博碩士論文 110624601 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:62 、訪客IP:3.144.87.180
姓名 林阮氏梅(NGUYEN THI MAI LINH)  查詢紙本館藏   畢業系所 應用地質研究所
論文名稱
(VS30 Mapping Based on Effective Stress and Void Ratio: Using new Transformation Functions and Adding Data From Boreholes Less Than 30 Meters)
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   [檢視]  [下載]
  1. 本電子論文使用權限為同意立即開放。
  2. 已達開放權限電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。
  3. 請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。

摘要(中) 場址效應於強地動研究中扮演著關鍵的角色,當地震波由堅硬的岩盤傳遞至鬆軟的沈積物時,震幅將產生放大的作用,大大增加地震造成的危害。在工程地震學中,地表下30m平均剪力波速(VS30)被廣泛用來作為評估場址效應的參數,可以根據孔隙比以及垂直有效應力,配合剪力波速轉換公式對大於30m深的資料進行估算,當資料深度小於30m時,可以藉由外插法進行推估。本研究蒐集並檢核強震站資料庫(EGDT)中的物性試驗資料以及波速量測資料,並根據2000年至2008年的資料庫,提出孔隙比、垂直有效應力對剪力波速之轉換公式。繼之,利用剪力波速轉換公式以及剪力波速外插法,對中央地調所(CGS)的鑽孔進行各深度之Vs推估,並求得VS30。最後,利用Kriging with varying local means方法繪製台北盆地VS30分布圖。
結果而言,台北盆地VS30的分布範圍多落於157(m/s)至640(m/s),根據此一分布,在台北盆地有三個區域(北區、東北區、西南區)的VS30小於210(m/s);盆地兩側之南緣則大於300(m/s);盆地中心則落於210至300(m/s)之間。本研究在VS30小於210(m/s)之區域,相比郭俊良(2021)之結果有更好之成果,顯示在納入更多資料後,改善了VS30的推估結果。此外,在台北盆地北、東北、以及盆地中心之區域,本研究相比於過去研究有較低之殘差值。
關鍵字:VS30、孔隙比、有效應力、台北盆地、場址效應
摘要(英) Site effect plays an important role in issues of strong ground motion studies. Site effect is caused by soft deposits overlaying hard rock, causing seismic ground motions to be amplified and increasing damage during large earthquake. The time-averaged shear-wave velocity in the upper 30 meters, i.e. VS30, is the most popular and widely be used site parameters representing the site effect in engineering seismology. In this case, VS30 can be estimated based on void ratio and effective vertical stress by transformation functions with data within 30 meters. An extrapolation method:Conditional Independent Property (CIP) model by (Dai et al., 2013) is applied when available data is less than 30 meters. The data of soil physical property data and wave velocity measurements from the Engineering Geological Database for TSMIP (EGDT) were collected and checked, we then proposed transformation functions to predict the shear-wave velocity (VS) using void ratio and effective vertical stress based on the database from 2000 to 2008. Using both transformation functions and extrapolation method, the VS at each depth from numerous drilling boreholes from Central Geological Survey (CGS) has been estimated to obtain VS30 for each borehole. Finally, Kinging with varying local means is used to create a distribution map of VS30 in the Taipei Basin.
Based on regression analysis for sand, silt and clay in the Taipei Basin with EGDT data from 2000 to 2008, resulting in improved RMSE values compared with (Kuo, 2021) have results such as Transformation function for Sand: RMSE from 45.8 m/s decrease of 30.8 m/s and transformation function for Silt and Clay: RMSE from 47.9 m/s decrease to 29.2 m/s. In addition, by separating clay and silt, we have two transformation function better than combined with RMSE 26.52 m/s and 29.86 m/s, So three transformation functions estimate VS30 for CGS boreholes: Sand, Silt, Clay.
The number of boreholes for (Kuo, 2021) result is about 1914 boreholes, and this study updated to 5773 boreholes, include equal to or larger than 30m and less than 30 meters for Kriging with varying local means.
Overall, according to the study, the VS30 distribution in the Taipei Basin ranges from approximately 157 m/s to 640 m/s. Based on this distribution, three specific areas can be identified:North, Northeast, and Southwest Areas: These areas have VS30 values less than 210 m/s.South to East Margin of the Taipei Basin: This area has VS30 values larger than 300 m/s. Center of the Taipei Basin: The VS30 values in this area range from 210 to 300 m/s.
This study found that areas with VS30 values less than 210 m/s in the Taipei Basin exhibit higher accuracy compared to (Kuo, 2021) results and suggests that incorporating additional data in these regions has improved the prediction of VS30 value. In addition, in North, Northeast and Center of Taipei Basin, this research provides less residuals values of VS30 comparing with (Kuo, 2021)
Keywords: VS30, void ratio, effective stress, Taipei Basin, site effect, CIP model
關鍵字(中) ★ VS30
★ 孔隙比
★ 有效應力
★ 台北盆地
★ 場址效應
關鍵字(英) ★ VS30
★ void ratio
★ effective stress
★ Taipei Basin
★ site effect
★ CIP model
論文目次 Table of Contents
Abstract i
摘要 iii
Acknowledgments iv
Table of Contents v
List of Figures viii
List of Tables xii
List of Notations xiii
Chapter 1: Introduction 1
1.1 Literature review 1
1.2 Motivations 5
1.3 Objectives 6
Chapter 2: Data Processing 8
2.1 The Engneering Geotechnical Database for TSMSIP(EGDT) 8
2.1.1 Driling data 13
2.1.2 Wave velocity measurement data 13
2.1.3 The strong motion stations used in this study 16
2.2 The Central Geological Survey (CGS) Data 16
2.2.1 The number boreholes of the CGS in this study 18
2.3 Estimating data processing 23
2.3.1 Estimate void ratio (e) 23
2.3.2 Estimate effective stress 25
2.3.3 Matching the soil layer with the VS value 27
2.3.4 Interpolation elevation of groundwater table: 28
Chapter 3: Methodology 30
3.1 Correlation of VS, e, σ′ 30
3.1.1 Soil type 31
3.1.2 Quality of Shear wave velocity 31
3.1.3 Regression analysis tool: R language nls package 33
3.2 Extrapolation methods 33
3.2.1 Bottom constant velocity (BCV) model 33
3.2.2 Conditional Independent Property (CIP) model 34
3.3 Etimating Shear wave velocity for gravel and rock 34
3.3.1 Gravel 34
3.3.2 Boundary and VS of basements rock 35
3.3.3 Kriging with varying local means 38
Chapter 4: Results and Discussion 39
4.1 Tranfromation functions 39
4.2 Extrapolation methods 49
4.3 Interpolation of VS30 map in Taipei Basin 55
4.3.1 Estimating VS30 for strong motion stations(EGDT) 55
4.3.2 Estimating VS30 for CGS data 56
4.3.3 VS30 map by Kriging varying local means 60
4.3.4 Discussion about high residual in residual map 78
4.3.5 Discussion about boreholes less than 30 meters and boundary of bedrock less 30 meters. 81
4.3.6 VS30 map with Ordinary Kriging 88
Chapter 5: Conclusions and Suggestions 90
5.1 Conclusions 90
5.2 Suggestions 91
References 93
Appendix I: List Vs30 value suggested for Strong Motion Stations in Taipei Basin 95
Appendix II: List Vs30 value of CGS data in Taipei Basin 97
Appendix III: List Vs30 value of CGS data that depth less than 30m and bedrock less than 30m in Taipei Basin 152
參考文獻 Chen, C. T., Kuo, C. H., Lin, C. M., Huang, J. Y., and Wen, K. L. . (2022). Investigation of shallow S-wave velocity structure and site response parameters in Taiwan by using high-density microtremor measurements. Engineering Geology, 297, 106498.
Dai, Z. L. (2013). A shear‐wave velocity model for VS30 estimation based on a conditional independence property. Bulletin of the Seismological Society of America, 103(6), 3354-3361.
Diehl, J. (2001). GEOVision P-S Log Notes & Procedures.
Kawase, H., Lee, W. H. K., Kanamori, H., Jennings, P. C., and Kisslinger, C. (2003). Site effects on strong ground motions. International Geophysics Series 81.B, 81.B,1013-1030.
Kuo, C. H., Wen, K. L., Hsieh, H. H., Chang, T. M., Lin, C. M., and Chen, C. T. (2011a). Evaluating empirical regression equations for Vs and estimating Vs30 in northeastern Taiwan. Soil Dynamics and Earthquake Engineering, 31(3), 431-439.
Kuo, C. H., Wen, K. L., Hsieh, H. H., Lin, C. M., and Chang, T. M. (2011b). Characteristics of Near-Surface S-wave Velocity. The National Center for Research on Earthquake Engineering(NCREE), NCREE-11-022.
Kuo, C. H., Wen, K. L., Hsieh, H. H., Lin, C. M., Chang, T. M., and Kuo, K. W. (2012). Site classification and Vs30 estimation of free-field TSMIP stations using the logging data of EGDT. Engineering Geology, 129, 68-75.
Kuo, C.L. (2021). Correlation between shear wave velocity, void ratio and effective stress: Mapping Vs30 in Taipei Basin. National Central University, Master Thesis in Chinese.
Lee C.T., Huang T.M., Liao C.W, and Chen H..J. (2002). The contruction and application of a subsurface geologic database system - An example from the Taipei Basin. Sino-Geotechnics, No.89, p.13-26.
Lee, C.T., and Tsai, B.R. (2008). Mapping Vs30 in Taiwan. Terrestrial, Atmospheric and Oceanic Sciences, 19(6), 617-682.
Robertson, P. K., Sasitharan, S., Cunning, J. C., and Sego, D. C. (1995). Shear-wave velocity to evaluate in-situ state of ottawa sand . Journal of Geotechnical Engineering divison, 121(3), 262-273.
Building Seismic Safety Council (BSSC) of the National Insititute of Building. (2020). NEHRP recommended seismic provisions for new buildings and other structures(FEMA P-2082-1). Washington, DC.
Tsai, B.R. (2007). Further Study for Site Classification of Taiwan Free-Field Strong-Motion Station. National Central Univerity, Master Thesis in Chinese.
Xie, J., Zimmaro, P., Li, X., Wen, Z., and Song, Y. (2016). VS 30 empirical prediction relationships based on a new soil‐profile database for the Beijing plain area, China. Bulletin of the Seismological Society of America, 106(6), 2843-2854.
Lin, Y.C. (2023), 以孔隙比、有效應力與剪力波速關係繪製臺北盆地 Vs30 分布圖, National Central Univerity, Master Thesis in Chinese.
指導教授 董家鈞 郭俊翔(Jia-Juyn Dong Chun-Hsiang Kuo) 審核日期 2023-7-20
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明