參考文獻 |
[1] W. F. Brace, “A note on permeability changes in geologic material due to stress.” Pure Appl. Geophys., Vol 116, 1978, pp. 627-633.
[2] N. Barton, S. Bandis, and K. Bakhtar, “Strength, deformation and conductivity coupling of rock joints.” Int. J. Rock Mech. Min. Sci. Geomech. Abstr., Vol 22, 1985, pp. 121-140.
[3] J. Rutqvist and O. Stephansson, “The role of hydrochemical coupling in fractured rock engineering.” Hydrogeol. J., Vol 11, 2003, pp. 7-40.
[4] R. W. Zimmerman and G. S. Bodvarsson, “Hydraulic conductivity of rock fractures.” Transp. Porous Media, Vol 23, 1996, pp. 1-30.
[5] C. F. Tsang, “Coupled hydromechanical‐thermochemical processes in rock fractures.” in Rev. Geophys., Vol. 29, 1991, pp. 537-551.
[6] C. F. Tsang, “Linking thermal, hydrological, and mechanical processes in fractured rocks.” Annu. Rev. Earth Planet. Sci., Vol 27, 1999, pp. 359-384.
[7] J. Rutqvist, D. Barr, J. T. Birkholzer, M. Chijimatsu, O. Kolditz, Q. Liu, Y. Oda, W. Wang, and C. Zhang, “Results from an international simulation study on coupled thermal, hydrological, and mechanical processes near geological nuclear waste repositories.” Nucl. Technol., Vol 163, 2008, pp. 101-109.
[8] J. Rutqvist, D. Barr, J. T. Birkholzer, K. Fujisaki, O. Kolditz, Q. S. Liu, T. Fujita, W. Wang, and C. Y. Zhang, “A comparative simulation study of coupled THM processes and their effect on fractured rock permeability around nuclear waste repositories.” Environ. Geol., Vol 57, 2009, pp. 1347-1360.
[9] C. F. Tsang. Coupled processes associated with nuclear waste repositories. 1987.
[10] F. Cappa and J. Rutqvist, “Impact of CO2 geological sequestration on the nucleation of earthquakes.” Geophys. Res. Lett., Vol 38(17), 2011.
[11] G. S. Bödvarsson and C. F. Tsang, “Injection and thermal breakthrough in fractured geothermal reservoirs.” J. Geophys. Res.: Solid Earth, Vol 87(B2), 1982, pp. 1031-1048.
[12] S. Pandey, A. Chaudhuri, and S. Kelkar, “A coupled thermo-hydro-mechanical modeling of fracture aperture alteration and reservoir deformation during heat extraction from a geothermal reservoir.” Geothermics, Vol 65, 2017, pp. 17-31.
[13] J. Rutqvist, “Fractured rock stress-permeability relationships from in situ data and effects of temperature and chemical-mechanical couplings.” Geofluids, Vol 15, 2015, pp. 48-66.
[14] J. Noorishad and C. F. Tsang, “Simulation of coupled thermal-hydraulic-mechanical interactions in fluid injection into fractured rocks.” In: Coupled Processes Associated with Nuclear Waste Repositories. (Ed.) C. F. Tsang, London: Academic Press, 1987.
[15] C. Louis, “A study of groundwater flow in jointed rock and its influence on the stability of rock masses.” Rock Mech. Res. Rep., Vol 10, 1969, p. 90.
[16] Snow, D. T.. A parallel plate model of fractured permeable media. University of California, Berkeley, 1965.
[17] P. A. Witherspoon, J. S. Wang, K. Iwai, and J. E. Gale, “Validity of cubic law for fluid flow in a deformable rock fracture.” Water Resour. Res., Vol 16, 1980, pp. 1016-1024.
[18] N. Barton and E. F. De Quadros, “Joint aperture and roughness in the prediction of flow and groutability of rock masses.” Int. J. Rock Mech. Min. Sci., Vol 34, 1997, p. 252-e1.
[19] C. E. Renshaw, “On the relationship between mechanical and hydraulic apertures in rough-walled fractures.” J. Geophys. Res., Vol 100, 1995, pp. 24629-24636.
[20] S. C. Bandis, A. C. Lumsden, and N. R. Barton, “Fundamentals of rock joint deformation.” Int. J. Rock Mech. Min. Sci. Geomech. Abstr., Vol 20, 1983, pp. 249-268.
[21] G. M. Elliott, E. T. Brown, P. I. Boodt, and J. A. Hudson, “Hydromechanical behaviour of joints in the Carnmenellis granite, SW England-A keynote lecture.” Int. Symp. Fund. Rock Joints, 1985, pp. 249-258.
[22] J. Zhao and E. T. Brown, “Hydro-thermo-mechanical properties of joints in the Carnmenellis granite.” Q. J. Eng. Geol. Hydrogeol., Vol 25, 1992, pp. 279-290.
[23] L. N. Lamas, “An experimental study of the hydromechanical properties of granite joints.” Proceedings of 8th International Congress on Rock Mechanics, 1995, pp. 733-738.
[24] S. Luo, Z. Zhao, H. Peng, and H. Pu, “The role of fracture surface roughness in macroscopic fluid flow and heat transfer in fractured rocks.” Int. J. Rock Mech. Min. Sci., Vol 87, 2016, pp. 29-38.
[25] Z. Zhao and B. Li, “On the role of fracture surface roughness in fluid flow and solute transport through fractured rocks.” Proceeding of the 13th International Congress of Rock Mechanics, 2015.
[26] Lomize G. M.. Flow in Fractured Rocks. Gosenergoizdat Moscow: 1951.
[27] J. Gale, R. MacLeod, and P. LeMessurier, “Site Characterization and Validation-Measurement of Flowrate, Solute Velocities and Aperture Variation in Natural Fractures as a Function of Normal and Shear Stress, Stage 3 (No. STRIPA-TR--90-11).” 1990.
[28] E. Hakami, “Water Flow in Single Rock Joints (No. STRIPA-TR--89-08).” 1989.
[29] T. W. Schrauf. “Relationship between the gas conductivity and geometry of a natural fracture.” Master’s Thesis, The University of Arizona, 1984.
[30] Iwai K.. Fundamental studies of fluid flow through a single fracture. University of Calfornia, Berkely, 1976.
[31] R. L. Kranz, A. D. Frankel, T. Engelder, and C. H. Scholz, “The permeability of whole and jointed Barre Granite.” Int. J. Rock Mech. Min. Sci., Vol 16, 1979, pp. 225-234.
[32] T. A. Alvarez, E. J. Cording, and R. A. Mikhail. “Hydromechanical behavior of rock joints: A re-interpretation of published experiments.” 35th US Symposium on Rock Mechanics (USRMS). OnePetro, 1995.
[33] J. C. Sharp. “Fluid flow through fissured media.” Ph.D. Dissertation, The University of London, Imperial College of Science and Technology, 1970.
[34] S. W. Danielsen, “Joint permeability.” Thesis, Norwegian Technical University, 1971.
[35] P. Heimli, “Water and air leakage through joints in rock specimens.” Fjellsprengningsteknikk, Bergmekanikk, Annual Rock Mechanics Metting, 1972, pp. 137-142.
[36] Z. Chen, S. P. Narayan, Z. Yang, and S. S. Rahman, “An experimental investigation of hydraulic behaviour of fractures and joints in granitic rock.” Int. J. Rock Mech. Min. Sci., Vol 37, 2000, pp. 1061-1071.
[37] T. W. Schrauf and D. D. Evans, “Laboratory Studies of Gas Flow Through a Single Natural Fracture.” Water Resour. Res., Vol 22, 1986, pp. 1038-1050.
[38] E. Detournay, “Hydraulic conductivity of closed rock fracture: an experimental and analytical study.” Proc. 13th Canadian Rock Mech. Symp., 1980, pp. 168-173.
[39] H. S. Lee and T. F. Cho, “Hydraulic characteristics of rough fractures in linear flow under normal and shear load.” Rock Mech. Rock Eng., Vol 35, 2002, pp. 299-318.
[40] J. E. Gale, “Comparison of coupled fracture deformation and fluid flow models with direct measurements of fracture pore structure and stress-flow properties.” 28th U.S. Symposium on Rock Mechanics, USRMS, 1987, pp. 1213-1222.
[41] P. N. Sundaram, D. J. Watkins, and W. E. Raph, “Laboratory investigations of coupled stress-deformation-hydraulic flow in a natural rock fracture.” Proceedings of the 28th US symposium on rock mechanics, 1987, pp. 593-600.
[42] K. G. Raven and J. E. Gale, “Water flow in a natural rock fracture as a function of stress and sample size.” Int. J. Rock Mech. Min. Sci. Geomech. Abstr., Vol 22, 1985, pp. 251-261.
[43] J. Pöllä, A. Kuusela-Lahtinen, and J. Kajanen, “Experimental study on the coupled T-H-M-processes of single rock joint with a triaxial test chamber.” Dev. Geotech. Eng., Vol 79, 1996, pp. 449-465.
[44] M. Iwano and H. H. Einstein, “Laboratory experiments on geometric and hydromechanical characteristics of three different fractures in granodiorite.” 8th ISRM Congress, 1995.
[45] W. B. Durham, “Laboratory observations of the hydraulic behavior of a permeable fracture from 3800 m depth in the KTB pilot hole.” J. Geophys. Res.: Solid Earth, Vol 102, 1997, pp. 18405-18416.
[46] Y. Chen, H. Lian, W. Liang, J. Yang, V. P. Nguyen, and S. P. A. Bordas, “The influence of fracture geometry variation on non-Darcy flow in fractures under confining stresses.” Int. J. Rock Mech. Min. Sci., Vol 113, 2019, pp. 59-71.
[47] Y. Chen, W. Liang, H. Lian, J. Yang, and V. P. Nguyen, “Experimental study on the effect of fracture geometric characteristics on the permeability in deformable rough-walled fractures.” Int. J. Rock Mech. Min. Sci., Vol 98, 2017, pp. 121-140.
[48] Z. Zhang and J. Nemcik, “Fluid flow regimes and nonlinear flow characteristics in deformable rock fractures.” J. Hydrol., Vol 477, 2013, pp. 139-151.
[49] M. Javadi, M. Sharifzadeh, K. Shahriar, and Y. Mitani, “Critical Reynolds number for nonlinear flow through rough-walled fractures: The role of shear processes.” Water Resour. Res., Vol 50, 2014, pp. 1789-1804.
[50] P. M. Quinn, J. A. Cherry, and B. L. Parker, “Quantification of non-Darcian flow observed during packer testing in fractured sedimentary rock.” Water Resour. Res., Vol 47, 2011, p. W09533.
[51] J. Q. Zhou, S. H. Hu, S. Fang, Y. F. Chen, and C. B. Zhou, “Nonlinear flow behavior at low Reynolds numbers through rough-walled fractures subjected to normal compressive loading.” Int. J. Rock Mech. Min. Sci., Vol 80, 2015, pp. 202-218.
[52] R. W. Zimmerman, A. Al-Yaarubi, C. C. Pain, and C. A. Grattoni, “Non-linear regimes of fluid flow in rock fractures.” Int. J. Rock Mech. Min. Sci., Vol 41, 2004, pp. 163-169.
[53] J. E. Gale, “The effects of fracture type (induced versus natural) on the stress-fracture closure-fracture permeability relationships.” 23rd US Symposium on Rock Mechanics (USRMS), 1982.
[54] X. X. Nguyen, J. J. Dong, and C. W. Yu, “Is the widely used relation between mechanical and hydraulic apertures reliable? Viewpoints from laboratory experiments.” Int. J. Rock Mech. Min. Sci., Vol 159, 2022, p. 105226.
[55] W. B. Durham and B. P. Bonner, “Self-propping and fluid flow in slightly offset joints at high effective pressures.” J. Geophys. Res.: Solid Earth, Vol 99, 1994, pp. 9391-9399.
[56] C. Zangerl, K. F. Evans, E. Eberhardt, and S. Loew, “Normal stiffness of fractures in granitic rock: A compilation of laboratory and in-situ experiments.” Int. J. Rock Mech. Min. Sci., Vol 45, 2008, pp. 1500-1507.
[57] W. F. Brace, J. B. Walsh, and W. T. Frangos, “Permeability of granite under high pressure.” J. Geophys. Res., Vol 73, 1968, pp. 2225-2236.
[58] G. R. Chalmers, D. J. Ross, and R. M. Bustin, “Geological controls on matrix permeability of Devonian Gas Shales in the Horn River and Liard basins, northeastern British Columbia, Canada.” Int. J. Coal Geol., Vol 103, 2012, pp. 120-131.
[59] A. Ghanizadeh, C. R. Clarkson, S. Aquino, O. H. Ardakani, and H. Sanei, “Petrophysical and geomechanical characteristics of Canadian tight oil and liquid-rich gas reservoirs: I. Pore network and permeability characterization.” Fuel, Vol. 153, 2015, pp. 664-681.
[60] S. E. Haskett, G. M. Narahara, and S. A. Holditch, “Method for simultaneous determination of permeability and porosity in low-permeability cores.” SPE Formation Evaluation, Vol 3, 1988, pp. 651-658.
[61] P. A. Hsieh, J. V. Tracy, C. E. Neuzil, J. D. Bredehoeft, and S. E. Silliman, “A transient laboratory method for determining the hydraulic properties of ′tight′ rocks-I. Theory.” Int. J. Rock Mech. Min. Sci., Vol 18, 1981, pp. 245-252.
[62] Y. M. Metwally and C. H. Sondergeld, “Measuring low permeabilities of gas-sands and shales using a pressure transmission technique.” Int. J. Rock Mech. Min. Sci., Vol 48, 2011, pp. 1135-1144.
[63] C. E. Neuzil, C. Cooley, S. E. Silliman, J. D. Bredehoeft, and P. A. Hsieh, “A transient laboratory method for determining the hydraulic properties of ′tight′rocks—II. Application.” Int. J. Rock Mech. Min. Sci., Vol 18, 1981, pp. 253-258.
[64] Forster, C. B. and Gale, J. E.. A laboratory assessment of the use of borehole pressure transients to measure the permeability of fractured rock masses. US Department of Energy, 1981.
[65] J. Kamath, R. E. Boyer, and F. M. Nakagawa, “Characterization of core-scale heterogeneities using laboratory pressure transients.” SPE Formation Evaluation, Vol 7, 1992, pp. 219-227.
[66] X. Ning, J. Fan, S. A. Holditch, and W. J. Lee, “The measurement of matrix and fracture properties in naturally fractured cores.” SPE Low Permeability Reservoirs Symposium, 1993.
[67] D. Trimmer, B. Bonner, H. C. Heard, and A. Duba, “Effect of pressure and stress on water transport in intact and fractured gabbro and granite.” J. Geophys. Res. Solid Earth, Vol 85, 1980, pp. 7059-7071.
[68] L. N. Y. Wong, D. Li, and G. Liu, “Experimental studies on permeability of intact and singly jointed meta-sedimentary rocks under confining pressure.” Rock Mech. Rock Eng., Vol 46, 2013, pp. 107-121.
[69] Y. Zhao, L. Zhang, W. Wang, J. Tang, H. Lin, and W. Wan, “Transient pulse test and morphological analysis of single rock fractures.” Int. J. Rock Mech. Min. Sci., Vol 91, 2017, pp. 139-154.
[70] J. Zhou, L. Zhang, X. Li, and Z. Pan, “Experimental and modeling study of the stress-dependent permeability of a single fracture in shale under high effective stress.” Fuel, Vol 257, 2019, p. 116078.
[71] Z. Pan, Connell, L. D., Camilleri, M., Connelly, L., “Effects of matrix moisture on gas diffusion and flow in coal.” Fuel, Vol 89, 2010, pp. 3207-3217.
[72] H. Siriwardane, I. Haljasmaa, R. McLendon, G. Irdi, Y. Soong, and G. Bromhal, “Influence of carbon dioxide on coal permeability determined by pressure transient methods.” Int. J. Coal Geol., Vol 77, 2009, pp. 109-118.
[73] J. J. Dong, J. Y. Hsu, W. J. Wu, T. Shimamoto, J. H. Hung, E. C. Yeh, Y. H. Wu, H. Sone, “Stress-dependence of the permeability and porosity of sandstone and shale from TCDP Hole-A.” Int. J. Rock Mech. Min. Sci., Vol 47, 2010, pp. 1141-1157.
[74] W. J. Wu, “Stress-history dependent porosity and permeability in siliciclastic sedimentary rocks-from laboratory tests to in-situ applications.” Ph.D. Dissertation, National Central University, June 2015.
[75] D. Elsworth and T. W. Doe, “Application of non-linear flow laws in determining rock fissure geometry from single borehole pumping tests.” Int. J. Rock Mech. Min. Sci. Geomech. Abstr., Vol 23, 1986, pp. 245-254.
[76] P. G. Ranjith and W. Darlington, “Nonlinear single-phase flow in real rock joints.” Water Resour. Res., Vol 43, 2007, pp. W09502.
[77] Bear, J.. Dynamics of Fluids in Porous Media. Elsevier, 1972.
[78] P. G. Ranjith and D. R. Viete, “Applicability of the ′cubic law′ for non-Darcian fracture flow.” J. Petr. Sci. Eng., Vol 78, 2010, pp. 321-327.
[79] 戴 秉 倫: 承受圍壓條件下岩石孔隙率/滲透率同步量測技術與孔隙幾何因子量測新方法之建立。碩士論文,國立中央大學,民國 105 年 6 月。
P. L. Tai, “Establishment of simultaneous measurement technology of rock porosity/permeability under confining pressure and a new method of pore geometry factor measurement.” Master’s Thesis, National Central University, June, 2016.
[80] X. X. Nguyen, P. L. Tai, J. J. Dong, C. W. Yu, “A novel pulse-decay-balance method for smooth rock joint aperture measurement.” Int. J. Rock Mech. Min. Sci., 2023, p. 105504.
[81] A. I. Dicker and R. M. Smits, “A practical approach for determining permeability from laboratory pressure-pulse decay measurements.” International Meeting on Petroleum Engineering, OnePetro, 1988.
[82] Aluminum 6061. https://www.matweb.com
[83] Y. Li and Y. Zhang, “Quantitative estimation of joint roughness coefficient using statistical parameters.” Int. J. Rock Mech. Min. Sci., Vol 77, 2015, pp. 27-35.
[84] N. O. Myers, “Characterization of surface roughness.” Wear, Vol 5, 1962, pp. 182-189.
[85] T. Phillips, T. Bultreys, K. Bisdom, N. Kampman, S. Van Offenwert, A. Mascini, V. Cnudde, and A. Busch, “A Systematic Investigation Into the Control of Roughness on the Flow Properties of 3D-Printed Fractures.” Water Resour. Res., Vol 57, 2021, pp. 1-23.
[86] J. Rutqvist, “Determination of hydraulic normal stiffness of fractures in hard rock from well testing.” Int. J. Rock Mech. Min. Sci. Geomech. Abstr., Vol 32, 1995, pp. 513-523.
[87] J. Rutqvist, J. Noorishad, C.-F. Tsang, and O. Stephansson, “Determination of fracture storativity in hard rocks using high-pressure injection testing.” Water Resour. Res., Vol 34, 1998, pp. 2551-2560.
[88] D. Vogler, F. Amann, P. Bayer, and D. Elsworth, “Permeability Evolution in Natural Fractures Subject to Cyclic Loading and Gouge Formation.” Rock Mech. Rock Eng., Vol 49, 2016, pp. 3463-3479.
[89] B. Jia, L. Jin, S. A. Smith, and N. W. Bosshart, “Extension of the Gas Research Institute (GRI) method to measure the permeability of tight rocks.” J. Nat. Gas Sci. Eng., Vol 91, 2021, p. 103756.
[90] R. van Noort and V. Yarushina, “Water, CO2 and Argon Permeabilities of Intact and Fractured Shale Cores Under Stress.” Rock Mech. Rock Eng., Vol 52, 2019, pp. 299-319.
[91] W. J. Wu, J. J. Dong, A. T. Lin, Y. C. Yu, T. Y. Pan, L. T. Tong, M. H. Li, C. F. Ni, and T. Shimamoto, “Influence of stress history on estimates of the porosity of sedimentary rocks: Implications for geological CO2 storage in Northern Taiwan.” Terr., Oceanic Atmos. Sci., Vol 28, 2017, pp. 247-258.
[92] P. M. Quinn, B. L. Parker, and J. A. Cherry, “Using constant head step tests to determine hydraulic apertures in fractured rock.” J. Contam. Hydrol., Vol 126, 2011, pp. 85-99.
[93] S. Kawano, I. Katayama, and K. Okazaki, “Permeability anisotropy of serpentinite and fluid pathways in a subduction zone.” Geol., Vol 39(10), 2011, pp. 939-942.
[94] J. Rutqvist, J. Noorishad, O. Stephansson, and C. F. Tsang, “Theoretical and field studies of coupled hydromechanical behaviour of fractured rocks-2. Field experiment and modelling.” Int. J. Rock Mech. Min. Sci. Geomech. Abstr., Vol 29, 1992, pp. 411-419.
[95] J. Rutqvist, “Hydraulic pulse testing of single fractures in porous and deformable hard rocks.” Q. J. Eng. Geol. Hydrogeol., Vol 29, 1996, pp. 181-192.
[96] Y. Guglielmi, F. Cappa, H. Lançon, J. B. Janowczyk, J. Rutqvist, C. F. Tsang, and J. S. Y. Wang, “ISRM suggested method for step-rate injection method for fracture in-situ properties (SIMFIP): Using a 3-components borehole deformation sensor.” Rock Mech. Rock Eng., Vol 47, 2014, pp. 303-311.
[97] Y. Guglielmi, D. Elsworth, F. Cappa, P. Henry, C. Gout, P. Dick, and J. Durand, “In situ observations on the coupling between hydraulic diffusivity and displacements during fault reactivation in shales.” J. Geophys. Res.: Solid Earth, Vol 120, 2015, pp. 7729-7748. |