參考文獻 |
[1] Main Drive, “HARMONIC REDUCER SERIES For SCARA, industrial robots and semiconductor No compromise between precision and durability,” Main Drive, [Online]. Available: https://www.maindrive.com.tw/product_en_1.php?pid=50. [Accessed May 22, 2023].
[2] 沈允文,葉慶泰,「諧波齒輪傳動的理論和設計」,機械工業出版社,北京市,中國,1985。
[3] C. W. Musser, “Strain Wave Gearing,” U.S. Patent, No. 2906143, 1959.
[4] Harmonic Drive LLC, “Cup Type Component Sets & Housed Units,” Harmonic Drive LLC, [Online]. Available: http://www.harmonicdrive.net/_hd/content/documents/CSF-CSG.pdf. [Accessed May 22, 2023].
[5] 鄭啟宏,「諧波傳動技術及其發展狀況」,機械月刊,62~68頁,2007。
[6] K. Kondo and J. Takada, “Study on Tooth Profiles of the Harmonic Drive,” Journal of Mechanical Design, Transactions of the ASME, vol. 112, pp. 131-137, 1990.
[7] F. L. Litvin and A. Fuentes, “Gear Geometry and Applied Theory, Second Edition,” Cambridge University Press, New York, NY; USA, 2004.
[8] H. Dong, K.-L. Ting and D. Wang, “Kinematic Fundamentals of Planar Harmonic Drives,” Journal of Mechanical Design, Transactions of the ASME, vol. 133, p. 011007, 2011.
[9] X. Chen, Y. Liu, J. Xing, S. Lin and W. Xu, “The Parametric Design of Double-Circular-Arc Tooth Profile and its Influence on the Functional Backlash of Harmonic Drive,” Mechanism and Machine Theory, vol. 73, pp. 1-24, 2014.
[10] 梁鈺麟,「雙圓弧齒型諧波齒輪之共軛性質探討」,碩士論文,機電整合研究所,國立臺北科技大學,台北市,2015。
[11] 程廷瑋,「諧波齒輪運動分析」,碩士論文,數學系應用數學碩博士班,國立成功大學,台南市,2016。
[12] Y.-P. Yao, X.-X. Chen and J.-Z. Xing, “Complex Cycloidal Tooth Profile of Circular Spline in Harmonic Drive and its Optimal Fitting Research,” Journal of Industrial and Production Engineering, vol. 34, pp.1-8, 2017.
[13] 林佑杰,「諧波齒輪之輸出傳遞誤差及背隙誤差分析研究」,碩士論文,機械工程系,國立臺灣科技大學,台北市,2019。
[14] Z. Yu, S. Ling, X. Wang and L. Wang, “Study on Tooth Profile Design of Harmonic Drive with Deformation Model of Flexspline,” Meccanica, vol. 56, pp. 1883-1904, 2021.
[15] Y. Kiyosawa, N. Takizawa, T. Oukura and Y. Yamamoto, “Cup-Type Harmonic Drive Having a Short, Flexible Cup Member,” U.S. Patent, No. 5269202, 1993.
[16] H. Dong, D. Wang and K.-L. Ting, “Elastic Kinematic and Geometric Model of Harmonic Gear Drives,” Proceedings of the ASME Design Engineering Technical Conference, New York City, NY; USA, pp. 717-725, 2008.
[17] H. Dong, D. Wang and K.-L. Ting, “Kinematic Effect of the Compliant Cup in Harmonic Drives,” Journal of Mechanical Design, Transactions of the ASME, vol. 133, p. 051004, 2011.
[18] G. Chen, H. Li and Y. Liu, “Double-Arc Harmonic Gear Profile Design and Meshing Analysis for Multi-Section Conjugation,” Advances in Mechanical Engineering, vol. 11, pp. 1-14, 2019.
[19] T. Tang, J. Li, J. Wang, K. Xiao and Y. Han, “Double-Circular-Arc Tooth Profile Design and Parametric Analysis on the Comprehensive Performance of the Harmonic Drive,” Proceedings of the Institution of Mechanical Engineers, Part J: Journal of Engineering Tribology, vol. 236, pp. 480-498, 2022.
[20] F. E. Rhéaume, H. Champliaud and Z. Liu, “On the Computing of the Torsional Rigidity of a Harmonic Drive Using FEA,” ANSYS Conference and Exhibition, Pittsburgh, PA; USA, 2006.
[21] 陳毅恆,「諧波齒輪傳動系統之有限元素分析」,碩士論文,機械工程系所,國立陽明交通大學,新竹市,2013。
[22] D. León, N. Arzola and A. Tovar, “Statistical Analysis of the Influence of Tooth Geometry in the Performance of a Harmonic Drive,” Journal of the Brazilian Society of Mechanical Sciences and Engineering, vol. 37, pp. 723-735, 2015.
[23] J. Pacana and O. Markowska, “The Flexspline of the Harmonic Drive with Different Tooth Profile,” Advances in Manufacturing Science and Technology, vol. 41, pp. 23-30, 2017.
[24] E. Yague-Spaude, I. Gonzalez-Perez and A. Fuentes-Aznar, “Stress Analysis of Strain Wave Gear Drives with Four Different Geometries of Wave Generator,” Meccanica, vol. 55, pp. 2285-2304, 2020.
[25] M. Kikuchi, R. Nitta, Y. Kiyosawa and X.-Y. Zhang, “Stress Analysis of Cup Type Strain Wave Gearing,” Key Engineering Materials, vol. 243-244, pp. 129-134, 2003.
[26] F.-E. Rhéaume, H. Champliaud and Z. Liu, “Understanding and Modelling the Torsional Stiffness of Harmonic Drives through Finite-Element Method,” Proceedings of the Institution of Mechanical Engineers, Part C: Journal of Mechanical Engineering Science, vol. 223, pp. 515-524, 2009.
[27] W. Ostapski, “Analysis of the Stress State in the Harmonic Drive Generator-Flexspline System in Relation to Selected Structural Parameters and Manufacturing Deviations,” Bulletin of the Polish Academy of Sciences Technical Sciences, vol. 58, pp. 683-698, 2010.
[28] H. Dong, Z. Zhu, W. Zhou and Z. Chen, “Dynamic Simulation of Harmonic Gear Drives Considering Tooth Profiles Parameters Optimization,” Journal of Computers, vol. 7, pp. 1429-1436, 2012.
[29] Z. Yu and K.-L. Ting, “Explicit Dynamics Analysis for Harmonic Drives,” Proceedings of the ASME Design Engineering Technical Conference, Buffalo, NY; USA, p. V01AT02A034 2014.
[30] 彭啟綱,「諧波齒輪傳動系統之結構分析」,碩士論文,電聲碩士學位學程,私立逢甲大學,台中市,2015。
[31] 李東祐,「諧波齒輪傳動系統之三維有限元素分析」,碩士論文,機械工程系所,國立陽明交通大學,新竹市,2015。
[32] 黃彥明,「波形產生器對諧波齒輪性能影響之有限元素分析」,碩士論文,機械工程系所,國立陽明交通大學,新竹市,2017。
[33] B. Routh, R. Maiti and A. K. Ray, “Analysis of Coning and Lubrication at Flexspline Cup and Cam Interface in Conventional Harmonic Drives,” Industrial Lubrication and Tribology, vol. 69, pp. 817-827, 2017.
[34] Z. Yu and K.-L. Ting, “Application of Finite Element Analysis for the Strain Wave Gear Tooth Surfaces Design and Modification,” American Gear Manufacturers Association Fall Technical Meeting, Oak Brook, Illinois; USA, pp.105-121, 2018.
[35] V. Sahoo, B. S. Mahanto and R. Maiti, “Stresses in Flex Gear of a Novel Harmonic Drive with and without Pay Load,” Australian Journal of Mechanical Engineering, vol. 20, pp. 1054-1068, 2020.
[36] C. Yang, Q. Hu, Z. Liu, Y. Zhao, Q. Cheng and C. Zhang, “Analysis of the Partial Axial Load of a Very Thin-Walled Spur-Gear (Flexspline) of a Harmonic Drive,” International Journal of Precision Engineering and Manufacturing, vol. 21, pp. 1333-1345, 2020.
[37] M. Majchrák, R. Kohár, S. Hrček and F. Brumerčík, “The Comparison of the Amount of Backlash of a Harmonic Gear System,” Tehnički vjesnik, vol. 28, pp. 771-778, 2021.
[38] O. Kayabasi and F. Erzincanli, “Shape Optimization of Tooth Profile of a Flexspline for a Harmonic Drive by Finite Element Modelling,” Materials and Design, vol. 28, pp. 441-447, 2007.
[39] Q. Xiao, X. Han and H. Jia, “Dynamic Optimum Design and Analysis of Cam Wave Generator for Harmonic Gear Drive,” IEEE International Conference on Information and Automation, Shenzhen, China, pp. 315-319, 2011.
[40] J. Wang and C. Wang, “Optimization Design of High Stable Flexspline for Harmonic Drive System,” International Conference on Intelligent Human-Machine Systems and Cybernetics, Hangzhou, China, pp. 198-201, 2014.
[41] 程揚正,「諧波傳動機構之柔輪最佳化設計與分析」,碩士論文,機械與精密工程研究所,國立高雄應用科技大學,高雄市,2015。
[42] 洪朗瑋,「諧波傳動機構之波形產生器最佳化設計與分析」,碩士論文,機械與精密工程研究所,國立高雄應用科技大學,高雄市,2016。
[43] 林暐傑,「諧波傳動機構之多邊形波形產生器最佳化設計與分析」,碩士論文,機械工程系,國立高雄應用科技大學,高雄市,2017。
[44] 阮俊誠,「雙圓弧齒形諧波齒輪減速機之分析與開發」,博士論文,機電工程研究所,私立正修科技大學,高雄市,2023。
[45] P. Falbriard and H. Baour, “Micro-Skiving - (R)evolution of a Known Production Process,” American Gear Manufacturers Association Fall Technical Meeting, Detroit, Michigan; USA, pp. 279-297, 2019.
[46] M. Berger, S. Doerr and M. Gruenberg, “Power Skiving: High Quality, Productivity, and Cost Efficiency in Gear Cutting,” Gear Solutions, pp. 36-41, 2020.
[47] C. Kobialka, “Contemporary Gear Pre-Machining Solutions,” American Gear Manufacturers Association Fall Technical Meeting, Dearborn, Michigan; USA, pp.152-161, 2012.
[48] 邱述文,「應用CAD軟體API建立刨齒加工模擬系統」,碩士論文,機械工程研究所,私立健行科技大學,桃園市,2008。
[49] 洪新堡,「鉋齒刀之切削模擬與剛性分析」,碩士論文,機械與機電工程研究所,國立虎尾科技大學,雲林縣,2011。
[50] 戴林竝弘,「應用田口方法於螺旋刨齒刀磨銳之參數最佳化」,碩士論文,工業工程與管理系碩士班,私立朝陽科技大學,台中市,2013。
[51] Y. Liu, “Study of Optimal Strategy and Linkage-Model for External Non-Circular Helical Gears Shaping,” Proceedings of the Institution of Mechanical Engineers, Part C: Journal of Mechanical Engineering Science, vol 229, pp. 493-504, 2015.
[52] F. Zheng, L. Hua, X. Han, B. Li and D. Chen, “Linkage Model and Manufacturing Process of Shaping Non-Circular Gears,” Mechanism and Machine Theory, vol. 96, pp. 192-212, 2016.
[53] L. Li, L. Zhang, B. Yu, K. Wang and F. Liu, “An Efficient Spur Gear Shaping Method Based on Homogenizing Cutting Area through Variational Circular Feed Rate,” Proceedings of the Institution of Mechanical Engineers, Part B: Journal of Engineering Manufacture, vol. 231, pp. 1587-1598, 2017.
[54] F. Zheng, H. Lin, X. Han, M. Zhang, W. Zhang and X. Guo, “Avoidance of Cutter Retracting Interference in Noncircular Gear Shaping through 4-Linkage Model,” Journal of Manufacturing Science and Engineering, Transactions of the ASME, vol. 141, p. 051005, 2019.
[55] M. Svahn, “A Parametric Analysis of the Surface Roughness of Teeth Shaped by a Pinion Shaper Cutter and Guidelines for Choosing Process Parameters,” Proceedings of the Institution of Mechanical Engineers, Part C: Journal of Mechanical Engineering Science, vol. 233, pp.7368-7377, 2019.
[56] H.-Y. Lai and D.-S. Wu, “An Enhanced DFM Model for Shaper Cutters,” International Journal of Advanced Manufacturing Technology, vol. 19, pp. 482-491, 2002.
[57] 莊曄,「齒輪鉋齒加工參數研究」,碩士論文,機械系,國立中正大學,嘉義縣,2004。
[58] 吳旭正,「螺旋鉋齒刀齒形之成形輪磨法可行性研究」,碩士論文,機械工程所,國立中正大學,嘉義縣,2008。
[59] C.-L. Huang, Z.-H. Fong, S.-D. Chen and K.-R. Chang, “Novel Third-Order Correction for a Helical Gear Shaping Cutter Made by a Lengthwise-Reciprocating Grinding Process,” Journal of Mechanical Design, Transactions of the ASME, vol. 131, p. 051008, 2009.
[60] Gleason Cutting Tools Corporation, “Isoform Shaper Cutters Facts and Features,” Gleason Cutting Tools Corporation, Loves Park, IL; USA.
[61] C.-L. Huang and Z.-H. Fong, “Modified-Roll Profile Correction for a Gear Shaping Cutter Made by the Lengthwise-Reciprocating Grinding Process,” Journal of Mechanical Design, Transactions of the ASME, vol. 133, p. 041001, 2011.
[62] 簡宇昇,「具圓錐刃口面之螺旋鉋齒刀齒形誤差之研究」,碩士論文,機械設計工程系碩士班,國立虎尾科技大學,雲林縣,2018。
[63] A. Katz, K. Erkorkmaz and F. Ismail, “Virtual Model of Gear Shaping-Part I: Kinematics, Cutter-Workpiece Engagement, and Cutting Forces,” Journal of Manufacturing Science and Engineering, Transactions of the ASME, vol. 140, p. 071007, 2018.
[64] A. Katz, K. Erkorkmaz and F. Ismail, “Virtual Model of Gear Shaping-Part II: Elastic Deformations and Virtual Gear Metrology,” Journal of Manufacturing Science and Engineering, Transactions of the ASME, vol. 140, p. 071008, 2018.
[65] ISO 1328-1, “Cylindrical Gears — ISO System of Flank Tolerance Classification — Part 1: Definitions and Allowable Values of Deviations Relevant to Flanks of Gear Teeth,” International Organization for Standardization, Geneva, Switzerland, 2013.
[66] M. Mate, D. Hollanda, F. Tolvaly-Rosca, Z. Forgo and E. Egyed-Faluvegi, “Synthesis of a Profile Errorless Involute Shaper Cutter with Cylindrical Rake Face,” IEEE Joint 19th International Symposium on Computational Intelligence and Informatics and 7th International Conference on Recent Achievements in Mechatronics, Automation, Computer Sciences and Robotics, CINTI-MACRo 2019 - Proceedings, Szeged, Hungary, pp. 71-78, 2019.
[67] 杜基成,「創成螺旋鉋齒刀之砂輪輪廓設計與最佳化」,碩士論文,機械工程學系,國立中央大學,桃園市,2019。
[68] C.-L. Huang and Y.-C. Wei, “Profile Analysis of Spur Gear Shaping Cutters Based on Sharpened Cutting Edges,” Machines, vol. 10, p. 484, 2022.
[69] F. Seibicke and H. Müller, “Good Things Need Some Time,” Gear Solutions, pp. 74-80, 2013.
[70] H. J. Stadtfeld, “Power Skiving of Cylindrical Gears on Different Machine Platforms,” American Gear Manufacturers Association Fall Technical Meeting, Indianapolis, Indiana; USA, pp. 1-18, 2013.
[71] C.-Y. Tsai, “Mathematical Model for Design and Analysis of Power Skiving Tool for Involute Gear Cutting,” Mechanism and Machine Theory, vol. 101, pp.195-208, 2016.
[72] I. Moriwaki, T. Osafune, M. Nakamura, M. Funamoto, K. Uriu, T. Murakami, E. Nagata, N. Kurita, T. Tachikawa and Y. Kobayashi, “Cutting Tool Parameters of Cylindrical Skiving Cutter with Sharpening Angle for Internal Gears,” Journal of Mechanical Design, Transactions of the ASME, 139, p. 033301, 2017.
[73] K. Jia, S. Zheng, J. Guo and J. Hong, “A Surface Enveloping-Assisted Approach on Cutting Edge Calculation and Machining Process Simulation for Skiving,” International Journal of Advanced Manufacturing Technology, vol. 100, pp. 1635-1645, 2019.
[74] 陳星佑,「強力刮齒刀靜態特徵角的分析」,碩士論文,機械工程學系,國立成功大學,台南市,2020。
[75] X.-C. Chen, J. Li, Y. Zou and P. Wang, “A Study on the Grinding of the Major Flank Face of Error-Free Spur Slice Cutter,” International Journal of Advanced Manufacturing Technology, vol. 72, pp. 425-438, 2014.
[76] T. Tachikawa, N. Kurita, M. Nakamura, D. Iba and I. Moriwaki, “Calculation Model for Internal Gear Skiving with a Pinion-Type Cutter Having Pitch Deviation and a Run-Out,” Proceedings of the ASME Design Engineering Technical Conference, Boston, MA; USA, p. V010T11A033, 2015.
[77] Z. Guo, S.-M. Mao, X.-E. Li and Z.-Y. Ren, “Research on the Theoretical Tooth Profile Errors of Gears Machined by Skiving,” Mechanism and Machine Theory, vol. 97, pp. 1-11, 2016.
[78] F. Zheng, M. Zhang, W. Zhang and X. Guo, “Research on the Tooth Modification in Gear Skiving,” Journal of Mechanical Design, Transactions of the ASME, vol. 140, p. 084502, 2018.
[79] E. Guo, N. Ren, Z. Liu and X. Zheng, “Influence of Sensitive Pose Errors on Tooth Deviation of Cylindrical Gear in Power Skiving,” Advances in Mechanical Engineering, vol. 11, pp.1-12, 2019.
[80] 黃浩洋,「動力刮削創成內正齒輪之刀具齒形輪廓最佳化設計」,碩士論文,機械工程學系,國立中央大學,桃園市,2019。
[81] 李偉瑜,「圓柱型齒輪之動力刮削刀具輪廓設計」,碩士論文,機械工程學系,國立中央大學,桃園市,2020。
[82] Z. Ren, Z. Fang, G. Kobayashi, T. Kizaki, N. Sugita, T. Nishikawa, J. Kugo and E. Nabata, “Influence of Tool Eccentricity on Surface Roughness in Gear Skiving,” Precision Engineering, vol. 63, pp. 170-176, 2020.
[83] T.-T. Luu and Y.-R. Wu, “A Novel Correction Method to Attain Even Grinding Allowance in CNC Gear Skiving Process,” Mechanism and Machine Theory, vol. 171, p. 104771, 2022.
[84] H. Guo, T. Ma, S. Zhang, N. Zhao and A. Fuentes-Aznar, “Computerized Generation and Surface Deviation Correction of Face Gear Drives Generated by Skiving,” Mechanism and Machine Theory, vol. 173, p. 104839, 2022.
[85] Y.-P. Shih and Y.-J. Li, “A Novel Method for Producing a Conical Skiving Tool with Error-Free Flank Faces for Internal Gear Manufacture,” Journal of Mechanical Design, Transactions of the ASME, vol. 140, p. 043302, 2018.
[86] Y.-P. Shih, Y.-J. Li, Y.-C. Lin and H.-Y. Tsao, “A Novel Cylindrical Skiving Tool with Error-Free Flank Faces for Internal Circular Splines,” Mechsnidm and Machine Theory, vol. 170, p. 104662, 2022.
[87] C.-Y. Tsai, “Power-Skiving Tool Design Method for Interference-Free Involute Internal Gear Cutting,” Mechsnidm and Machine Theory, vol. 164, p. 104396, 2021.
[88] C.-Y. Tsai, “Simple Mathematical Approach for Analyzing Gear Tooth Profile Errors of Different Gears Cut Using Same Power-Skiving Tool,” Mechsnidm and Machine Theory, vol. 177, p. 105042, 2022.
[89] S. Y. Chen, “SmartDO Tutorial Manual,” 2013.
[90] K. J. Versprille, “Computer-Aided Design Applications of the Rational B-spline Approximation Form,” Ph.D. Dissertation, Syracuse University, Syracuse, NY; USA, 1974.
[91] ANSI/AGMA 1104-A09, “Tolerance Specification for Shaper Cutters,” American Gear Manufacturers Association, Alexandria, VA; USA, 2009. |