博碩士論文 106383002 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:21 、訪客IP:3.138.137.31
姓名 程雲豪(Yun-Hao Cheng)  查詢紙本館藏   畢業系所 機械工程學系
論文名稱 切線雙貝茲齒形之諧波齒輪設計與剛輪之動力刮削刀具設計
(Design of Harmonic Drive of Tangential Double Bezier Tooth Profile and Design of Power Skiving Tool of Circular Spline)
相關論文
★ G10液晶玻璃基板之機械手臂牙叉結構改良與最佳化設計★ 線性齒頂修整對正齒輪之傳動誤差與嚙合頻能量影響分析
★ 沖床齒輪分析與改善★ 以互補型盤狀圓弧刀具創成之曲線齒齒輪有限元素應力分析
★ 修整型曲線齒輪對齒面接觸應力與負載下傳動誤差之研究★ 衛載遙測取像儀反射鏡加工缺陷檢測與最佳光學成像品質之運動學裝配設計
★ 應用經驗模態分解法於正齒輪對之傳動誤差分析★ 小軸交角之修整型正齒輪與凹面錐形齒輪組設計與負載下齒面接觸分析
★ 修整型正齒輪對動態模擬與實驗★ 應用繞射光學元件之齒輪量測系統開發
★ 漸開線與切線雙圓弧齒形之諧波齒輪有限元素分析與齒形設計★ 創成螺旋鉋齒刀之砂輪輪廓設計與最佳化
★ 動力刮削創成內正齒輪之刀具齒形輪廓最佳化設計★ 非接觸式章動減速電機結構設計與模擬
★ Helipoid齒輪接觸特性研究與最佳化分析★ 高轉速正齒輪之多目標最佳化與動態特性分析
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   至系統瀏覽論文 ( 永不開放)
摘要(中) 本論文旨在進行創新切線雙貝茲齒形之諧波齒輪嚙合特性研究,以及其內齒剛輪之動力刮削刀具設計。現今,諧波齒輪主要運用於小空間、高精度且高減速比的場域,比如:半導體設備、機械手臂關節、醫療設備等機構內,且隨著近年全球智慧化機械的發展,使用於機器手臂之諧波齒輪逐年增加。
但目前國內缺乏諧波齒輪系統化設計方法與流程,因此本研究透過一連串的特性分析,嘗試導入各種齒形與結構設計以找尋具最佳嚙合特性的設計參數,此外也提供切製最佳剛輪齒形之新穎的動力刮削刀具設計方案。首先,基於齒輪原理與包絡法發展市面上常見之漸開線與切線雙圓弧諧波齒輪數學模式以及本論文創新之切線雙貝茲諧波齒輪數學模式,再以自行開發的自動化網格生成程式建立二維與三維有限元素模型,從而進行諧波齒輪有限元素分析,以獲得應力分布、扭轉剛性、嚙合齒數、遲滯損失與傳動誤差。以有限元素分析為基礎,依序進行二維齒形最佳化分析與三維結構最佳化分析,得到具有最佳剛性與嚙合齒數之諧波齒輪齒形設計參數與柔輪柔杯結構設計參數。
隨後,發展動力刮削刀具設計之通用數學模型,以推導切製最佳剛輪齒形之動力刮削刀具的無誤差設計刃口線,與磨削此刀具設計刃口線之圓盤狀磨輪設計,並根據ISO精度規範計算切齒精度,以探討動力刮削刀具重磨對於剛輪齒形誤差、最大絕對誤差與峰谷值的影響。最後,在加工過程加入機台補償角以降低因重磨前刀面造成之齒形誤差,從而延長刀具使用壽命,並且比較機台補償前、後之刀具有效重磨量。
摘要(英) The purpose of this thesis is to study the meshing characteristics of harmonic drive with a novel tangential double Bezier tooth profile as well as the cutter design of its inner toothed circular spline. Nowadays, harmonic drives are mainly used in fields with small space, high precision, and high reduction ratio, such as semiconductor equipment, robotic arm joints, medical equipment, and other institutions. With the development of global intelligent machinery in recent years, the number of harmonic drives used in the robotic arm increases year by year.
However, there is currently a lack of systematic design methods and processes for harmonic drives in the country. Therefore, through a series of characteristic analysis, this research tries to explore various tooth profiles and structural designs to find the design parameters with the best meshing characteristics. In addition, the innovation power skiving tool design for generating the optimum circular spline profile is provided. First of all, based on the theory of gearing and enveloping method, the mathematical models of involute and tangential double arc harmonic drives, those are common in the market, and of innovated tangential double Bezier harmonic drive in this paper are developed. Then, the self-developed automatic meshing generation program is used to establishe the two-dimensional and three-dimensional finite element models to conduct the finite element analysis of harmonic drives to obtain the stress distribution, torsional stiffness, number of engagted teeth, hysteresis loss, and transmission error. Based on the finite element analysis, the optimization analysis of two-dimensional tooth profile and that of three-dimensional structure are carried out sequentially, and the design parameters (including tooth profile and FS’s cup structure) of the harmonic drive with the optimal torsional stiffness and number of engaged teeth are obtained.
Subsequently, a general mathematical model for the design of the power skiving tool was developed to derive the tool’s error-free designed cutting edge (for cutting the tooth profile of the optimum circular spline) and the disk-shaped grinding wheel (for grinding the designed cutting edge of the tool). Moreover, the cutting accuracy of gear is calculated according to the ISO accuracy specification to discuss the influence of the resharpening of the power skiving tool on the tooth profile error, maximum absolute error and peak-to-valley value of the circular spline. Finally, the machine compensation angle is added in the machining process to reduce the tooth profile error, caused by regrinding the rake face, to prolong the tool life, and the effective resharpened amounts of the tool before and after the machine compensation are compared.
關鍵字(中) ★ 諧波齒輪
★ 柔輪
★ 剛輪
★ 有限元素分析
★ 扭轉剛性
★ 嚙合齒數
★ 傳動誤差
★ 遲滯損失
★ 最佳化分析
★ 動力刮削刀具
★ 前刀面重磨
★ 機台補償角
★ 有效重磨量
關鍵字(英) ★ harmonic drive
★ flexspline
★ circular spline
★ finite element analysis
★ torsional stiffness
★ number of engaged teeth
★ transmission error
★ hysteresis loss
★ optimization analysis
★ power skiving tool
★ rake face regrinding
★ machine compensation angle
★ effective resharpened amount
論文目次 摘要 I
Abstract II
致謝 IV
目錄 V
圖目錄 IX
表目錄 XV
符號對照表 XVII
第1章 緒論 1
1.1 研究背景 1
1.2 文獻回顧 6
1.2.1 柔、剛輪共軛齒形設計 6
1.2.2 諧波齒輪性能模擬 12
1.2.3 諧波齒輪最佳化設計 18
1.2.4 剛輪加工方法 20
1.3 研究目的與創新性 33
1.4 論文架構 35
第2章 諧波齒輪齒面數學模式 37
2.1 前言 37
2.2創成柔輪齒之假想齒條刀法向剖面數學模式 37
2.2.1 直邊型 37
2.2.2 切線雙圓弧型 40
2.2.3 切線雙貝茲型 43
2.3 三維假想齒條刀齒面數學模式 46
2.4 三維柔輪齒面數學模式 48
2.5 二維餘弦橢圓之波產生器數學模式 50
2.6 二維剛輪齒面數學模式 52
第3章 諧波齒輪最佳化分析 60
3.1 前言 60
3.2 二維有限元素模型 60
3.3 二維齒形最佳化分析 62
3.3.1 最佳化公式 62
3.3.2 結果與討論 65
3.4 切線雙貝茲諧波齒輪之三維有限元素模型 71
3.5 市售產品有限元素分析 75
3.6 三維結構最佳化分析 77
3.6.1 結構設計參數 77
3.6.2 最佳化公式 79
3.6.3 結果與討論 79
3.7 週期應力 84
3.8 傳動誤差 88
第4章 切製剛輪之動力刮削刀具設計 90
4.1動力刮削機制數學模式 90
4.1.1 通用剛輪數學模式 90
4.1.2 動力刮削刀具齒面數學模式 92
4.1.3 動力刮削刀具之設計刃口線數學模式 93
4.1.4 磨輪數學模式 95
4.2動力刮削刀具設計範例 98
4.2.1 剛輪輪廓之曲線擬合 98
4.2.2 動力刮削刀具之設計刃口線 100
4.2.3 磨輪設計 101
4.2.4 磨輪輪廓之曲線擬合 102
4.2.5 錐狀動力刮削刀具設計 103
4.2.6 設計刃口線誤差分析 105
4.3 刀具有效重磨量分析 107
4.3.1 刀具重磨前刀面定義 107
4.3.2 刀具重磨誤差分析 108
4.3.3 機台補償角方法 111
4.3.4 機台補償之刀具重磨誤差分析 113
第5章 結論與未來工作 117
5.1 結論 117
5.2 未來工作 118
參考文獻 120
附錄 128
附錄A 二維齒形最佳化之設計變數的上界和下界 128
附錄B 自動化網格分割程式建立之三維FS齒面網格 129
Publication List 130
Journal Paper 130
Conference Paper 130
參考文獻 [1] Main Drive, “HARMONIC REDUCER SERIES For SCARA, industrial robots and semiconductor No compromise between precision and durability,” Main Drive, [Online]. Available: https://www.maindrive.com.tw/product_en_1.php?pid=50. [Accessed May 22, 2023].
[2] 沈允文,葉慶泰,「諧波齒輪傳動的理論和設計」,機械工業出版社,北京市,中國,1985。
[3] C. W. Musser, “Strain Wave Gearing,” U.S. Patent, No. 2906143, 1959.
[4] Harmonic Drive LLC, “Cup Type Component Sets & Housed Units,” Harmonic Drive LLC, [Online]. Available: http://www.harmonicdrive.net/_hd/content/documents/CSF-CSG.pdf. [Accessed May 22, 2023].
[5] 鄭啟宏,「諧波傳動技術及其發展狀況」,機械月刊,62~68頁,2007。
[6] K. Kondo and J. Takada, “Study on Tooth Profiles of the Harmonic Drive,” Journal of Mechanical Design, Transactions of the ASME, vol. 112, pp. 131-137, 1990.
[7] F. L. Litvin and A. Fuentes, “Gear Geometry and Applied Theory, Second Edition,” Cambridge University Press, New York, NY; USA, 2004.
[8] H. Dong, K.-L. Ting and D. Wang, “Kinematic Fundamentals of Planar Harmonic Drives,” Journal of Mechanical Design, Transactions of the ASME, vol. 133, p. 011007, 2011.
[9] X. Chen, Y. Liu, J. Xing, S. Lin and W. Xu, “The Parametric Design of Double-Circular-Arc Tooth Profile and its Influence on the Functional Backlash of Harmonic Drive,” Mechanism and Machine Theory, vol. 73, pp. 1-24, 2014.
[10] 梁鈺麟,「雙圓弧齒型諧波齒輪之共軛性質探討」,碩士論文,機電整合研究所,國立臺北科技大學,台北市,2015。
[11] 程廷瑋,「諧波齒輪運動分析」,碩士論文,數學系應用數學碩博士班,國立成功大學,台南市,2016。
[12] Y.-P. Yao, X.-X. Chen and J.-Z. Xing, “Complex Cycloidal Tooth Profile of Circular Spline in Harmonic Drive and its Optimal Fitting Research,” Journal of Industrial and Production Engineering, vol. 34, pp.1-8, 2017.
[13] 林佑杰,「諧波齒輪之輸出傳遞誤差及背隙誤差分析研究」,碩士論文,機械工程系,國立臺灣科技大學,台北市,2019。
[14] Z. Yu, S. Ling, X. Wang and L. Wang, “Study on Tooth Profile Design of Harmonic Drive with Deformation Model of Flexspline,” Meccanica, vol. 56, pp. 1883-1904, 2021.
[15] Y. Kiyosawa, N. Takizawa, T. Oukura and Y. Yamamoto, “Cup-Type Harmonic Drive Having a Short, Flexible Cup Member,” U.S. Patent, No. 5269202, 1993.
[16] H. Dong, D. Wang and K.-L. Ting, “Elastic Kinematic and Geometric Model of Harmonic Gear Drives,” Proceedings of the ASME Design Engineering Technical Conference, New York City, NY; USA, pp. 717-725, 2008.
[17] H. Dong, D. Wang and K.-L. Ting, “Kinematic Effect of the Compliant Cup in Harmonic Drives,” Journal of Mechanical Design, Transactions of the ASME, vol. 133, p. 051004, 2011.
[18] G. Chen, H. Li and Y. Liu, “Double-Arc Harmonic Gear Profile Design and Meshing Analysis for Multi-Section Conjugation,” Advances in Mechanical Engineering, vol. 11, pp. 1-14, 2019.
[19] T. Tang, J. Li, J. Wang, K. Xiao and Y. Han, “Double-Circular-Arc Tooth Profile Design and Parametric Analysis on the Comprehensive Performance of the Harmonic Drive,” Proceedings of the Institution of Mechanical Engineers, Part J: Journal of Engineering Tribology, vol. 236, pp. 480-498, 2022.
[20] F. E. Rhéaume, H. Champliaud and Z. Liu, “On the Computing of the Torsional Rigidity of a Harmonic Drive Using FEA,” ANSYS Conference and Exhibition, Pittsburgh, PA; USA, 2006.
[21] 陳毅恆,「諧波齒輪傳動系統之有限元素分析」,碩士論文,機械工程系所,國立陽明交通大學,新竹市,2013。
[22] D. León, N. Arzola and A. Tovar, “Statistical Analysis of the Influence of Tooth Geometry in the Performance of a Harmonic Drive,” Journal of the Brazilian Society of Mechanical Sciences and Engineering, vol. 37, pp. 723-735, 2015.
[23] J. Pacana and O. Markowska, “The Flexspline of the Harmonic Drive with Different Tooth Profile,” Advances in Manufacturing Science and Technology, vol. 41, pp. 23-30, 2017.
[24] E. Yague-Spaude, I. Gonzalez-Perez and A. Fuentes-Aznar, “Stress Analysis of Strain Wave Gear Drives with Four Different Geometries of Wave Generator,” Meccanica, vol. 55, pp. 2285-2304, 2020.
[25] M. Kikuchi, R. Nitta, Y. Kiyosawa and X.-Y. Zhang, “Stress Analysis of Cup Type Strain Wave Gearing,” Key Engineering Materials, vol. 243-244, pp. 129-134, 2003.
[26] F.-E. Rhéaume, H. Champliaud and Z. Liu, “Understanding and Modelling the Torsional Stiffness of Harmonic Drives through Finite-Element Method,” Proceedings of the Institution of Mechanical Engineers, Part C: Journal of Mechanical Engineering Science, vol. 223, pp. 515-524, 2009.
[27] W. Ostapski, “Analysis of the Stress State in the Harmonic Drive Generator-Flexspline System in Relation to Selected Structural Parameters and Manufacturing Deviations,” Bulletin of the Polish Academy of Sciences Technical Sciences, vol. 58, pp. 683-698, 2010.
[28] H. Dong, Z. Zhu, W. Zhou and Z. Chen, “Dynamic Simulation of Harmonic Gear Drives Considering Tooth Profiles Parameters Optimization,” Journal of Computers, vol. 7, pp. 1429-1436, 2012.
[29] Z. Yu and K.-L. Ting, “Explicit Dynamics Analysis for Harmonic Drives,” Proceedings of the ASME Design Engineering Technical Conference, Buffalo, NY; USA, p. V01AT02A034 2014.
[30] 彭啟綱,「諧波齒輪傳動系統之結構分析」,碩士論文,電聲碩士學位學程,私立逢甲大學,台中市,2015。
[31] 李東祐,「諧波齒輪傳動系統之三維有限元素分析」,碩士論文,機械工程系所,國立陽明交通大學,新竹市,2015。
[32] 黃彥明,「波形產生器對諧波齒輪性能影響之有限元素分析」,碩士論文,機械工程系所,國立陽明交通大學,新竹市,2017。
[33] B. Routh, R. Maiti and A. K. Ray, “Analysis of Coning and Lubrication at Flexspline Cup and Cam Interface in Conventional Harmonic Drives,” Industrial Lubrication and Tribology, vol. 69, pp. 817-827, 2017.
[34] Z. Yu and K.-L. Ting, “Application of Finite Element Analysis for the Strain Wave Gear Tooth Surfaces Design and Modification,” American Gear Manufacturers Association Fall Technical Meeting, Oak Brook, Illinois; USA, pp.105-121, 2018.
[35] V. Sahoo, B. S. Mahanto and R. Maiti, “Stresses in Flex Gear of a Novel Harmonic Drive with and without Pay Load,” Australian Journal of Mechanical Engineering, vol. 20, pp. 1054-1068, 2020.
[36] C. Yang, Q. Hu, Z. Liu, Y. Zhao, Q. Cheng and C. Zhang, “Analysis of the Partial Axial Load of a Very Thin-Walled Spur-Gear (Flexspline) of a Harmonic Drive,” International Journal of Precision Engineering and Manufacturing, vol. 21, pp. 1333-1345, 2020.
[37] M. Majchrák, R. Kohár, S. Hrček and F. Brumerčík, “The Comparison of the Amount of Backlash of a Harmonic Gear System,” Tehnički vjesnik, vol. 28, pp. 771-778, 2021.
[38] O. Kayabasi and F. Erzincanli, “Shape Optimization of Tooth Profile of a Flexspline for a Harmonic Drive by Finite Element Modelling,” Materials and Design, vol. 28, pp. 441-447, 2007.
[39] Q. Xiao, X. Han and H. Jia, “Dynamic Optimum Design and Analysis of Cam Wave Generator for Harmonic Gear Drive,” IEEE International Conference on Information and Automation, Shenzhen, China, pp. 315-319, 2011.
[40] J. Wang and C. Wang, “Optimization Design of High Stable Flexspline for Harmonic Drive System,” International Conference on Intelligent Human-Machine Systems and Cybernetics, Hangzhou, China, pp. 198-201, 2014.
[41] 程揚正,「諧波傳動機構之柔輪最佳化設計與分析」,碩士論文,機械與精密工程研究所,國立高雄應用科技大學,高雄市,2015。
[42] 洪朗瑋,「諧波傳動機構之波形產生器最佳化設計與分析」,碩士論文,機械與精密工程研究所,國立高雄應用科技大學,高雄市,2016。
[43] 林暐傑,「諧波傳動機構之多邊形波形產生器最佳化設計與分析」,碩士論文,機械工程系,國立高雄應用科技大學,高雄市,2017。
[44] 阮俊誠,「雙圓弧齒形諧波齒輪減速機之分析與開發」,博士論文,機電工程研究所,私立正修科技大學,高雄市,2023。
[45] P. Falbriard and H. Baour, “Micro-Skiving - (R)evolution of a Known Production Process,” American Gear Manufacturers Association Fall Technical Meeting, Detroit, Michigan; USA, pp. 279-297, 2019.
[46] M. Berger, S. Doerr and M. Gruenberg, “Power Skiving: High Quality, Productivity, and Cost Efficiency in Gear Cutting,” Gear Solutions, pp. 36-41, 2020.
[47] C. Kobialka, “Contemporary Gear Pre-Machining Solutions,” American Gear Manufacturers Association Fall Technical Meeting, Dearborn, Michigan; USA, pp.152-161, 2012.
[48] 邱述文,「應用CAD軟體API建立刨齒加工模擬系統」,碩士論文,機械工程研究所,私立健行科技大學,桃園市,2008。
[49] 洪新堡,「鉋齒刀之切削模擬與剛性分析」,碩士論文,機械與機電工程研究所,國立虎尾科技大學,雲林縣,2011。
[50] 戴林竝弘,「應用田口方法於螺旋刨齒刀磨銳之參數最佳化」,碩士論文,工業工程與管理系碩士班,私立朝陽科技大學,台中市,2013。
[51] Y. Liu, “Study of Optimal Strategy and Linkage-Model for External Non-Circular Helical Gears Shaping,” Proceedings of the Institution of Mechanical Engineers, Part C: Journal of Mechanical Engineering Science, vol 229, pp. 493-504, 2015.
[52] F. Zheng, L. Hua, X. Han, B. Li and D. Chen, “Linkage Model and Manufacturing Process of Shaping Non-Circular Gears,” Mechanism and Machine Theory, vol. 96, pp. 192-212, 2016.
[53] L. Li, L. Zhang, B. Yu, K. Wang and F. Liu, “An Efficient Spur Gear Shaping Method Based on Homogenizing Cutting Area through Variational Circular Feed Rate,” Proceedings of the Institution of Mechanical Engineers, Part B: Journal of Engineering Manufacture, vol. 231, pp. 1587-1598, 2017.
[54] F. Zheng, H. Lin, X. Han, M. Zhang, W. Zhang and X. Guo, “Avoidance of Cutter Retracting Interference in Noncircular Gear Shaping through 4-Linkage Model,” Journal of Manufacturing Science and Engineering, Transactions of the ASME, vol. 141, p. 051005, 2019.
[55] M. Svahn, “A Parametric Analysis of the Surface Roughness of Teeth Shaped by a Pinion Shaper Cutter and Guidelines for Choosing Process Parameters,” Proceedings of the Institution of Mechanical Engineers, Part C: Journal of Mechanical Engineering Science, vol. 233, pp.7368-7377, 2019.
[56] H.-Y. Lai and D.-S. Wu, “An Enhanced DFM Model for Shaper Cutters,” International Journal of Advanced Manufacturing Technology, vol. 19, pp. 482-491, 2002.
[57] 莊曄,「齒輪鉋齒加工參數研究」,碩士論文,機械系,國立中正大學,嘉義縣,2004。
[58] 吳旭正,「螺旋鉋齒刀齒形之成形輪磨法可行性研究」,碩士論文,機械工程所,國立中正大學,嘉義縣,2008。
[59] C.-L. Huang, Z.-H. Fong, S.-D. Chen and K.-R. Chang, “Novel Third-Order Correction for a Helical Gear Shaping Cutter Made by a Lengthwise-Reciprocating Grinding Process,” Journal of Mechanical Design, Transactions of the ASME, vol. 131, p. 051008, 2009.
[60] Gleason Cutting Tools Corporation, “Isoform Shaper Cutters Facts and Features,” Gleason Cutting Tools Corporation, Loves Park, IL; USA.
[61] C.-L. Huang and Z.-H. Fong, “Modified-Roll Profile Correction for a Gear Shaping Cutter Made by the Lengthwise-Reciprocating Grinding Process,” Journal of Mechanical Design, Transactions of the ASME, vol. 133, p. 041001, 2011.
[62] 簡宇昇,「具圓錐刃口面之螺旋鉋齒刀齒形誤差之研究」,碩士論文,機械設計工程系碩士班,國立虎尾科技大學,雲林縣,2018。
[63] A. Katz, K. Erkorkmaz and F. Ismail, “Virtual Model of Gear Shaping-Part I: Kinematics, Cutter-Workpiece Engagement, and Cutting Forces,” Journal of Manufacturing Science and Engineering, Transactions of the ASME, vol. 140, p. 071007, 2018.
[64] A. Katz, K. Erkorkmaz and F. Ismail, “Virtual Model of Gear Shaping-Part II: Elastic Deformations and Virtual Gear Metrology,” Journal of Manufacturing Science and Engineering, Transactions of the ASME, vol. 140, p. 071008, 2018.
[65] ISO 1328-1, “Cylindrical Gears — ISO System of Flank Tolerance Classification — Part 1: Definitions and Allowable Values of Deviations Relevant to Flanks of Gear Teeth,” International Organization for Standardization, Geneva, Switzerland, 2013.
[66] M. Mate, D. Hollanda, F. Tolvaly-Rosca, Z. Forgo and E. Egyed-Faluvegi, “Synthesis of a Profile Errorless Involute Shaper Cutter with Cylindrical Rake Face,” IEEE Joint 19th International Symposium on Computational Intelligence and Informatics and 7th International Conference on Recent Achievements in Mechatronics, Automation, Computer Sciences and Robotics, CINTI-MACRo 2019 - Proceedings, Szeged, Hungary, pp. 71-78, 2019.
[67] 杜基成,「創成螺旋鉋齒刀之砂輪輪廓設計與最佳化」,碩士論文,機械工程學系,國立中央大學,桃園市,2019。
[68] C.-L. Huang and Y.-C. Wei, “Profile Analysis of Spur Gear Shaping Cutters Based on Sharpened Cutting Edges,” Machines, vol. 10, p. 484, 2022.
[69] F. Seibicke and H. Müller, “Good Things Need Some Time,” Gear Solutions, pp. 74-80, 2013.
[70] H. J. Stadtfeld, “Power Skiving of Cylindrical Gears on Different Machine Platforms,” American Gear Manufacturers Association Fall Technical Meeting, Indianapolis, Indiana; USA, pp. 1-18, 2013.
[71] C.-Y. Tsai, “Mathematical Model for Design and Analysis of Power Skiving Tool for Involute Gear Cutting,” Mechanism and Machine Theory, vol. 101, pp.195-208, 2016.
[72] I. Moriwaki, T. Osafune, M. Nakamura, M. Funamoto, K. Uriu, T. Murakami, E. Nagata, N. Kurita, T. Tachikawa and Y. Kobayashi, “Cutting Tool Parameters of Cylindrical Skiving Cutter with Sharpening Angle for Internal Gears,” Journal of Mechanical Design, Transactions of the ASME, 139, p. 033301, 2017.
[73] K. Jia, S. Zheng, J. Guo and J. Hong, “A Surface Enveloping-Assisted Approach on Cutting Edge Calculation and Machining Process Simulation for Skiving,” International Journal of Advanced Manufacturing Technology, vol. 100, pp. 1635-1645, 2019.
[74] 陳星佑,「強力刮齒刀靜態特徵角的分析」,碩士論文,機械工程學系,國立成功大學,台南市,2020。
[75] X.-C. Chen, J. Li, Y. Zou and P. Wang, “A Study on the Grinding of the Major Flank Face of Error-Free Spur Slice Cutter,” International Journal of Advanced Manufacturing Technology, vol. 72, pp. 425-438, 2014.
[76] T. Tachikawa, N. Kurita, M. Nakamura, D. Iba and I. Moriwaki, “Calculation Model for Internal Gear Skiving with a Pinion-Type Cutter Having Pitch Deviation and a Run-Out,” Proceedings of the ASME Design Engineering Technical Conference, Boston, MA; USA, p. V010T11A033, 2015.
[77] Z. Guo, S.-M. Mao, X.-E. Li and Z.-Y. Ren, “Research on the Theoretical Tooth Profile Errors of Gears Machined by Skiving,” Mechanism and Machine Theory, vol. 97, pp. 1-11, 2016.
[78] F. Zheng, M. Zhang, W. Zhang and X. Guo, “Research on the Tooth Modification in Gear Skiving,” Journal of Mechanical Design, Transactions of the ASME, vol. 140, p. 084502, 2018.
[79] E. Guo, N. Ren, Z. Liu and X. Zheng, “Influence of Sensitive Pose Errors on Tooth Deviation of Cylindrical Gear in Power Skiving,” Advances in Mechanical Engineering, vol. 11, pp.1-12, 2019.
[80] 黃浩洋,「動力刮削創成內正齒輪之刀具齒形輪廓最佳化設計」,碩士論文,機械工程學系,國立中央大學,桃園市,2019。
[81] 李偉瑜,「圓柱型齒輪之動力刮削刀具輪廓設計」,碩士論文,機械工程學系,國立中央大學,桃園市,2020。
[82] Z. Ren, Z. Fang, G. Kobayashi, T. Kizaki, N. Sugita, T. Nishikawa, J. Kugo and E. Nabata, “Influence of Tool Eccentricity on Surface Roughness in Gear Skiving,” Precision Engineering, vol. 63, pp. 170-176, 2020.
[83] T.-T. Luu and Y.-R. Wu, “A Novel Correction Method to Attain Even Grinding Allowance in CNC Gear Skiving Process,” Mechanism and Machine Theory, vol. 171, p. 104771, 2022.
[84] H. Guo, T. Ma, S. Zhang, N. Zhao and A. Fuentes-Aznar, “Computerized Generation and Surface Deviation Correction of Face Gear Drives Generated by Skiving,” Mechanism and Machine Theory, vol. 173, p. 104839, 2022.
[85] Y.-P. Shih and Y.-J. Li, “A Novel Method for Producing a Conical Skiving Tool with Error-Free Flank Faces for Internal Gear Manufacture,” Journal of Mechanical Design, Transactions of the ASME, vol. 140, p. 043302, 2018.
[86] Y.-P. Shih, Y.-J. Li, Y.-C. Lin and H.-Y. Tsao, “A Novel Cylindrical Skiving Tool with Error-Free Flank Faces for Internal Circular Splines,” Mechsnidm and Machine Theory, vol. 170, p. 104662, 2022.
[87] C.-Y. Tsai, “Power-Skiving Tool Design Method for Interference-Free Involute Internal Gear Cutting,” Mechsnidm and Machine Theory, vol. 164, p. 104396, 2021.
[88] C.-Y. Tsai, “Simple Mathematical Approach for Analyzing Gear Tooth Profile Errors of Different Gears Cut Using Same Power-Skiving Tool,” Mechsnidm and Machine Theory, vol. 177, p. 105042, 2022.
[89] S. Y. Chen, “SmartDO Tutorial Manual,” 2013.
[90] K. J. Versprille, “Computer-Aided Design Applications of the Rational B-spline Approximation Form,” Ph.D. Dissertation, Syracuse University, Syracuse, NY; USA, 1974.
[91] ANSI/AGMA 1104-A09, “Tolerance Specification for Shaper Cutters,” American Gear Manufacturers Association, Alexandria, VA; USA, 2009.
指導教授 陳怡呈(Yi-Cheng Chen) 審核日期 2023-6-27
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明