50
4-3 Determined e from the pulse-decay curve 51
4-4 Normal stress-dependent hydraulic and mechanical apertures—Hyperbolic function 54
Chapter V Influence of measurement and analysis methods on rock apertures determination 56
5-1 Effect of initial aperture on determining E and E-e relation 56
5-2 Effect of (intact rock) matrix porosity and permeability on aperture measurements 57
5-2-1 Influence of granite pore volume on mechanical aperture measurements using JV method 57
5-2-2 Effect of matrix permeability on hydraulic aperture measurements using SS method 60
5-3 Influence of a linear assumption between Q and ΔP/L on e determination using SS method 62
5-4 Comparison of measured e from PDB and SS tests 65
5-5 Comparison of e based on Brace’s and Hsieh’s solutions using PDB method 66
5-6 Limitations on aperture measurement using PDB method via closed YOKO2 system 67
Chapter VI Comparison of matrix porosity and permeability of intact slate samples to open foliated slate 71
Chapter VII E-e relation and ∆E-e relation for evaluating the hydromechanical behaviors of rock joints 74
7-1 The hydraulic aperture as a function of the mechanical aperture (E"-" e relation) 74
7-2 Should E-e relation or ∆E-e relation be used for evaluating hydromechanical behaviors of rock joints? 76
Chapter VIII Conclusions 84
Bibliography 87
Appendix A 96
Appendix B 99
Appendix C 109
Appendix D 116
Representative research 134
參考文獻 [1] W. F. Brace, “A note on permeability changes in geologic material due to stress.” Pure Appl. Geophys., Vol 116, 1978, pp. 627-633.
[2] N. Barton, S. Bandis, and K. Bakhtar, “Strength, deformation and conductivity coupling of rock joints.” Int. J. Rock Mech. Min. Sci. Geomech. Abstr., Vol 22, 1985, pp. 121-140.
[3] J. Rutqvist and O. Stephansson, “The role of hydrochemical coupling in fractured rock engineering.” Hydrogeol. J., Vol 11, 2003, pp. 7-40.
[4] R. W. Zimmerman and G. S. Bodvarsson, “Hydraulic conductivity of rock fractures.” Transp. Porous Media, Vol 23, 1996, pp. 1-30.
[5] C. F. Tsang, “Coupled hydromechanical‐thermochemical processes in rock fractures.” in Rev. Geophys., Vol. 29, 1991, pp. 537-551.
[6] C. F. Tsang, “Linking thermal, hydrological, and mechanical processes in fractured rocks.” Annu. Rev. Earth Planet. Sci., Vol 27, 1999, pp. 359-384.
[7] J. Rutqvist, D. Barr, J. T. Birkholzer, M. Chijimatsu, O. Kolditz, Q. Liu, Y. Oda, W. Wang, and C. Zhang, “Results from an international simulation study on coupled thermal, hydrological, and mechanical processes near geological nuclear waste repositories.” Nucl. Technol., Vol 163, 2008, pp. 101-109.
[8] J. Rutqvist, D. Barr, J. T. Birkholzer, K. Fujisaki, O. Kolditz, Q. S. Liu, T. Fujita, W. Wang, and C. Y. Zhang, “A comparative simulation study of coupled THM processes and their effect on fractured rock permeability around nuclear waste repositories.” Environ. Geol., Vol 57, 2009, pp. 1347-1360.
[9] C. F. Tsang. Coupled processes associated with nuclear waste repositories. 1987.
[10] F. Cappa and J. Rutqvist, “Impact of CO2 geological sequestration on the nucleation of earthquakes.” Geophys. Res. Lett., Vol 38(17), 2011.
[11] G. S. Bödvarsson and C. F. Tsang, “Injection and thermal breakthrough in fractured geothermal reservoirs.” J. Geophys. Res.: Solid Earth, Vol 87(B2), 1982, pp. 1031-1048.
[12] S. Pandey, A. Chaudhuri, and S. Kelkar, “A coupled thermo-hydro-mechanical modeling of fracture aperture alteration and reservoir deformation during heat extraction from a geothermal reservoir.” Geothermics, Vol 65, 2017, pp. 17-31.
[13] J. Rutqvist, “Fractured rock stress-permeability relationships from in situ data and effects of temperature and chemical-mechanical couplings.” Geofluids, Vol 15, 2015, pp. 48-66.
[14] J. Noorishad and C. F. Tsang, “Simulation of coupled thermal-hydraulic-mechanical interactions in fluid injection into fractured rocks.” In: Coupled Processes Associated with Nuclear Waste Repositories. (Ed.) C. F. Tsang, London: Academic Press, 1987.
[15] C. Louis, “A study of groundwater flow in jointed rock and its influence on the stability of rock masses.” Rock Mech. Res. Rep., Vol 10, 1969, p. 90.
[16] Snow, D. T.. A parallel plate model of fractured permeable media. University of California, Berkeley, 1965.
[17] P. A. Witherspoon, J. S. Wang, K. Iwai, and J. E. Gale, “Validity of cubic law for fluid flow in a deformable rock fracture.” Water Resour. Res., Vol 16, 1980, pp. 1016-1024.
[18] N. Barton and E. F. De Quadros, “Joint aperture and roughness in the prediction of flow and groutability of rock masses.” Int. J. Rock Mech. Min. Sci., Vol 34, 1997, p. 252-e1.
[19] C. E. Renshaw, “On the relationship between mechanical and hydraulic apertures in rough-walled fractures.” J. Geophys. Res., Vol 100, 1995, pp. 24629-24636.
[20] S. C. Bandis, A. C. Lumsden, and N. R. Barton, “Fundamentals of rock joint deformation.” Int. J. Rock Mech. Min. Sci. Geomech. Abstr., Vol 20, 1983, pp. 249-268.
[21] G. M. Elliott, E. T. Brown, P. I. Boodt, and J. A. Hudson, “Hydromechanical behaviour of joints in the Carnmenellis granite, SW England-A keynote lecture.” Int. Symp. Fund. Rock Joints, 1985, pp. 249-258.
[22] J. Zhao and E. T. Brown, “Hydro-thermo-mechanical properties of joints in the Carnmenellis granite.” Q. J. Eng. Geol. Hydrogeol., Vol 25, 1992, pp. 279-290.
[23] L. N. Lamas, “An experimental study of the hydromechanical properties of granite joints.” Proceedings of 8th International Congress on Rock Mechanics, 1995, pp. 733-738.
[24] S. Luo, Z. Zhao, H. Peng, and H. Pu, “The role of fracture surface roughness in macroscopic fluid flow and heat transfer in fractured rocks.” Int. J. Rock Mech. Min. Sci., Vol 87, 2016, pp. 29-38.
[25] Z. Zhao and B. Li, “On the role of fracture surface roughness in fluid flow and solute transport through fractured rocks.” Proceeding of the 13th International Congress of Rock Mechanics, 2015.
[26] Lomize G. M.. Flow in Fractured Rocks. Gosenergoizdat Moscow: 1951.
[27] J. Gale, R. MacLeod, and P. LeMessurier, “Site Characterization and Validation-Measurement of Flowrate, Solute Velocities and Aperture Variation in Natural Fractures as a Function of Normal and Shear Stress, Stage 3 (No. STRIPA-TR--90-11).” 1990.
[28] E. Hakami, “Water Flow in Single Rock Joints (No. STRIPA-TR--89-08).” 1989.
[29] T. W. Schrauf. “Relationship between the gas conductivity and geometry of a natural fracture.” Master’s Thesis, The University of Arizona, 1984.
[30] Iwai K.. Fundamental studies of fluid flow through a single fracture. University of Calfornia, Berkely, 1976.
[31] R. L. Kranz, A. D. Frankel, T. Engelder, and C. H. Scholz, “The permeability of whole and jointed Barre Granite.” Int. J. Rock Mech. Min. Sci., Vol 16, 1979, pp. 225-234.
[32] T. A. Alvarez, E. J. Cording, and R. A. Mikhail. “Hydromechanical behavior of rock joints: A re-interpretation of published experiments.” 35th US Symposium on Rock Mechanics (USRMS). OnePetro, 1995.
[33] J. C. Sharp. “Fluid flow through fissured media.” Ph.D. Dissertation, The University of London, Imperial College of Science and Technology, 1970.
[34] S. W. Danielsen, “Joint permeability.” Thesis, Norwegian Technical University, 1971.
[35] P. Heimli, “Water and air leakage through joints in rock specimens.” Fjellsprengningsteknikk, Bergmekanikk, Annual Rock Mechanics Metting, 1972, pp. 137-142.
[36] Z. Chen, S. P. Narayan, Z. Yang, and S. S. Rahman, “An experimental investigation of hydraulic behaviour of fractures and joints in granitic rock.” Int. J. Rock Mech. Min. Sci., Vol 37, 2000, pp. 1061-1071.
[37] T. W. Schrauf and D. D. Evans, “Laboratory Studies of Gas Flow Through a Single Natural Fracture.” Water Resour. Res., Vol 22, 1986, pp. 1038-1050.
[38] E. Detournay, “Hydraulic conductivity of closed rock fracture: an experimental and analytical study.” Proc. 13th Canadian Rock Mech. Symp., 1980, pp. 168-173.
[39] H. S. Lee and T. F. Cho, “Hydraulic characteristics of rough fractures in linear flow under normal and shear load.” Rock Mech. Rock Eng., Vol 35, 2002, pp. 299-318.
[40] J. E. Gale, “Comparison of coupled fracture deformation and fluid flow models with direct measurements of fracture pore structure and stress-flow properties.” 28th U.S. Symposium on Rock Mechanics, USRMS, 1987, pp. 1213-1222.
[41] P. N. Sundaram, D. J. Watkins, and W. E. Raph, “Laboratory investigations of coupled stress-deformation-hydraulic flow in a natural rock fracture.” Proceedings of the 28th US symposium on rock mechanics, 1987, pp. 593-600.
[42] K. G. Raven and J. E. Gale, “Water flow in a natural rock fracture as a function of stress and sample size.” Int. J. Rock Mech. Min. Sci. Geomech. Abstr., Vol 22, 1985, pp. 251-261.
[43] J. Pöllä, A. Kuusela-Lahtinen, and J. Kajanen, “Experimental study on the coupled T-H-M-processes of single rock joint with a triaxial test chamber.” Dev. Geotech. Eng., Vol 79, 1996, pp. 449-465.
[44] M. Iwano and H. H. Einstein, “Laboratory experiments on geometric and hydromechanical characteristics of three different fractures in granodiorite.” 8th ISRM Congress, 1995.
[45] W. B. Durham, “Laboratory observations of the hydraulic behavior of a permeable fracture from 3800 m depth in the KTB pilot hole.” J. Geophys. Res.: Solid Earth, Vol 102, 1997, pp. 18405-18416.
[46] Y. Chen, H. Lian, W. Liang, J. Yang, V. P. Nguyen, and S. P. A. Bordas, “The influence of fracture geometry variation on non-Darcy flow in fractures under confining stresses.” Int. J. Rock Mech. Min. Sci., Vol 113, 2019, pp. 59-71.
[47] Y. Chen, W. Liang, H. Lian, J. Yang, and V. P. Nguyen, “Experimental study on the effect of fracture geometric characteristics on the permeability in deformable rough-walled fractures.” Int. J. Rock Mech. Min. Sci., Vol 98, 2017, pp. 121-140.
[48] Z. Zhang and J. Nemcik, “Fluid flow regimes and nonlinear flow characteristics in deformable rock fractures.” J. Hydrol., Vol 477, 2013, pp. 139-151.
[49] M. Javadi, M. Sharifzadeh, K. Shahriar, and Y. Mitani, “Critical Reynolds number for nonlinear flow through rough-walled fractures: The role of shear processes.” Water Resour. Res., Vol 50, 2014, pp. 1789-1804.
[50] P. M. Quinn, J. A. Cherry, and B. L. Parker, “Quantification of non-Darcian flow observed during packer testing in fractured sedimentary rock.” Water Resour. Res., Vol 47, 2011, p. W09533.
[51] J. Q. Zhou, S. H. Hu, S. Fang, Y. F. Chen, and C. B. Zhou, “Nonlinear flow behavior at low Reynolds numbers through rough-walled fractures subjected to normal compressive loading.” Int. J. Rock Mech. Min. Sci., Vol 80, 2015, pp. 202-218.
[52] R. W. Zimmerman, A. Al-Yaarubi, C. C. Pain, and C. A. Grattoni, “Non-linear regimes of fluid flow in rock fractures.” Int. J. Rock Mech. Min. Sci., Vol 41, 2004, pp. 163-169.
[53] J. E. Gale, “The effects of fracture type (induced versus natural) on the stress-fracture closure-fracture permeability relationships.” 23rd US Symposium on Rock Mechanics (USRMS), 1982.
[54] X. X. Nguyen, J. J. Dong, and C. W. Yu, “Is the widely used relation between mechanical and hydraulic apertures reliable? Viewpoints from laboratory experiments.” Int. J. Rock Mech. Min. Sci., Vol 159, 2022, p. 105226.
[55] W. B. Durham and B. P. Bonner, “Self-propping and fluid flow in slightly offset joints at high effective pressures.” J. Geophys. Res.: Solid Earth, Vol 99, 1994, pp. 9391-9399.
[56] C. Zangerl, K. F. Evans, E. Eberhardt, and S. Loew, “Normal stiffness of fractures in granitic rock: A compilation of laboratory and in-situ experiments.” Int. J. Rock Mech. Min. Sci., Vol 45, 2008, pp. 1500-1507.
[57] W. F. Brace, J. B. Walsh, and W. T. Frangos, “Permeability of granite under high pressure.” J. Geophys. Res., Vol 73, 1968, pp. 2225-2236.
[58] G. R. Chalmers, D. J. Ross, and R. M. Bustin, “Geological controls on matrix permeability of Devonian Gas Shales in the Horn River and Liard basins, northeastern British Columbia, Canada.” Int. J. Coal Geol., Vol 103, 2012, pp. 120-131.
[59] A. Ghanizadeh, C. R. Clarkson, S. Aquino, O. H. Ardakani, and H. Sanei, “Petrophysical and geomechanical characteristics of Canadian tight oil and liquid-rich gas reservoirs: I. Pore network and permeability characterization.” Fuel, Vol. 153, 2015, pp. 664-681.
[60] S. E. Haskett, G. M. Narahara, and S. A. Holditch, “Method for simultaneous determination of permeability and porosity in low-permeability cores.” SPE Formation Evaluation, Vol 3, 1988, pp. 651-658.
[61] P. A. Hsieh, J. V. Tracy, C. E. Neuzil, J. D. Bredehoeft, and S. E. Silliman, “A transient laboratory method for determining the hydraulic properties of ′tight′ rocks-I. Theory.” Int. J. Rock Mech. Min. Sci., Vol 18, 1981, pp. 245-252.
[62] Y. M. Metwally and C. H. Sondergeld, “Measuring low permeabilities of gas-sands and shales using a pressure transmission technique.” Int. J. Rock Mech. Min. Sci., Vol 48, 2011, pp. 1135-1144.
[63] C. E. Neuzil, C. Cooley, S. E. Silliman, J. D. Bredehoeft, and P. A. Hsieh, “A transient laboratory method for determining the hydraulic properties of ′tight′rocks—II. Application.” Int. J. Rock Mech. Min. Sci., Vol 18, 1981, pp. 253-258.
[64] Forster, C. B. and Gale, J. E.. A laboratory assessment of the use of borehole pressure transients to measure the permeability of fractured rock masses. US Department of Energy, 1981.
[65] J. Kamath, R. E. Boyer, and F. M. Nakagawa, “Characterization of core-scale heterogeneities using laboratory pressure transients.” SPE Formation Evaluation, Vol 7, 1992, pp. 219-227.
[66] X. Ning, J. Fan, S. A. Holditch, and W. J. Lee, “The measurement of matrix and fracture properties in naturally fractured cores.” SPE Low Permeability Reservoirs Symposium, 1993.
[67] D. Trimmer, B. Bonner, H. C. Heard, and A. Duba, “Effect of pressure and stress on water transport in intact and fractured gabbro and granite.” J. Geophys. Res. Solid Earth, Vol 85, 1980, pp. 7059-7071.
[68] L. N. Y. Wong, D. Li, and G. Liu, “Experimental studies on permeability of intact and singly jointed meta-sedimentary rocks under confining pressure.” Rock Mech. Rock Eng., Vol 46, 2013, pp. 107-121.
[69] Y. Zhao, L. Zhang, W. Wang, J. Tang, H. Lin, and W. Wan, “Transient pulse test and morphological analysis of single rock fractures.” Int. J. Rock Mech. Min. Sci., Vol 91, 2017, pp. 139-154.
[70] J. Zhou, L. Zhang, X. Li, and Z. Pan, “Experimental and modeling study of the stress-dependent permeability of a single fracture in shale under high effective stress.” Fuel, Vol 257, 2019, p. 116078.
[71] Z. Pan, Connell, L. D., Camilleri, M., Connelly, L., “Effects of matrix moisture on gas diffusion and flow in coal.” Fuel, Vol 89, 2010, pp. 3207-3217.
[72] H. Siriwardane, I. Haljasmaa, R. McLendon, G. Irdi, Y. Soong, and G. Bromhal, “Influence of carbon dioxide on coal permeability determined by pressure transient methods.” Int. J. Coal Geol., Vol 77, 2009, pp. 109-118.
[73] J. J. Dong, J. Y. Hsu, W. J. Wu, T. Shimamoto, J. H. Hung, E. C. Yeh, Y. H. Wu, H. Sone, “Stress-dependence of the permeability and porosity of sandstone and shale from TCDP Hole-A.” Int. J. Rock Mech. Min. Sci., Vol 47, 2010, pp. 1141-1157.
[74] W. J. Wu, “Stress-history dependent porosity and permeability in siliciclastic sedimentary rocks-from laboratory tests to in-situ applications.” Ph.D. Dissertation, National Central University, June 2015.
[75] D. Elsworth and T. W. Doe, “Application of non-linear flow laws in determining rock fissure geometry from single borehole pumping tests.” Int. J. Rock Mech. Min. Sci. Geomech. Abstr., Vol 23, 1986, pp. 245-254.
[76] P. G. Ranjith and W. Darlington, “Nonlinear single-phase flow in real rock joints.” Water Resour. Res., Vol 43, 2007, pp. W09502.
[77] Bear, J.. Dynamics of Fluids in Porous Media. Elsevier, 1972.
[78] P. G. Ranjith and D. R. Viete, “Applicability of the ′cubic law′ for non-Darcian fracture flow.” J. Petr. Sci. Eng., Vol 78, 2010, pp. 321-327.
[79] 戴 秉 倫: 承受圍壓條件下岩石孔隙率/滲透率同步量測技術與孔隙幾何因子量測新方法之建立。碩士論文,國立中央大學,民國 105 年 6 月。
P. L. Tai, “Establishment of simultaneous measurement technology of rock porosity/permeability under confining pressure and a new method of pore geometry factor measurement.” Master’s Thesis, National Central University, June, 2016.
[80] X. X. Nguyen, P. L. Tai, J. J. Dong, C. W. Yu, “A novel pulse-decay-balance method for smooth rock joint aperture measurement.” Int. J. Rock Mech. Min. Sci., 2023, p. 105504.
[81] A. I. Dicker and R. M. Smits, “A practical approach for determining permeability from laboratory pressure-pulse decay measurements.” International Meeting on Petroleum Engineering, OnePetro, 1988.
[82] Aluminum 6061. https://www.matweb.com
[83] Y. Li and Y. Zhang, “Quantitative estimation of joint roughness coefficient using statistical parameters.” Int. J. Rock Mech. Min. Sci., Vol 77, 2015, pp. 27-35.
[84] N. O. Myers, “Characterization of surface roughness.” Wear, Vol 5, 1962, pp. 182-189.
[85] T. Phillips, T. Bultreys, K. Bisdom, N. Kampman, S. Van Offenwert, A. Mascini, V. Cnudde, and A. Busch, “A Systematic Investigation Into the Control of Roughness on the Flow Properties of 3D-Printed Fractures.” Water Resour. Res., Vol 57, 2021, pp. 1-23.
[86] J. Rutqvist, “Determination of hydraulic normal stiffness of fractures in hard rock from well testing.” Int. J. Rock Mech. Min. Sci. Geomech. Abstr., Vol 32, 1995, pp. 513-523.
[87] J. Rutqvist, J. Noorishad, C.-F. Tsang, and O. Stephansson, “Determination of fracture storativity in hard rocks using high-pressure injection testing.” Water Resour. Res., Vol 34, 1998, pp. 2551-2560.
[88] D. Vogler, F. Amann, P. Bayer, and D. Elsworth, “Permeability Evolution in Natural Fractures Subject to Cyclic Loading and Gouge Formation.” Rock Mech. Rock Eng., Vol 49, 2016, pp. 3463-3479.
[89] B. Jia, L. Jin, S. A. Smith, and N. W. Bosshart, “Extension of the Gas Research Institute (GRI) method to measure the permeability of tight rocks.” J. Nat. Gas Sci. Eng., Vol 91, 2021, p. 103756.
[90] R. van Noort and V. Yarushina, “Water, CO2 and Argon Permeabilities of Intact and Fractured Shale Cores Under Stress.” Rock Mech. Rock Eng., Vol 52, 2019, pp. 299-319.
[91] W. J. Wu, J. J. Dong, A. T. Lin, Y. C. Yu, T. Y. Pan, L. T. Tong, M. H. Li, C. F. Ni, and T. Shimamoto, “Influence of stress history on estimates of the porosity of sedimentary rocks: Implications for geological CO2 storage in Northern Taiwan.” Terr., Oceanic Atmos. Sci., Vol 28, 2017, pp. 247-258.
[92] P. M. Quinn, B. L. Parker, and J. A. Cherry, “Using constant head step tests to determine hydraulic apertures in fractured rock.” J. Contam. Hydrol., Vol 126, 2011, pp. 85-99.
[93] S. Kawano, I. Katayama, and K. Okazaki, “Permeability anisotropy of serpentinite and fluid pathways in a subduction zone.” Geol., Vol 39(10), 2011, pp. 939-942.
[94] J. Rutqvist, J. Noorishad, O. Stephansson, and C. F. Tsang, “Theoretical and field studies of coupled hydromechanical behaviour of fractured rocks-2. Field experiment and modelling.” Int. J. Rock Mech. Min. Sci. Geomech. Abstr., Vol 29, 1992, pp. 411-419.
[95] J. Rutqvist, “Hydraulic pulse testing of single fractures in porous and deformable hard rocks.” Q. J. Eng. Geol. Hydrogeol., Vol 29, 1996, pp. 181-192.
[96] Y. Guglielmi, F. Cappa, H. Lançon, J. B. Janowczyk, J. Rutqvist, C. F. Tsang, and J. S. Y. Wang, “ISRM suggested method for step-rate injection method for fracture in-situ properties (SIMFIP): Using a 3-components borehole deformation sensor.” Rock Mech. Rock Eng., Vol 47, 2014, pp. 303-311.
[97] Y. Guglielmi, D. Elsworth, F. Cappa, P. Henry, C. Gout, P. Dick, and J. Durand, “In situ observations on the coupling between hydraulic diffusivity and displacements during fault reactivation in shales.” J. Geophys. Res.: Solid Earth, Vol 120, 2015, pp. 7729-7748.
指導教授 董 家 鈞 博士 俞 旗 文 博士(Jia-Jyun Dong Ph.D. Chi-Wen Yu Ph.D.) 審核日期 2023-7-12
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明